AN INTRODUCTION TO SPARSE MATRICES

Denek 0’Connon

1. INTRODUCTION

There is no strict definition of a sparse matrix, but
generally speaking it is an nxn matrix which has 0{(n) non-zero

elements. A full or dense matrix has 0(n?) non-zero elements,

Sparse matrices occur naturally in the solution of many
practical problems, e.g. electrical, gas, and water distribut-
ion systems; civil and mechanical engineering (structural anal-
ysis); production and financial planning (inventory control ‘
and portfolio selection); national and local government oper-
ations (income tax analysis and scheduling of fire and ambul-
ance services); economics (Input-Output analysis). At a more
theoretical level sparse matrices arise in Graph Theory, Linear
Programming, Finite Element Methods, and the solution of ord-
inary and partial differential equations. Duff's excellent
survey article [6] contains a long list of application areas,

with references.

The interest in sparse matrices comes about because of
the need to solve on a computer, linear equations or linear
optimization problems that have many thousands of variables
(possibly millions) but whose coefficients are mostly zeros.
Generally, this sparsity can be exploited, giving large savings
in computer time and storage. Indeed, were it not possible
to exploit sparsity then many important problems could not be

solved on present or future computers.

The sparse matrices that arise in practice are not only
sparse but are also highly structured, i.e. the non-zeros form
very definite patterns. Figures 1.1 ta 1.4 below are taken
from Duff [7] and show some typical sparse matrices. This

structure can be exploited also, giving even greater savings
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in space and time.

An outline of this paper is as follows: Section 2 briefly
outlines the history and goals of sparse matrix research; Sec-
tion 3 discusses the standard schemes for sparse matrices in
digital computers; Section 4 discusses direct and jterative
methods for solving sets of sparse linear enuations; Section 5
considers the special but very important class of symmetric
positive definite matrices; section 6 is the canclusion with a
brief discussion of extensions to eigenvalue, least sgquares

and optimization problems.

2. THE HISTORY AND GOALS OF SPARSE MATRIX RESEARCH

The interest in sparse matrices seems to have started in
the late 1950s when researchers in linear programming and elec-
trical power system analysis began to solve realistic problems
on computers. It was noticed that when real problems were
modelled by systems of linear equations, the resulting matrices
were sparse with highly structured non-zero patterns. It was
also noticed that these matrices were large and that the spar-
sity would need to be exploited if these problems were to be
solved on the rather small and slow computers available at that
time. Sparse matrices became increasingly important in the
1960s and the first conference on sparse matrices was held at
the IBM Research Center, Yorktown Heights, in 1968 [24]. Since
then there have been at least six international conferences,
with published proceedings, devoted entirely to sparse matrices.
The number of papers on sparse matrices is very large. Duff's
survey paper [6) 1lists aver 600 references up to the end of
1975 and a casual check of journals since then shous that this
number is growing steadily. To date there are at Jeast three
textbooks on sparse matrices, while most textbooks on numerical
analysis and data structures contain sections or chapters on

the subject.

There are two complementary goals in sparse matrix res-
earch: (1) reduce the amount of computer memory needed to store
sparse matrices, and (2) reduce the amount of computation time
needed to solve problems involving sparse matrices. It is a
general rule of thumb in‘computing that SPACE x TIME = CONSTANT,
i.e. to save storage space more computation time must be spent
and vice-versa. We wi}l see that in solving sparse matrix
problems it is often popsible to make a simultaneous reduction

in the amount of Lime 4nd space required for the dense matrix
J:
case.

Some may wonder why it is important to reduce or conserve
computer time and space when computers are getting larger and
faster at lower costs each year (you can now buy a microcomp-
uter for $5,000 which is as powerful as a mainframe which cost
$ millions in the early '60s). Here are three reasons why

conserving space and time is important:

X There is no computer available today that can store a
1000 x 1000 matrix in core. Many engineering and bus-
iness problems have from 100,000 to 25,000,000 variables.
Problems of this size are routinely solved but not with-
out great care being taken to reduce their storage and

time requirements.

x Sparse linear equation solvers are often a small but
critical part of a much larger algorithm. As such,
they may be used many thousands of times in solving a
single problem, Any inefficiency in the equation sol-
ver will be greatly magnified and thus degrade the per-

formance of the otherwise good, larger algorithm.

* Microcomputers are widely used today and in general they
have small memories and slow processors. If sparsity
techniques are used then these machines can solve real-

istic problems in the order of 100-1000 variables.

Thus it seems that, despite the increasing size and speed of

computers, there is still - and perhaps always will be - a need
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to conserve computer time and storage.

3. SPARSE MATRIX STORAGE SCHEMES

eral schemes for compactl
ed in isol-

y storing
We now discuss saome gen

These schemes should not be view
In general, they

orithm used

sparse matrices.
ation from the algerithms which use them.

must be tailored to suit the problem and the alog . et
P S -
to solve the problem. Thus the algorithm and the data

ure (storage scheme) are intimately linked.

ices and
We start with the standard scheme for dense matrice F :

i S, or
then discuss the three main methods for sparse matrice

simplicity, we consider only square matrices.

3.1 Dense Matrix Storage
one-
The memory of a digital computer can pbe regarded as 3
1 or word in memory

dimensional array or vector because each cel .
called the machine

is indexed or addressed by a single number,

address.

. as a one-
A 2-dimensional array or matrix must be stored

H S or
dimensional array and this is done by placing the column (

f : in Fig. 3.1.
rows) one after another in memory. This is shown in 719

Row 1 Row 2 Row n

§len [ |

Figure 3.1:

A Matrix Stored Rou by Row

e its
of

f ulat
Ta access an element a3 of a matrix A we must cale

position relative to the location of the first element aia

A. Thus,

. r
loc(aij) = loc(a,,) + n{i-1) + j-1 Stored row by row, O

loc(aij)

1oc(ay,) + n(j-1) + i-1 Stored column by column.
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N

It is important to note that these calculations assume that
all n? elements of the matrix are present and in a predeter-
mined place relative to the first element. Also note that
two extra cells are needed to store loc(a;;) and n and that
each access requires one multiplication and two additions.

This is called the toverhead' of this storage scheme.

7
3,2 Static Sparse Matrix /Storage

4
The dense scheme infthe last section is appropriate if

.

the number of non-zeros is high, because very little space

is wasted in storing zeros. It should be remembered however,
that with current computer technology, we are limited to stor-

ing matrices of order 300-500 in dense or full form.

In many practical applications, involving matrices of
high order (n > 500), there may be only 2 to 20 non-zeros per
rou. Even if we could store such matrices in dense form we
would be wasting most of the allocated space in storing zeros.
Worse still, most of the arithmetic calculations would involve
addition and multiplication of zeros, and these are null cal-

culations, i.e., require no actual computation.

Most storage schemes for sparse matrices store only the
non-zeros along with indexing information for each non-zero.
This indexing information must be stored explicitly with each
non-zero because the non-zeros will not be in predetermined
This

is in contrast to the dense scheme where no indexing informat-

positions relative to the first element of the matrix.

jon is stored (it is calculated).

We now describe three schemes for storing sparse matrices
that are static, i.e. the number and locations of the non-zeros
do not change during calculations. If this is not the case
then we assume their number and locations at any point in a

calculation can be determined before the calculation begins.




Storaqe Scheme 1:

Consider the 6 x 6 sparse matrix shouwn in Fig. 3.2.

VAL 2 1 4 3 6
coL 1 4 3 1 2 6 4 1 5 6

ROW 1 1 2 3

Figure 3.2: A Sparse Matrix and Storage Scheme 1

t non-zeros then we use J arrays of length t
the row position (ROW) and the

If the matrix has

to store the non-zeros (vaL), .
This scheme requires 3t cells instead

Thus in a 1000 Xx 1000 matrix with

column position (COL).
of n? for the dense scheme.
a non-zero density (t/n? x 100%) = 5%, we would save

10002 - 3 x 50,000 = 850,000 cells.

Storage Scheme 2:

This scheme is obtained from the first scheme by ohserving

that some of the row index numbers are repeated and hence red-

undant This is because the elements of any single row are

stored contiguously in 2 block of memory cells. As a result

we need only know where each row block begins. This scheme

is shown in Fig. 3.3 for the matrix A above.
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2 1 3 8 5
VAL

1+ 4 3 1 2 6 4 1 5 B
coL

ROW START | 1 3 4 7 8 10

Figure 3.3: A Sparse Matrix and Storage Scheme 2
I
This scheme requires two érrays of length t and one array of
length n, giving a total/of 2t+n cells. An alternative method
is to store the number of non-zeros in each row instead of the
row-start positibns. This alternative scheme is used in the

program given in the appendix.

Storage Scheme_3:

The third scheme saves storage by packing each row and
column index of the first scheme into one cell, using the foll-

owing calculation:

Nij = nx (i-1) + j

To retrieve or unpack the values of i and j we use the follow-

ing calculation:

i = [(Nij'1)/“] + 1,

j = Nij - nx (i-1).

" This scheme requires only 2t cells but it involves more comp-

utation to pack-and unpack the indices. An example of this

storage scheme is shown in Fig. 3.4 again using the matrix A.

1 2 3 4 5 6 7 8 9 10
VAL 2 1 4 3

Nij 1 4 9 13 14 18 22 25 29 36

Figure 3.4: A Sparse Matrix and Storage Scheme 3
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3.3 pynamic Sparse matrix Storage

s involving matrices the number of non-
In addit-

In many algorithm

varies during the course of the computation.
s

zero
this the locations of neuwly created non-zeros oOT Zeros
o

jon t

not known in ad
b ble to insert and delete elements of the matrix data
e a

e scheme).

vance. These two difficulties require that
are

we
structure (storag

The static storage schemes above do not allow efficient

1 entation of the 'ipnsert! and tdelete! operations. This
implem

pecause all non-zero elements are stored contiguously and
is be

inserting @ n
half the elements, on average.

ew element in its appropriate place requires a
movement of

The most common way of storing sparse matrices whose elem-

ts vary dynamically is to use some form of Iinked list

ents

scheme.

computer science.
1inked list scheme requires that for each non-zero, ue store

a li

its value (ai
) of the next non-zero element in the same row or column.

Linked lists are fundamental to, and widely used in,

In the context of sparse matrix storage,
.), its indices (i, j), and the address in memory
J

(m

This is in contras
th indices are stored, and the dense scheme in which only the
e

t to the static scheme in which the value and

lue is stored. The advantage of the linked list scheme is
va

that each non-zero can be stored anywhere in memory, i.e. the

n-zeros do not need to be stored contiguously, as in the
non-

static and dense schemes.
s not disturb the other non-zeros.

Hence, inserting or deleting a non-

zero doe

To implement a linked list storage scheme we need to

'create' new storage cells and tdestray' old cells as the num-

per of non-zeros varies.
come from or what is done with old cells except to say

We will not discuss where new storage

cells
that these are

tmemoTy manager'.
in pascal) or may need to be programmed by the

thouse-keeping' functions which are handled by

Such memory managers may be part of the
a

language (e.g.
yser/designer (e.g. in FORTRAN).

suffice it to say that the
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memory manager must efficiently recycle'old cells and make

available new cells.
ment see Knuth [14] or Horowitz and Sahni [12].

For a good discussion of memory manage-

3.4 Operations on Sparse Matrices

Writing software to perform the standard matrix operations
is easy when matrices ars stored in dense form. All scien-
tific programming langua@es allow the user to declare matrices
as 2-dimensional arrays]%nd to perform arithmetic operations
on the individual matrix elements in a direct way. Thus in
Pascal, the sumfbf two nxn real matrices A, B, is computed as

follows:

Var A, B, C :¢ Array [1..n, 1..n] of Real;

i, j ¢ Integer;

for j :t= 1 to n do
cli,j] := A[i'j] + Bli,]]

end;

The above program segment is essentially a direct translation
of the mathematical definition of matrix addition. Further-
more, it is clear from the program that matrix addition is being
performed. Writing the equivalent program for sparse matrices
compactly stored is a much more difficult job. Also, reading
and understanding such a program is difficult because the mat-
rices are no longer represented in a direct and obvious way.
These comments are true in general for sparse matrix software
and for this reason such software is written only by those who
have a sufficient knowledge of both mathematics and computer
science. A list of the best-known sparse matrix software is

given in the appendix.




3.5 Literature on Sparse Matrix Storage

The literature on sparse matrix storage schemes ijs scatt-
ered throughout books and journals in engineering, numerical

linear algebra, computer science and operations research.

book by Jennings [13], and the survey article
Nieder [15] are good starting points. Also,
science texts on Data Structures contain sect

matrix storage (see [12], [14] and [23]).

4, SOLVING SPARSE LINEAR EQUATIONS

We now consider the solution of the equa
Ax = b,
where x, b are vectors in Rn and A is an n X

The algorithms for solving this equation fall

categories, viz., Direct and Iterative. Ite

(Gauss-Seidel, Jacobi, etc.) are easy to implement (program)

but may suffer from slow convergence. Direc
(Gaussian Elimination, LUP Decomposition, etc
in a finite number of steps but are difficult

especially when the sparsity of A is exploite

4.1 Iterative Algorithms

Iterative algorithms require that the eq

transformed into the 'Fixed Point' form

x = Cx +d = T(x),

which is then solved by successive approximat

jteration formula

() (o)

x(k+1) + d, x =

Cx

This iteration formula (or algorithm) generat

- 16 -

Kk .
ectors (x 1). x(2)’ vee s «{ ). ... ), which, under suitable

onditions on C, converges to x, the solution of Ax = b.

The

by Pooch and This general jterative algorithm has very nice features

many computer nd it is easy to implement sparse versions of it. These

ions on sparse eatures are:
1. Transforming A to C is simple and if A is sparse then

C is sparse. ;

/
2. The matrix C dogs not change during the iteration

process and hence an efficient static data structure

tion .
can be used.
3, Programs for jterative algorithms tend to be short and
n sparse matrix. simple.
into two broad 4. Roundoff error is not generally a problem.

rative algorithms
‘he main difficulty with jterative algorithms is that they may

t algorithms jave very slow linear convergence. This is why .direct methods
.) give a solution .end to be preferred. Nonetheless iterative methods are use-
to implement, ‘vl for extremely large prablems or where good initial solut-

d. ons are available. In fact it is good practice to 'polish'

yr refine a direct solution with one or two iterations of an
{terative algorithm (see Rice {17] and Forsythe and Moler [a]).
i
uation Ax = b be ; The program shouwn in the appendix is a straightforward
ORTRAN implementation of the Gauss-Seidel iterative method
sing the static sparse storage scheme No. 2 given above. It
an be seen that the heart of the program requires only 10
ines of code (lines 30-39). This program was run on a 280,
ions using the )-bit, 64 K Byte microcomputer and solved a 1200 variable prob-
em in 2.5 minutes. The A matrix had 3 non-zeros per row and
§ iterations were required to get 7-digit accuracy. Thus we
0. ee that even very slow and small microcomputers can solve

tealistic problems.

es a sequence of
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4.2 Direct Algorithms

Direct algorithms usually use some variant of the classic forced to use a dynamic storage scheme which allocates storage
Gaussian Elimination method. This method transforms the sys- as fill-in occurs.
tem Ax = b into Ux = y, where U is upper-triangular. x = Uty
is then found by back-substitution.
5. SPARSE, SYMMETRIC POSITIVE DEFINITE MATRICES

A more general statement of the Gaussian Elimination Alg- Symmetric positive definite (sPD) matrices do not suffer

orithm is as follows: from the problems outlined in Sectian 4 above. This is fort-
uitous because many real, physical systems are modelled by very

LU - Decomposition to Solve Ax = b large, sparse 5PD matricefi.
/
J

Step 1: Decompose (Factorize) A, i.e. find L and U such that
LU = A, where U is upper triangular and L is unit 5.1 Some Computational Properties of SPD Matrices

lower triangular.
1. Gaussian Elimination becomes Cholesky's Method and

Step 2: Solve LUx = b as follous: yields the triangular factorization

a. Solve Ly = b by Forward-Substitution. A = LLt,

b, Solve Ux

by Back-Substitution. .
y by 1o where L is lower triangular with positive diagaonal

elemenfs.
Roundoff errors can accumulate in Step 1, and if A is ill-

conditioned these errors will be greatly magnified. To con- 2. No pivoting is reguired to control roundoff errors,
trol these errors, some form of pivoting (row or column inter- i.e. the diagonal elements, a;;» are stable pivots.

changes or both) is necessary. Hence we normally obtain an
3. A symmetric permutation of A is symmetric, positive

definite, i.e. if A is SPD then PAPt is SPD, where P

is a permutation matrix.

LU factorization of PA or PAQ where P and Q0 are permutation
matrices. These permutation matrices are determined during

the factorization.

Exploiting the sparsity of the A matrix is difficult when Properties 2 and 3 allow us to find a P which reduces fill-in

using direct algorithms. This is because L and U may be dense, before we begin the factorizing, without worrying about pivoting

even though A is sparse. This is called the fill-in problem. to control roundeff error. Thus we can predict fill-in and

Fill-in can be controlled by permuting rouws and columns but allocate storage accordingly.

these permutations may affect the pivoting scheme and hence
increase the roundoff. Thus, in choasing P and Q we must bal- We can now break a direct algorithm for SPD matrices into

ance the competing requirements of roundoff-error and fill-in four independent steps as shown belou in Fig. 5.1.

control. An additional complication is that P and O cannot
be determined before the factorization process begins. There- The ability to break the direct algorithm into four indep-
ndent i i i i
fore we cannot predict where fill-in will occur. Thus we are endent steps has enormous practical implications. We are free
to look for the best possible ordering P to minimize fill-in.
- 18 -
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Find permutation P to

minimize fill-in

| Non-Numeric

Set up data structure for L,
2 t 3
where PAP~ = LL
3 Factorize using
Cholesky's Method to get L
I Numeric
4 Solve Lth = b

Figure S.1: Direct Algorithm for Sparse, SPD Systems

A static storage scheme can be used bécause the factorization
will cause only that fill-in predicted in Step 1. Different
problems, with the same non-zero structure can be solved using
only the numeric Steps 3 and 4. Thus the cost of the non-
numeric Steps 1 and 2 can be amortized over a set of problems.
The software for each step can be designed and developed indep-
endently. This helps to 'tmodularize! the complete program and

yields a more reliable, useful, and versatile software package.

5.2 Ordering an SPD Matrix to Reduce Fill-In

The focus of much research in the last 10 years has been
on finding P to minimize fill-in. The problem of finding a
goad ordering or permutation P is called the Ordering Problem.
A very thorough exposition is given in the book by George and

Liu [11]).

We illustrate the ordering problem with the 6 x 6 symmet-
ric matrix shouwn in Fig. 5.2(a), where the non-zeros are indic-
ated by asterisks. 1t is assumed that the matrix is positive
definite and hence pivoting on the diagonal elements will not
cause roundoff problems.

- 20 -

Using standard Gaussian Elimination, variable 1 is elimin-
ated from rouws 2,...,6 by subtracting suitable multiples of row
1 from rows 2,...96. Variable 2 is eliminated from rous
3,...46 DY subtracting suitable multiples of row 2 from rows
3,.00960 Eventually the upper triangular matrix U is obtained,
which is shown in Fig. 5.2(b). We note that the number of non-
zeros in A and U are 15’and 21 respectively. In general, for
this type of matrix, thé numbers of non-zeraos will increase,
from 3n-2 to (n’+n)/2,/using the samc pivot order. Now, if
we symmetrically permute Lhe A matrix so that row 1 becomes row
6, var 1 becomeé var 6, etc., then we get the matrix PI\Pt shown
in Fig. 5.2(c). performing the elimination process on this
matrix gives the matrix U' shown in Fig. 5.2(d), which has only
2n-1 non-zeros. Thus the number of additional non-zeros gen-

erated by the elimination process has been drastically reduced.

1 2 3 4 5 6 1 2 3 4 5 6
xox o2 ox x X 1 lxox o o x x
2 |* X 2 X X X X *
3 | * 3 X X X X
4 |* x 4 * E3 X
5 |* * 5 X
6 I* * 6 x

(a) a (b) U

6 5 4 3 2 1 [¢] 5 4 3 2 1
B |* X 6 |* X
5 x x 5 3 X
4 * * 4 X x
3 x x 3 X X
2 x X 2 X x
11 x x x  x  x 1 x

(c) A* = papt (d) ur

Figure 5.2: Elimination with Different Pivot Urderé
- 21 -




.P.so that no fill-in occurs.

The example above shouws that a judicious ordering of pivots

(choice of P) leads to no increase in the number of non-zeros
during elimination. In general it is not possible to find a
It is possible to find a P to
minimize fill-in, but even this is difficult because it has
been shown {18] that this problem is NP-Complcte (see [10])

and so is essentially intractable.

Although we cannot hape to minimize fill-in there are
practical algorithms that tend to reduce fill-in. At present

there are four general types of ordering algorithms:

1. Band and Envelope Methods.
2. Mimimum Degree Methaods.
3, Quotient Tree Methods.

4, Dissection Methods.

We will not describe the methods because they require a good

knowledge of graph algorithms and theory. The first method

is designed for band-like spD matrices; the second for general
SPD matrices; and the third and fourth for SPD matrices arising

in finite element problems. Figs 5.3, 5.4 and 5.5 show the
effects of the first tuwo methods on a 35 X 35 SPD matrix.
These figures are reproduced from [11] which gives a complete

description and analysis of all four methods.

Unordered Matrix R and its Factor L

Figure 5.3:

. 22 -

Figure 5.43 Band-Ordered Matrix A' and its Factor L'

Figure 5.5: Minimum Degree-Ordered Matrix A" and its Factor L"
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6. EXTENSIONS AND CONCLUSION

In this paper we have outlined the problems in storing and

solving large sparse sets of linear equations. We have seen APPENDIX

that substantial reductions in both storage and computation .
sources of Sparse Matrix Software

time can be achieved by the proper application of sparsity tech-

niques. Many real problems give rise to matrices that are

large and sparse, and these problems cannot be solved by the Most general collections of mathematical software contain
naive application of standard (dense) matrix methods. Hence some sparse matrix routines. However, the best and most up-
it is important that both theoretical and applied scientists to-date software comes from those institutions and universities

be aware of the large body of research, experience, and software that have active research; programs in sparse matrices and rel-

A
that exists in this area of applied mathematics. ated areas. These are %ndlcated by an (*) below.
/

)
Although 'sparse matrices' may seem a rather narrow and 1. ACM - Association of Computing Machinery, publishes Trans.

specialized topic, it has developed into a very active and on Mathematical Software and the Collected Algorithms

from ACM. All software is available in machine-

readable form from IMSL below.

broad area of research, with contributions from chemists, comp-
uter scientists, engineers, mathematicians, operations resear-
chers and physicists. It draws on topics such as linear alg-

2. AERE (*) - Atomic Energy Research Establishment, Harwell,

ebra, numerical analysis, graph theory, combinatorics, data K
Didcot, Oxfordshire, England. One of the leading

structures and software design. Research in the area ranges .
places for sparse matrix research and software.

from the theoretical (see [3]) to the practical (see [7]). ]
Reports published by H.M. Stationery Office.
The general techniques of sparse matrix storage and fact- 3. Boeing Computer Services Co., Seattle, Washington 98124.

orization are also applied to eigenvalue problems, least squ-
4, iMst - International Mathematical and Statistical Library,

Inc., NBC Building, 7500 Bellaire Blvd, Houston,
Texas 77036. This company develops, maintains and
sells the general IMSL library and the Collected
Algorithms from ACM. The IMSL library is available
on UCD's DEC20 and IBM machines.

ares and linear programming. Special techniques for linear
programs of the minimum-cost-flow type have been particularly .
successful (see [5]), with Barr and Turner [4] solving a net-

work flow problem containing 25,000,000 variables. Sparse

matrix techniques are also important in differential, integral,

and non-linear equation-solving and in aptimization problems.

is is b i thod ) r f 1 )
This is because most solution methods use some form of loca 5. NAG - National Algorithms Group, Oxford University.

or piecewise linearization which agives rise to sparse matrices. Available on UCD's IBM machine,

Software for sparse matrix problems is not easy to design 6. SPARSPAK (*) - Prof. A. George, University of Watefloo,
and develop. In general a sparse matrix subroutine in FORTRAN Waterloo, Ontario, Canada.
is 3 to 10 times longer than its dense equivalent and is diff-

icult to understand and modify. For this reason we have not 7. Yale Sparse Matrix Package (¥) - Prof. 5. Eisenstat, Yale

discussed sparse matrix software in any detail. Instead we give University, New Haven, Connecticut 06520.

a list of some of the available software packages in the appendix.
- 24 -
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A FORTRAN Program for Iteratively Solving Sparse Linear Equations

WRITE (SCREEN, 920) N, KOUNT, EPSIL
e——mmmsm—===SSSSSSSSSISSEISIISSESS g20 FDRMAT (' N="T, I‘l,' NO. ITERS. = ', IS,' EPSIL = ¢, F‘][].B)

OGRAM C ]
C PR—G A -§§QEUE—= ==z== fezzzs==zo==ZTSSISRSISSESSISS C._-———-—lURITE out SULUTIUN VECTOR
i i i c REEN, 930) (I, X(I), I=1,N)
C This is 2 driver program and problem generator to test the Gauss-Seidel WRITE (SC ’ ’ N R
C Method for Sparse Matrices g30  FORMAT (' 1,5(14,2X,F10,4))
c STOP
c END
c c
Cz========= m=m====SESSE —m—===oSSSSSSSSSSESSSSSSRSETISEESIESS
¢ INTEGER TDXCOL(2400) ,NONZER(1200), SUBROUTINE SEIDEL (CMAT, D, IDXCOL, NONZER, N, EPSIL, X, KOUNT)
K , g C=========?====="‘ SEEmE==ss == - SmESI===I==S === ===
* REAL CM!\?ZZA%?T'D?%ES’;‘ Q'gggg) _CThis routine colves the linéar system of equations x = Cx + d, using the
N EPSIL A é C ! ! C Gauss Seidel Method. The J/mattix C is sparse and is stored to take advan-
DATA SCREEN /5/ : ' Ctage of this sparsity.
C -
C g
WRITE (SCREEN,900) c ‘
9o FORMAT (' INPUT A, B, C, EPSIL (4F5.0), N (14) :') INTECER §°x§35§§“°236§§§ZER(’2”“"
READ (SCREEN,B00)A, B, C, EPSIL, N .ot : ' » IROW, JCOL, NUMNZI, SCREEN
600 FORMAT (4F5 b14) v By Lo REAL CMAT(2400), D(1200), X(1200),
-0, + EPSIL, MAXOLD, MAXNEW, MAXDIF, DELTAX, RELERR, INFNTY
] WRITE (SCREEN, BOD)A, 8, C, EPSIL, N DOUBLE PRECISION SUM ’
————GTART CONSTRUCTION OF BAND MATRIX TEST PROBLEM— c INFNTY = 1.0E20
C a(i1,i) = A, a(iyi) = 8, a(i+1li) =C KOUNT = 0 *
c MAXOLD = 1.0
CMAT(1) = -C/B ¢ )
10XcoL(1) = 2 DO S(Iﬂoﬁ)_ 1, N
NONZER(1) = 1 ' 5 CDN#I&SQ = ol1rou)
p(1) = 1.0/B
C
. IPOINT = 2 G————— START OF MAIN ITERATION LOOP
C
Mt = N-1 _ 7 10 KOUNT = KOUNT + 1
c 00 10 TROU = 2, NI MAXDIF = -INFNTY
CMAT(IPOINT) = -A/B v T JINENTY
IDXCOL (IPOINT) = IROW - 1 C
IPOINT = IPOINT + 1 -
CMAT(IPOINT) = -C/B oo 383 iRg?O' TN
iﬁéﬁﬁ%‘fp?ég}&r= I?OW +1 NUMNZI = NONZER(IROW)
D(IRDH)—- eyl + D0 100 J=1, NUMNZI
NONZE%(I&M 5 JCOL = IDXCOL(IPDINT)
1o CONTINGE ) =2 SUM = SUM + CMAT(IPDINT) * X(JCOL)
IPDINT = IPOIN
CMAT(IPOINT) = -A/B 100 CONTINUE Tl
IDXCOLEIPDINT) = N-1 C
NONZER(N) = 1 ' G———————CALCULATE INFINITY NORMS—
p(N) = 1.0/B ¢ ORM
c XNEW = SuUM + D{IROW)
C DE%TAX = ABS( XNEW - X(IROW) )
c ‘ 1F ( DELTAX .GT. MAXDIF ) MAXDIF = DELTAX
CALL SEIDEL(CMAT, D, IDXCOL, NONZER, N, EPSIL, X, KOUNT) ABXNEW = ABS(XNEW)
c IF( ABXNEW ,GT. MAXNEW ) MAXNEW = ABXNEW

X(IROW) = XNEW

- 26 - 200 CONTINUE
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C
E——-———CDNVERGENCE CHECK: ’
RELERR = MAXDIF /MAXOLD B. DUFF, I.S. and STEWART, G.0Q. (Eds)
MAXOLD = MAXNEW 'Sparse Matrix Proceedings 1978, SIAM Publications, 1979.
WRITE (5,900) KDUNT.NAXDIF,NAXOLD,REL%RR
900 FORMAT (' ITER. NO. =', I4,5X, 3F20.7
TF (RELERR .GT. EPSIL) GOTO 10 9.  FORSYTHE, G. and MOLER, C.
c tComputer Solution of Linear Algebraic Systems', Prentice-
EESURN Hall, 1867.
C
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AN INTRODUCTION TO NONSTANDARD ANALYSIS

Chnislophen Thompson

1. Introduction

This note describes the axiomatic approach to nonstandard
analysis developed by Nelson and illustrates it by proving the
fundamental theorem of algebra and a form of the spectral the-
orem in finite dlmen51ons.

"at the DIAS in Aprll, 1985

It is based in part on a talk given

1 2. The Axioms

We shall be working in a mathematical universe that con-

talns all the usual familiar objects (e.g. numbers 0O, 1, VZ,
g etc., sets N, R, € etc., function spaces g2, c{o,1] etc.)
and in addition contains new and unfamiliar objects such as
infinitely large natural numbers and infinitely small positive
real numbers. To ensure the presence of the familiar objects
we adopt the usual axioms of set theary, for example the
7Jermelo-Fraenkel axioms together with the axiom of choice.
To make visible the unfamiliar objects we adopt a new undefined
unary predicate standard and axioms (1), (s) and (T) to govern
its use. The resulting theory is called internal set theory
(1ST) and 1s due to Nelson [7].

new of ZFC has the informal interpretation "is a member of"

Just as the binary predicate

(although strictly speaking it is undefined and therefore mean-
ingless), so also has the unary predicate "standard" of IST an
informal meaning: 'x standard' has the interpretation 'x is a

familiar object of classical mathematics'. It is a consequence
of the axioms that 0, 1, vZ, #, N, IR etc. are indeed standard,

as we shall see.

A formula of IST may or may not contain the predicate

"standard". If it does then it is called an external formula,
otherwise it is called internal. Speaking informally, internal
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