19.

20.

21.

22.

23.

24,

in READ, R. (ed.)}, 'Graph Theory and Computing'

Press, 1973.

ROSE, D.J. and TARJAN, R.E.
"Algorithmic Aspects of Vertex Elimination on Directed
Graphs", SIAM Journal on Applied Mathematics, Vol. 34

(1978) 176-197.

ROSE, D.J. and WILLOUGHBY, R.A. (Eds)
'Sparse Matrices and their Applications',

1972.

TARJAN, R.E.
"Graph Theory and Gaussian Elimination",

3-22.

in [2] (1976)

VARGA, R.S.

'Matrix Iterative Analysis', prentice-Hall, 1962.

WELSH, J., ELDER, J. and BUSTARD, D.
'Sequential Program Structures', Prentice-Hall, 1984,
WILLOUGHBY, R. (Ed.)

'Sparse Matrix Proceedings', 1BM Research, 1968.

flanagement Infoamalion Systems Depaaiment,

Univensity College, Dullin

- 30 -

Academic

Plenum Press,

r

AN INTRODUCTION TO NONSTANDARD ANALYSIS

Chnislophen Thompson

1. Introduction

This note describes the axiomatic approach to nonstandard
analysis developed by Nelson and illustrates it by proving the
fundamental theorem of algebra and a form of the spectral the-
orem in finite dlmen51ons.

"at the DIAS in Aprll, 1985

It is based in part on a talk given

1 2. The Axioms

We shall be working in a mathematical universe that con-

talns all the usual familiar objects (e.g. numbers 0O, 1, VZ,
g etc., sets N, R, € etc., function spaces g2, c{o,1] etc.)
and in addition contains new and unfamiliar objects such as
infinitely large natural numbers and infinitely small positive
real numbers. To ensure the presence of the familiar objects
we adopt the usual axioms of set theary, for example the
7Jermelo-Fraenkel axioms together with the axiom of choice.
To make visible the unfamiliar objects we adopt a new undefined
unary predicate standard and axioms (1), (s) and (T) to govern
its use. The resulting theory is called internal set theory
(1ST) and 1s due to Nelson [7].

new of ZFC has the informal interpretation "is a member of"

Just as the binary predicate

(although strictly speaking it is undefined and therefore mean-
ingless), so also has the unary predicate "standard" of IST an
informal meaning: 'x standard' has the interpretation 'x is a

familiar object of classical mathematics'. It is a consequence
of the axioms that 0, 1, vZ, #, N, IR etc. are indeed standard,

as we shall see.

A formula of IST may or may not contain the predicate

"standard". If it does then it is called an external formula,
otherwise it is called internal. Speaking informally, internal
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formulas are those that make sense to a classical mathematician.

We shall use a system of abbreviations jllustrated by

st

¥°o o x for ¥x (x standard) =

st

3°"7x for 1x (x standard) «

Vfinx for vx (x Finite) =>.

Here, "x finite" means that there is a bijection of x with

(me IN : m < n) for some natural number n.

The axioms of 15T are the axioms of 2FC and three new

axioms called transfer (T), idealisation (1) and standardization

(s).

TRANSFER. Let A(x) be an internal formula with free variahle
x and no other free variable: A(x) may contain constants but
they must be standard. Then

(1) vStx A(x) = V¥x A(x).

The transfer axiom implies that all wclassical" objects

are standard. To see this, observe that (1) is eguivalent to

1x A(x) =355 A(x). (1)

Consequently if there is a unique x such that A(x) then that x
In particular, taking A(x) to he "x is a

d", we deduce that R is standard. In a

must be standard.
complete ordered fiel
similar way any uniquely specified classical object such as o,

1, /2, W, C is standard.

Let B(x,y) be an internal formula with free
Then

IDEALISATION.

_variables x,y and possibly other free variables.

(1) yStfitzaxvy e z Blxy) e 3x VSt B(x.y).

The idealisation axiom implies the existence of infinitely
large natural numbers and non-zero infinitesimal real numbers.

To see this we need some definitions. If x € IR or € then

x is infinitesimal (x & 0) if vsthem x| < 1/n,
\ is untimited (Jx] & +=) if¥Vfn € M |x| >0,

\ s limited (Jx] g< #=) 1F 3% e W x| 50

i

!
We call x and Yy infinitely close (and write x Moy) ir |x-yl is
infinitesimal.’ If we let B(x,y) be x€ N.y € Nay < x then

from (1) we deduce that

’_-Ixe]NVStyeIN y < X.

This says that IN has an unlimited element. et us fix on one
such element and call it w. Ther w € IR and therefore 1/w€ R,

It is easy to see that 1/w is positive and infinitesimal.

Let C(z) be a formula, internal or external,

Then

STANDARDISATION.
with free variable z and possibly other (ree variables.

(s) Vstx 3sty Vstz

(ze ye ze xaC(z)).

In words: given any standard set x and any property C, there is
a standard set y whose standard elements are exactly those stan-
dard elements of x that satisfy C. The need for this axiom
arises because in IST it is illegal to use an external formula

C to form a new set y from a given set x by letting y=(ze x:C(z)};
for unless C is a formula of ZFC (i.e. unless C is internal)

there is no axiom to permit the formation of vy.
let x be IR and let C(z) be "z & O". Then we cannot form the
set {(z € R : z X0} within IST; the set y in (S) in this case
is {(0}.

fFor example

Fortunately there are two consequences of (S) that are much

easier to grasp and are sufficient for our purposes. We call

- 33 -




the first of these the standard part property (sP).
The Fundamental Theorem of Algebra

3.
(sP) Every limited real number 1s infinftely close fo @ The fundamental theorem of algebra states that every non-
standard real number. constant polynomial with complex coefficients has at least one
complex root. The following proof is based on a classical one

For example, V2 + 1/w is limited and is infinitely close (i3], pp- 53-55), but the availability of infinitesimals greatly
to /7 which is standard. If x is limited and x n y where y is eimplifies the technical details.
standard then y is unigue and is called the standard part of X,
written y = °x. A similar property to (sP) is easily seen to ' Let P(z) = ap + @12 F «.o0 * anzn be any complex polynomial
hold for complex numbers by considering real and imaginary with n 2 1 and ap £ 0. ’Me must prove that P has a root. By

parts. transfer we may suppose that P is standard. Then n and all

the aj are standqrd.

The second consequence of (s) is called External Induction ’

(i) UWwe first prove that |P(z)| attains its minimum at some

(EI).
‘lstandard point B in C. Observe that if |z| % += then
(EI) Let A(x) be any formula: internal or external, with x as |p(z)| X +=.  The reason is that if |z] ¥ += then
free variable and perhaps other free variables. Suppose that
A(0) and for all standard natural numbers n, if A{n) then P(z) _ ap + a | a, . B n o
A(n+1). Then for all standard pnatural numbers n we have A(n). 0 — Y 2z LR ] n @n
We can use this to proveuthatnif 2 and w are limited com- ::3 iztli :za:::zge:n:ynon—zero. Now let w € IN satisfyw X +c
plex numbers and z Ny then z X W for all standard n. The
induction step is accomplished by noting that if z, & w, and ; Fo= ((m+ in)/w : myne 2, |m|l, {n] s w?}.
z; % wp (all limited) then z1Z2 Nowgwa. This is because
z, = w, + €, and z; = W2 + €, where € and €, are infinitesimal Because F is a finite set, the minimum of |P(z)| e 2 tuns
and therefore through F is attained at some point a of F. By the remartk
: jabove |0| << +o and so by (SP), a A B for some standard B in

212, - wuwp, = €Wz ¥ B0y + Eafo jt. e will prove that |p(z)| 2 |P(B)| for all z. By transfer,

which is clearly infinitesimal. we can extend the result to it suffices to prove this for all standard z. If z is standard

nd application of (e1). Let P then z  some point ¢ of F, and therefore

n its degree is a standard natural

standard polynomials by a seco

be a standard polynomial. The
re standard complex numbers. If z

[P(z)] & |[P()) =z |P(a)| % [P(B)].

number and its coefficients 3

and w are limited and z ~ w then p(x) & P(uw). .
Since the extreme numbers are standard, it follows that

[p(z)| z |P(B)].
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(ii) It is an elementary fact that every equation of the form
z" = ¢ has a solution in L. It suffices to write c = rele |specific polynomial, a suitably large standard value of w will
and let z = r1/nele/n. make the mesh F fine enough to catch the zeros of F approxim-

ately.

(iii) we now prove that p(g) = O. This is done by examining
p(g+h) when h € C and |h] is small. Applying the binomial

j - tral Theorem
theorem to (g+h)? we obtain . 4. The Spectra

The following result is a version of the Jordan normal

p(R+h) = P(B) + byh + byh + .o # bnhn (hn=an¥0) form theorem. The proof is due to Lutz and Goze [B] and it
is so natural that it deserves to be widely known.
where the bj are standard complex num?ers. Let bm be the n Jf n
first non-zero coefficient. Then :  THEDREM. Let F : €7 ¥ €' be a linear opcrator whose distinct
 eigenvalues are’ A\isAz, ...,Xp, where Aj has multiplicity
P(R+h) = P(R) + bmhm(1+Q(h)), (3) 'mj' j=1y eevsPe Then there is a basis Ujp,Uzs «.erl for t"
. such that
where G(h) is a standard polynomial lwith no constant term; .
Q(o) = 0. Now let h be a solution of the equation A (:) Aj * * *
mee, (ug) i LA = '3

€

Moo - _L.P(B). = g.. i - o %
" b, O Ap O Y
J

Then h % 0 and so G(h) % Q(o) = 0 and hence ja(h)] < 1. From
(3) we have

where A. is an m, X m. matrix.
J J J

p(p+h) = [1 - —EJp(B) - J}P(B)Q(h)
w w
COROLLARY. There is a direct sum d iti
and if P(B) # 0 then we have the contradiction n n decompostrion
t"=F,®F.® ... 0 F,J such that dim(Fj) = my, f(Fj)g_ Fj and
) . FIF. = AjI + Nj where Nj is nilpotent.
|p(B+h)| s t1 - -Ellp(e)l + —;lp(s)lln(h)t < |P(B)].
w w
Thus P(B) = 0 and the proof is complete. PROOF . If f has no repeated eigenvalues so that m, =1 for
. J
all j, then the result is classical and elementary. The diff-
Remarks. This proof is elementary in that it avoids the not- iculty comes from the pessibility that some eigenvalues may be
ions of compactness, continuity and complex integration. It repeated. We can get rid of such degeneracies by an infinites-

imal perturbation and this is the key idea of the proof, which

is also constructive, at least in spirit, because the arqument .
is in three parts.

by contradiction is held back until the end. In practice we

have no unlimited natural number w to help us, but for any
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(i) Choose a "Gaod" Infinitesimal Perturbation g of f

\
inear map g i ¢" » ¢" such that g(x) % fF(x) for
g are distinct

Choose a 1

. " . .
all limited x, the eigenvalues of Uisbzs ««-aly (iii) Deduce 3 "Good" Matrix Representation for f
]

and each p. ~ some A;-. This can be done by making infinitesimal For each 3» v (s iimited because Imjl 1 und therefore

. i . |
changes inJa matrix representing Fe Since the eigenvalues of W, A u, for some standard uj e t". Define subspaces Fle...,Fp

i i n isting of J
g are distinct, there is a basls Vi, ...,v_of C c?n51 | ‘ by
i t ] = 1 (where |X 3
eigenvectors of g. We normalise so tha lVJl |
denotes the Euclidean norm of x). F, = span{ui,uz, ceeaup )y Fao= spanlu, PNTINS P
etc., so that in a certéin sense Fj N Gj' We pass now from a
(ii) Get a nGood" Mmatrix Representation of g i nonstandard situation:/
infinite the |
i finitely close, and group ,

Group all v whlch are in ) “ i _ ) =

corresponding v..J After relabelling we get i t"=6,@® G, ® ) o’ g(Gj)-— Gj' im Gj mj’ and
J
| N(g,(wi)) = diag[Bl,Bz, ..,,Bp]’
o), ete. .
N AT R ¥ A SR T N, x W ovm, ™ 24
Wy n H2 v v Emy v my+1 my+m2 to a standard one. It is easy to believe and not difficult to
prove that
Define subspaces Gj by
A u:l'\ = Fl @ FZ@ e @ pr f(Fj)g Fj, dim FJ. = mj, and
G, = span{vys,Var ...,vml), G, = sDan(vm,+l' ""Vm1+m2),

m(f,(u;)) = diaglAy,hzy -eenhyl
etc. where Aj is standard and Aj X Bj in the sense that corresponding

Then clearly dim G5 = ™ g(Gj) <6y and t" = G1 @ G2 @ - -+ @ Cpe entries are infinitely close, so that

In each G,, use the Gram-Schmidt process to obtain an orthonor- B

X x .., xW
mal basis (wi) from (Ui)' We get XJ
= veesW } A .
G, = spanfuwi,¥zs ""wml)' G = SQBn[wm,+l’ ST PR Ay = I . :
Cx
B . . b e, By the nature of
etc., and <ui,mj> = 6ij within each subspac L Aj
the Gram-Schmidt process -
« * 5. Concluding Remarks
B, [T ce
R Nonstandard analysis is also of use in providing new res-
B H2 : . s .
m(g,(u-)) - 2 , By = . ‘ etc. ults and in providing the framework for mathematical modelling
i . e .
. 5 " of physical processes where different orders of magnitude are
p My involved. Two recent examples are moiré patterns [4] and the
theory of singular perturbations of ordinary differential equ-
- 38 -
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optimal control {21, [s}.
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