INTEGRAL MEANS OF UNIVALENT FUNCTIONS - A FRAGMENT ' Robertsan conjectured that
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A notable event in the theory of the class § of normal- n 2
; i - e b, = I(k|yl® - 1/K), n=1,2, ..
ised univalent functions on the open unit disc U occurred last 1
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The first of these follows by expressing the coefficients

of f(z2?) in terms of tho f 2 i
cettled Robertson's conjecture (8] for the coefficients of 0dd ity se of (g(z))? and applying Schuwarz's

functions in S, which was known to imply Bieberbach's, and a

Not only did de Branges settle this conjecture, but he

The second lies deeper, and is a special case of
pne of the celebrated Milin-lLebedev inequalities [7], which we

still stronger conjecture - milin's [7) - into the bargain. . )
#ill enunciate shortly.

We recall these: given f in § write

f(z) = ZEXP(Zﬁynzn). z e Uy The First Integral Mean
Given an analyti i :
and define the odd univalent function g in S as follows: alytic function h on U, and 0 < p < =, we urite
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1 1 0

- 42 - - 43 -




i1n a major assault on the Bieberbach conjecture, Little-
wood [6] showed in 1925 that
sup(11(r,f) i fes) sc/C1 - r), Dsr<?t (L)
and deduced from this that |an] < en, for n = 2,3y e

Almost Fifty years were to elapse before Baernstein succ-

eeded in sharpening inequality (L):
] that, for any p > o,

amongst other remarkable

things he showed in (1

Ip(r,k), 0 st® <1 (8p)

sup(Ip(r.f) : fe §) =

In particular, then, (B1) is equivalent to the statement

that
19(r,f) = /(1 - 2), 0srt <1,
if fe S.
Here we point out that the latter inequality is a simple
consequence of (R), a fact which appears to have gone unnot-

let fe S. Keeping the notat-

g is odd, we have, for

To see this,

and bearing in mind that

iced until nouw.
ion as before,
0sr <1,
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It is clear that equality holds for some r in

tusing (R).
;1) if and only if f is the Koebe function composed possibly

&h a rotation.

E Integral Means for, p 2 2

H L .
gieberbach's inequality (B) coupled with Parseval's iden-

Fy tells us that

sup(Iz(r F) : f€ S) = I,(r,k), 0 sr <1,

Wwhat ab t

. ? a ?ut he ofher means? Can (Bp) be deduced from
PfflClent inequalities for other values of p as well? In
p remainder of this article we will answer these questions
Tlrmatlvely for the means Ip with p > 2. The approach is
B same as the one adopted in the previous section: we first
rive sh?rp coefficient estimates for the auxiliary function
kz)/z)p 23
H

K2)/2)P/?

rtent conferences,

these are provided by the coefficients of
Hayman, who had often raised this guestien at
announced this result in the course of his
cture on the Fitzgerald-Pommerenke version {a] of de Branges!
pof of (B) at the One-Day Function Theory Conference in
verpool in September, 1984; but gave no indication aof the
pof. We will show that it is a consequence of (M) and some
nor adaptations of the general Milin-Lebedev inequalities,

5ch we proceed to state.

Let

p/2
(k(z)/2) = (1 s e,

g set
D/2 o ©
(f(z)/2) = exp(p%Ynzn) = gan(p)zn,

ere here .and from now on f e S.
Then (see inequality (2.37) on p. 37 of {7]) for every
: 1 and any p > 0

n
fan(p)]| s dn(p)exp(pk§1dn_k(p-1)Ak/zdn(p)), (ML (1))
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Consider the sequence of real numbers

n
kE1dn_k(p)Ak, no=1,2, «oe

re the coefficients in the power series expansion of

These a
and so of the product

the product (1-2)"PLanz",
n

(1 - z)“("")'};:’(mk)z”.
1

jrst factor in
By (m),
Hence

y to see that the coefficients of the f

It is eas
ve if p 2 1.

the last displayed product are non-negati

the coefficients of the second factor are non-positive.

n
k§1dn_k(p)Ak s 0, n=1,2, «0s

if p2g 1.

Returning to (MLp(1)). we now see that for every n 2 1

and any p 2 2

lan(p)l s dn(p) (Hp)

Hence, for O s T < 1,

2 . o
J If(rele)lpde = 2nrpg|an(p)|2r2n

Ip(r,f) i

s 2nrp§(dn(p))zr2n

Ip(rvk)

which gives (Bp) for p 2 2.
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The Integral Means for 1 <p < 2

Our
. thresults for the remaining means are incomplete; t
ive "
der em, we recall another of the Milin-Lebed i ’ i
(see formula (2.33) on p. 35 in [7]): T neaueiities

\
2 Ja ()% /d(p) s n
Lol (P70 (p) s dylper)exn(p & d, i (p)ay /0, (pe1)).

\

(mpy(2))

A i ] i tt ¢ . ti tt F

. S we observe 1 E/DIEulous section, € rqume 0
he exp -

onential on the rlg{ht hand side of this lllequallty 1s

on-positiv /
non=-p e for p;z 1. /Hence we can infer that for every

nz1land any p 2 4

n
kEDIak(p)IZ/dk(p) s dy(p+1). (%)

I X
(In passing, we note that (%) implies (H,), f
1 <p <2, in an average sense: ol for the manoe

n
(z ( 2 n 2 n
Dlak P )" s (glak(p)l /dk(p))(gdk(p))
S (Jelp+1))2 = (Tay(p))?
0

n n
g[ak(p)l H gdk(p). n=20,1, ...).

As a SlllDlE consequence of ( )) we deduce that

Elan(p)|?c"/d @ N
Hane) % dn(p) = (1 - )E(Ea(p)|% /0 (p))s"

s (1 - r)gdn(P+1)r"

= (1 -1)P,

- 47 -




But for p > 1

1/dn(p) = T(n+1)F(p)/T(n+p)

l _

(p-1)Jt”(1 - t)P %4t
]

and

o0
Ip(r,f) = 2ﬂrpg|an(p)|2r2n, 0sr <1,
Hence combining these facts we see that

T . r
J Io(t, ) (r2-t2)P 2t Pgy - 2ng|an(p)12f £2M 1 (:2-¢2)P-2g¢
0 0

- nzf’-z;z"lan(p)lzrz“/(pa)dn<p)

nr2p-2/(p_;)(1_r2)p

n

r
J 1,(t, 1) (c2-t2)P=2¢1 =Py
0
if 0sr <1 andp > 1.

In particular, if 1 < p < 2 and 0 £t < 1, then

T r
I Ip(t, F)(2-t2)P 21 Pyt s I Ip(t, k) (r2-e2)P=2¢! P,
0 0

which is the closest we can come to (Bp) for this range of p.

The Integral Means for 0 < p <1

Something similar holds for p in (0,1). Indeed, if we
utilise another of the Milin-Lebedev inequalities - this time
formula (2.36) on p. 36 of [7] - we find that for any p > 0

glak(p)lerR/dk(p) s exn(pfleklerR)
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(n+1-k)kjyk]2)r2“)

exp(p(1-r
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z
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s exp(p(1-1 ?( (n+1-k)/k)t2n)

exp(pre/n)
1

(1-r2)-pl

on USiNg (M) again. Equality holds if and only if f = k,

art possibly from a rotat#on.
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This inequalitijis a weak substitute for (Bp) in case

g<p <1, Together with Schuwarz's inequality it implies that

glak(p)lrk s(1 -0 0sr <1,

shich can be viewed as (Hp) in an average sense. We remark

too that it forces

glak(pnz/(kn)dk(p) s 1/(1 - p)

with equality holding only when f = k.

Concluding Remarks

It remains open whether (M) implies (Bp) for ‘p in (0,1) U
(1,2). The implication would follow if the following inequal- :
ity were true:

. 2 7 2
glak(p)l $ L)% n= 01,2, ... .

This holds true for p = 1 and for all p 2 2. It is surely

y
true for 1 < p < 2, but I do not see how to prove it. It is |
sven possible that it holds for the remaining values of p as
uell,
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(When the first draft of this note was finished, Hayman
very kindly sent me a copy of his joint. work [5) with Hummel,
in which (Hp) is also proved, for p 2 2, in substantially the
same way as that outlined above, the major difference being
that a stronger inequality than (m), also obtained by de
Branges, is used to show that the argument of the exponential
in (MLD(1)) is non-positive when p 2 2. They mention too
that Grinzpan and Aharonov have apparently made the same obs-

ervation, and point out that (Hp) is false for 0 < p < 2.)
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