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NOTICE

The John L. Synge Award

The Mathematics Division of the Rayal Society of Canada
has decided to raise funds to establish an award for outstand-
ing contributions to the Mathematical Sciences, to be awarded

at regular intervals, not necessarily to a Fellow of the Soc-

iety.

There is such an award in Physics and in Chemistry; both
of these awards are named after Rutherford, they are awarded
every year if suitable candidates are available, 'and each of

them cansists of a Medal and a cash award of §1,500.

We hope that the Mathematics award will be of the same
'nature put all depends on OUT SUCCEeSS in raising funds. In
any case the award will be named in honour of John L. Synge,

who uwas elected to the Royal Society of Canada more than SO
years ago and who was the first recipient of the Henry M. Tory

Gold Medal of the Royal Society of Canada.

prof. Synge, now resident in Dublin, Ireland, was for many

years professor of Applied Mathematics at University of Toronto.

Persons and organizations are invited to contribute to
the proposed John L. Synge award. Cheques should be made pay-
able to:
The Royal Society of Canada, John L. Synge Award
and sent to professor Israel Halperin, Chairman of the John L.
Synge Awards Committee, pepartment of Mathematics, University

of Toronto, Toronto, Ontario Mm5s 1A1, Canada.

Income Tax Deductible (in Canada) Receipts will be given by

The Royal Society of Canada.

CONFERENCE ANNOUNCEMENT

PREL IMINARY  ANNOUNCEMENT
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./ CONFERENCE
ON

ASPECTS OF ANALYSIS

RFEEFXE XK TR R RT RS EEETRRE

A conference, spread over two days, will be held at Univ-

ersity College, Cork, in mid-May, 1986. It should appeal to

- workers in OPERATOR THEORY and FUNCTION THEORY.

The registration fee will be IR£10.00 (ten Irish punts).
Assistance in arranging accommodation will be provided, if

required.

Further information may be obtained from Professor
Finbarr Holland, Department of Mathematics, University College,
Cork, Ireland.
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AN INTRODUCTION TO SPARSE MATRICES

Denek 0’Connon

1. INTRODUCTION

There is no strict definition of a sparse matrix, but
generally speaking it is an nxn matrix which has 0{(n) non-zero

elements. A full or dense matrix has 0(n?) non-zero elements,

Sparse matrices occur naturally in the solution of many
practical problems, e.g. electrical, gas, and water distribut-
ion systems; civil and mechanical engineering (structural anal-
ysis); production and financial planning (inventory control ‘
and portfolio selection); national and local government oper-
ations (income tax analysis and scheduling of fire and ambul-
ance services); economics (Input-Output analysis). At a more
theoretical level sparse matrices arise in Graph Theory, Linear
Programming, Finite Element Methods, and the solution of ord-
inary and partial differential equations. Duff's excellent
survey article [6] contains a long list of application areas,

with references.

The interest in sparse matrices comes about because of
the need to solve on a computer, linear equations or linear
optimization problems that have many thousands of variables
(possibly millions) but whose coefficients are mostly zeros.
Generally, this sparsity can be exploited, giving large savings
in computer time and storage. Indeed, were it not possible
to exploit sparsity then many important problems could not be

solved on present or future computers.

The sparse matrices that arise in practice are not only
sparse but are also highly structured, i.e. the non-zeros form
very definite patterns. Figures 1.1 ta 1.4 below are taken
from Duff [7] and show some typical sparse matrices. This

structure can be exploited also, giving even greater savings
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in space and time.

An outline of this paper is as follows: Section 2 briefly
outlines the history and goals of sparse matrix research; Sec-
tion 3 discusses the standard schemes for sparse matrices in
digital computers; Section 4 discusses direct and jterative
methods for solving sets of sparse linear enuations; Section 5
considers the special but very important class of symmetric
positive definite matrices; section 6 is the canclusion with a
brief discussion of extensions to eigenvalue, least sgquares

and optimization problems.

2. THE HISTORY AND GOALS OF SPARSE MATRIX RESEARCH

The interest in sparse matrices seems to have started in
the late 1950s when researchers in linear programming and elec-
trical power system analysis began to solve realistic problems
on computers. It was noticed that when real problems were
modelled by systems of linear equations, the resulting matrices
were sparse with highly structured non-zero patterns. It was
also noticed that these matrices were large and that the spar-
sity would need to be exploited if these problems were to be
solved on the rather small and slow computers available at that
time. Sparse matrices became increasingly important in the
1960s and the first conference on sparse matrices was held at
the IBM Research Center, Yorktown Heights, in 1968 [24]. Since
then there have been at least six international conferences,
with published proceedings, devoted entirely to sparse matrices.
The number of papers on sparse matrices is very large. Duff's
survey paper [6) 1lists aver 600 references up to the end of
1975 and a casual check of journals since then shous that this
number is growing steadily. To date there are at Jeast three
textbooks on sparse matrices, while most textbooks on numerical
analysis and data structures contain sections or chapters on

the subject.

There are two complementary goals in sparse matrix res-
earch: (1) reduce the amount of computer memory needed to store
sparse matrices, and (2) reduce the amount of computation time
needed to solve problems involving sparse matrices. It is a
general rule of thumb in‘computing that SPACE x TIME = CONSTANT,
i.e. to save storage space more computation time must be spent
and vice-versa. We wi}l see that in solving sparse matrix
problems it is often popsible to make a simultaneous reduction

in the amount of Lime 4nd space required for the dense matrix
J:
case.

Some may wonder why it is important to reduce or conserve
computer time and space when computers are getting larger and
faster at lower costs each year (you can now buy a microcomp-
uter for $5,000 which is as powerful as a mainframe which cost
$ millions in the early '60s). Here are three reasons why

conserving space and time is important:

X There is no computer available today that can store a
1000 x 1000 matrix in core. Many engineering and bus-
iness problems have from 100,000 to 25,000,000 variables.
Problems of this size are routinely solved but not with-
out great care being taken to reduce their storage and

time requirements.

x Sparse linear equation solvers are often a small but
critical part of a much larger algorithm. As such,
they may be used many thousands of times in solving a
single problem, Any inefficiency in the equation sol-
ver will be greatly magnified and thus degrade the per-

formance of the otherwise good, larger algorithm.

* Microcomputers are widely used today and in general they
have small memories and slow processors. If sparsity
techniques are used then these machines can solve real-

istic problems in the order of 100-1000 variables.

Thus it seems that, despite the increasing size and speed of

computers, there is still - and perhaps always will be - a need

J




to conserve computer time and storage.

3. SPARSE MATRIX STORAGE SCHEMES

eral schemes for compactl
ed in isol-

y storing
We now discuss saome gen

These schemes should not be view
In general, they

orithm used

sparse matrices.
ation from the algerithms which use them.

must be tailored to suit the problem and the alog . et
P S -
to solve the problem. Thus the algorithm and the data

ure (storage scheme) are intimately linked.

ices and
We start with the standard scheme for dense matrice F :

i S, or
then discuss the three main methods for sparse matrice

simplicity, we consider only square matrices.

3.1 Dense Matrix Storage
one-
The memory of a digital computer can pbe regarded as 3
1 or word in memory

dimensional array or vector because each cel .
called the machine

is indexed or addressed by a single number,

address.

. as a one-
A 2-dimensional array or matrix must be stored

H S or
dimensional array and this is done by placing the column (

f : in Fig. 3.1.
rows) one after another in memory. This is shown in 719

Row 1 Row 2 Row n

§len [ |

Figure 3.1:

A Matrix Stored Rou by Row

e its
of

f ulat
Ta access an element a3 of a matrix A we must cale

position relative to the location of the first element aia

A. Thus,

. r
loc(aij) = loc(a,,) + n{i-1) + j-1 Stored row by row, O

loc(aij)

1oc(ay,) + n(j-1) + i-1 Stored column by column.

- 10 -

N

It is important to note that these calculations assume that
all n? elements of the matrix are present and in a predeter-
mined place relative to the first element. Also note that
two extra cells are needed to store loc(a;;) and n and that
each access requires one multiplication and two additions.

This is called the toverhead' of this storage scheme.

7
3,2 Static Sparse Matrix /Storage

4
The dense scheme infthe last section is appropriate if

.

the number of non-zeros is high, because very little space

is wasted in storing zeros. It should be remembered however,
that with current computer technology, we are limited to stor-

ing matrices of order 300-500 in dense or full form.

In many practical applications, involving matrices of
high order (n > 500), there may be only 2 to 20 non-zeros per
rou. Even if we could store such matrices in dense form we
would be wasting most of the allocated space in storing zeros.
Worse still, most of the arithmetic calculations would involve
addition and multiplication of zeros, and these are null cal-

culations, i.e., require no actual computation.

Most storage schemes for sparse matrices store only the
non-zeros along with indexing information for each non-zero.
This indexing information must be stored explicitly with each
non-zero because the non-zeros will not be in predetermined
This

is in contrast to the dense scheme where no indexing informat-

positions relative to the first element of the matrix.

jon is stored (it is calculated).

We now describe three schemes for storing sparse matrices
that are static, i.e. the number and locations of the non-zeros
do not change during calculations. If this is not the case
then we assume their number and locations at any point in a

calculation can be determined before the calculation begins.




Storaqe Scheme 1:

Consider the 6 x 6 sparse matrix shouwn in Fig. 3.2.

VAL 2 1 4 3 6
coL 1 4 3 1 2 6 4 1 5 6

ROW 1 1 2 3

Figure 3.2: A Sparse Matrix and Storage Scheme 1

t non-zeros then we use J arrays of length t
the row position (ROW) and the

If the matrix has

to store the non-zeros (vaL), .
This scheme requires 3t cells instead

Thus in a 1000 Xx 1000 matrix with

column position (COL).
of n? for the dense scheme.
a non-zero density (t/n? x 100%) = 5%, we would save

10002 - 3 x 50,000 = 850,000 cells.

Storage Scheme 2:

This scheme is obtained from the first scheme by ohserving

that some of the row index numbers are repeated and hence red-

undant This is because the elements of any single row are

stored contiguously in 2 block of memory cells. As a result

we need only know where each row block begins. This scheme

is shown in Fig. 3.3 for the matrix A above.

- 12 -

2 1 3 8 5
VAL

1+ 4 3 1 2 6 4 1 5 B
coL

ROW START | 1 3 4 7 8 10

Figure 3.3: A Sparse Matrix and Storage Scheme 2
I
This scheme requires two érrays of length t and one array of
length n, giving a total/of 2t+n cells. An alternative method
is to store the number of non-zeros in each row instead of the
row-start positibns. This alternative scheme is used in the

program given in the appendix.

Storage Scheme_3:

The third scheme saves storage by packing each row and
column index of the first scheme into one cell, using the foll-

owing calculation:

Nij = nx (i-1) + j

To retrieve or unpack the values of i and j we use the follow-

ing calculation:

i = [(Nij'1)/“] + 1,

j = Nij - nx (i-1).

" This scheme requires only 2t cells but it involves more comp-

utation to pack-and unpack the indices. An example of this

storage scheme is shown in Fig. 3.4 again using the matrix A.

1 2 3 4 5 6 7 8 9 10
VAL 2 1 4 3

Nij 1 4 9 13 14 18 22 25 29 36

Figure 3.4: A Sparse Matrix and Storage Scheme 3

- 13 -




3.3 pynamic Sparse matrix Storage

s involving matrices the number of non-
In addit-

In many algorithm

varies during the course of the computation.
s

zero
this the locations of neuwly created non-zeros oOT Zeros
o

jon t

not known in ad
b ble to insert and delete elements of the matrix data
e a

e scheme).

vance. These two difficulties require that
are

we
structure (storag

The static storage schemes above do not allow efficient

1 entation of the 'ipnsert! and tdelete! operations. This
implem

pecause all non-zero elements are stored contiguously and
is be

inserting @ n
half the elements, on average.

ew element in its appropriate place requires a
movement of

The most common way of storing sparse matrices whose elem-

ts vary dynamically is to use some form of Iinked list

ents

scheme.

computer science.
1inked list scheme requires that for each non-zero, ue store

a li

its value (ai
) of the next non-zero element in the same row or column.

Linked lists are fundamental to, and widely used in,

In the context of sparse matrix storage,
.), its indices (i, j), and the address in memory
J

(m

This is in contras
th indices are stored, and the dense scheme in which only the
e

t to the static scheme in which the value and

lue is stored. The advantage of the linked list scheme is
va

that each non-zero can be stored anywhere in memory, i.e. the

n-zeros do not need to be stored contiguously, as in the
non-

static and dense schemes.
s not disturb the other non-zeros.

Hence, inserting or deleting a non-

zero doe

To implement a linked list storage scheme we need to

'create' new storage cells and tdestray' old cells as the num-

per of non-zeros varies.
come from or what is done with old cells except to say

We will not discuss where new storage

cells
that these are

tmemoTy manager'.
in pascal) or may need to be programmed by the

thouse-keeping' functions which are handled by

Such memory managers may be part of the
a

language (e.g.
yser/designer (e.g. in FORTRAN).

suffice it to say that the

- 14 -

memory manager must efficiently recycle'old cells and make

available new cells.
ment see Knuth [14] or Horowitz and Sahni [12].

For a good discussion of memory manage-

3.4 Operations on Sparse Matrices

Writing software to perform the standard matrix operations
is easy when matrices ars stored in dense form. All scien-
tific programming langua@es allow the user to declare matrices
as 2-dimensional arrays]%nd to perform arithmetic operations
on the individual matrix elements in a direct way. Thus in
Pascal, the sumfbf two nxn real matrices A, B, is computed as

follows:

Var A, B, C :¢ Array [1..n, 1..n] of Real;

i, j ¢ Integer;

for j :t= 1 to n do
cli,j] := A[i'j] + Bli,]]

end;

The above program segment is essentially a direct translation
of the mathematical definition of matrix addition. Further-
more, it is clear from the program that matrix addition is being
performed. Writing the equivalent program for sparse matrices
compactly stored is a much more difficult job. Also, reading
and understanding such a program is difficult because the mat-
rices are no longer represented in a direct and obvious way.
These comments are true in general for sparse matrix software
and for this reason such software is written only by those who
have a sufficient knowledge of both mathematics and computer
science. A list of the best-known sparse matrix software is

given in the appendix.




3.5 Literature on Sparse Matrix Storage

The literature on sparse matrix storage schemes ijs scatt-
ered throughout books and journals in engineering, numerical

linear algebra, computer science and operations research.

book by Jennings [13], and the survey article
Nieder [15] are good starting points. Also,
science texts on Data Structures contain sect

matrix storage (see [12], [14] and [23]).

4, SOLVING SPARSE LINEAR EQUATIONS

We now consider the solution of the equa
Ax = b,
where x, b are vectors in Rn and A is an n X

The algorithms for solving this equation fall

categories, viz., Direct and Iterative. Ite

(Gauss-Seidel, Jacobi, etc.) are easy to implement (program)

but may suffer from slow convergence. Direc
(Gaussian Elimination, LUP Decomposition, etc
in a finite number of steps but are difficult

especially when the sparsity of A is exploite

4.1 Iterative Algorithms

Iterative algorithms require that the eq

transformed into the 'Fixed Point' form

x = Cx +d = T(x),

which is then solved by successive approximat

jteration formula

() (o)

x(k+1) + d, x =

Cx

This iteration formula (or algorithm) generat

- 16 -

Kk .
ectors (x 1). x(2)’ vee s «{ ). ... ), which, under suitable

onditions on C, converges to x, the solution of Ax = b.

The

by Pooch and This general jterative algorithm has very nice features

many computer nd it is easy to implement sparse versions of it. These

ions on sparse eatures are:
1. Transforming A to C is simple and if A is sparse then

C is sparse. ;

/
2. The matrix C dogs not change during the iteration

process and hence an efficient static data structure

tion .
can be used.
3, Programs for jterative algorithms tend to be short and
n sparse matrix. simple.
into two broad 4. Roundoff error is not generally a problem.

rative algorithms
‘he main difficulty with jterative algorithms is that they may

t algorithms jave very slow linear convergence. This is why .direct methods
.) give a solution .end to be preferred. Nonetheless iterative methods are use-
to implement, ‘vl for extremely large prablems or where good initial solut-

d. ons are available. In fact it is good practice to 'polish'

yr refine a direct solution with one or two iterations of an
{terative algorithm (see Rice {17] and Forsythe and Moler [a]).
i
uation Ax = b be ; The program shouwn in the appendix is a straightforward
ORTRAN implementation of the Gauss-Seidel iterative method
sing the static sparse storage scheme No. 2 given above. It
an be seen that the heart of the program requires only 10
ines of code (lines 30-39). This program was run on a 280,
ions using the )-bit, 64 K Byte microcomputer and solved a 1200 variable prob-
em in 2.5 minutes. The A matrix had 3 non-zeros per row and
§ iterations were required to get 7-digit accuracy. Thus we
0. ee that even very slow and small microcomputers can solve

tealistic problems.

es a sequence of
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4.2 Direct Algorithms

Direct algorithms usually use some variant of the classic forced to use a dynamic storage scheme which allocates storage
Gaussian Elimination method. This method transforms the sys- as fill-in occurs.
tem Ax = b into Ux = y, where U is upper-triangular. x = Uty
is then found by back-substitution.
5. SPARSE, SYMMETRIC POSITIVE DEFINITE MATRICES

A more general statement of the Gaussian Elimination Alg- Symmetric positive definite (sPD) matrices do not suffer

orithm is as follows: from the problems outlined in Sectian 4 above. This is fort-
uitous because many real, physical systems are modelled by very

LU - Decomposition to Solve Ax = b large, sparse 5PD matricefi.
/
J

Step 1: Decompose (Factorize) A, i.e. find L and U such that
LU = A, where U is upper triangular and L is unit 5.1 Some Computational Properties of SPD Matrices

lower triangular.
1. Gaussian Elimination becomes Cholesky's Method and

Step 2: Solve LUx = b as follous: yields the triangular factorization

a. Solve Ly = b by Forward-Substitution. A = LLt,

b, Solve Ux

by Back-Substitution. .
y by 1o where L is lower triangular with positive diagaonal

elemenfs.
Roundoff errors can accumulate in Step 1, and if A is ill-

conditioned these errors will be greatly magnified. To con- 2. No pivoting is reguired to control roundoff errors,
trol these errors, some form of pivoting (row or column inter- i.e. the diagonal elements, a;;» are stable pivots.

changes or both) is necessary. Hence we normally obtain an
3. A symmetric permutation of A is symmetric, positive

definite, i.e. if A is SPD then PAPt is SPD, where P

is a permutation matrix.

LU factorization of PA or PAQ where P and Q0 are permutation
matrices. These permutation matrices are determined during

the factorization.

Exploiting the sparsity of the A matrix is difficult when Properties 2 and 3 allow us to find a P which reduces fill-in

using direct algorithms. This is because L and U may be dense, before we begin the factorizing, without worrying about pivoting

even though A is sparse. This is called the fill-in problem. to control roundeff error. Thus we can predict fill-in and

Fill-in can be controlled by permuting rouws and columns but allocate storage accordingly.

these permutations may affect the pivoting scheme and hence
increase the roundoff. Thus, in choasing P and Q we must bal- We can now break a direct algorithm for SPD matrices into

ance the competing requirements of roundoff-error and fill-in four independent steps as shown belou in Fig. 5.1.

control. An additional complication is that P and O cannot
be determined before the factorization process begins. There- The ability to break the direct algorithm into four indep-
ndent i i i i
fore we cannot predict where fill-in will occur. Thus we are endent steps has enormous practical implications. We are free
to look for the best possible ordering P to minimize fill-in.
- 18 -
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Find permutation P to

minimize fill-in

| Non-Numeric

Set up data structure for L,
2 t 3
where PAP~ = LL
3 Factorize using
Cholesky's Method to get L
I Numeric
4 Solve Lth = b

Figure S.1: Direct Algorithm for Sparse, SPD Systems

A static storage scheme can be used bécause the factorization
will cause only that fill-in predicted in Step 1. Different
problems, with the same non-zero structure can be solved using
only the numeric Steps 3 and 4. Thus the cost of the non-
numeric Steps 1 and 2 can be amortized over a set of problems.
The software for each step can be designed and developed indep-
endently. This helps to 'tmodularize! the complete program and

yields a more reliable, useful, and versatile software package.

5.2 Ordering an SPD Matrix to Reduce Fill-In

The focus of much research in the last 10 years has been
on finding P to minimize fill-in. The problem of finding a
goad ordering or permutation P is called the Ordering Problem.
A very thorough exposition is given in the book by George and

Liu [11]).

We illustrate the ordering problem with the 6 x 6 symmet-
ric matrix shouwn in Fig. 5.2(a), where the non-zeros are indic-
ated by asterisks. 1t is assumed that the matrix is positive
definite and hence pivoting on the diagonal elements will not
cause roundoff problems.

- 20 -

Using standard Gaussian Elimination, variable 1 is elimin-
ated from rouws 2,...,6 by subtracting suitable multiples of row
1 from rows 2,...96. Variable 2 is eliminated from rous
3,...46 DY subtracting suitable multiples of row 2 from rows
3,.00960 Eventually the upper triangular matrix U is obtained,
which is shown in Fig. 5.2(b). We note that the number of non-
zeros in A and U are 15’and 21 respectively. In general, for
this type of matrix, thé numbers of non-zeraos will increase,
from 3n-2 to (n’+n)/2,/using the samc pivot order. Now, if
we symmetrically permute Lhe A matrix so that row 1 becomes row
6, var 1 becomeé var 6, etc., then we get the matrix PI\Pt shown
in Fig. 5.2(c). performing the elimination process on this
matrix gives the matrix U' shown in Fig. 5.2(d), which has only
2n-1 non-zeros. Thus the number of additional non-zeros gen-

erated by the elimination process has been drastically reduced.

1 2 3 4 5 6 1 2 3 4 5 6
xox o2 ox x X 1 lxox o o x x
2 |* X 2 X X X X *
3 | * 3 X X X X
4 |* x 4 * E3 X
5 |* * 5 X
6 I* * 6 x

(a) a (b) U

6 5 4 3 2 1 [¢] 5 4 3 2 1
B |* X 6 |* X
5 x x 5 3 X
4 * * 4 X x
3 x x 3 X X
2 x X 2 X x
11 x x x  x  x 1 x

(c) A* = papt (d) ur

Figure 5.2: Elimination with Different Pivot Urderé
- 21 -




.P.so that no fill-in occurs.

The example above shouws that a judicious ordering of pivots

(choice of P) leads to no increase in the number of non-zeros
during elimination. In general it is not possible to find a
It is possible to find a P to
minimize fill-in, but even this is difficult because it has
been shown {18] that this problem is NP-Complcte (see [10])

and so is essentially intractable.

Although we cannot hape to minimize fill-in there are
practical algorithms that tend to reduce fill-in. At present

there are four general types of ordering algorithms:

1. Band and Envelope Methods.
2. Mimimum Degree Methaods.
3, Quotient Tree Methods.

4, Dissection Methods.

We will not describe the methods because they require a good

knowledge of graph algorithms and theory. The first method

is designed for band-like spD matrices; the second for general
SPD matrices; and the third and fourth for SPD matrices arising

in finite element problems. Figs 5.3, 5.4 and 5.5 show the
effects of the first tuwo methods on a 35 X 35 SPD matrix.
These figures are reproduced from [11] which gives a complete

description and analysis of all four methods.

Unordered Matrix R and its Factor L

Figure 5.3:

. 22 -

Figure 5.43 Band-Ordered Matrix A' and its Factor L'

Figure 5.5: Minimum Degree-Ordered Matrix A" and its Factor L"

- 23 -




6. EXTENSIONS AND CONCLUSION

In this paper we have outlined the problems in storing and

solving large sparse sets of linear equations. We have seen APPENDIX

that substantial reductions in both storage and computation .
sources of Sparse Matrix Software

time can be achieved by the proper application of sparsity tech-

niques. Many real problems give rise to matrices that are

large and sparse, and these problems cannot be solved by the Most general collections of mathematical software contain
naive application of standard (dense) matrix methods. Hence some sparse matrix routines. However, the best and most up-
it is important that both theoretical and applied scientists to-date software comes from those institutions and universities

be aware of the large body of research, experience, and software that have active research; programs in sparse matrices and rel-

A
that exists in this area of applied mathematics. ated areas. These are %ndlcated by an (*) below.
/

)
Although 'sparse matrices' may seem a rather narrow and 1. ACM - Association of Computing Machinery, publishes Trans.

specialized topic, it has developed into a very active and on Mathematical Software and the Collected Algorithms

from ACM. All software is available in machine-

readable form from IMSL below.

broad area of research, with contributions from chemists, comp-
uter scientists, engineers, mathematicians, operations resear-
chers and physicists. It draws on topics such as linear alg-

2. AERE (*) - Atomic Energy Research Establishment, Harwell,

ebra, numerical analysis, graph theory, combinatorics, data K
Didcot, Oxfordshire, England. One of the leading

structures and software design. Research in the area ranges .
places for sparse matrix research and software.

from the theoretical (see [3]) to the practical (see [7]). ]
Reports published by H.M. Stationery Office.
The general techniques of sparse matrix storage and fact- 3. Boeing Computer Services Co., Seattle, Washington 98124.

orization are also applied to eigenvalue problems, least squ-
4, iMst - International Mathematical and Statistical Library,

Inc., NBC Building, 7500 Bellaire Blvd, Houston,
Texas 77036. This company develops, maintains and
sells the general IMSL library and the Collected
Algorithms from ACM. The IMSL library is available
on UCD's DEC20 and IBM machines.

ares and linear programming. Special techniques for linear
programs of the minimum-cost-flow type have been particularly .
successful (see [5]), with Barr and Turner [4] solving a net-

work flow problem containing 25,000,000 variables. Sparse

matrix techniques are also important in differential, integral,

and non-linear equation-solving and in aptimization problems.

is is b i thod ) r f 1 )
This is because most solution methods use some form of loca 5. NAG - National Algorithms Group, Oxford University.

or piecewise linearization which agives rise to sparse matrices. Available on UCD's IBM machine,

Software for sparse matrix problems is not easy to design 6. SPARSPAK (*) - Prof. A. George, University of Watefloo,
and develop. In general a sparse matrix subroutine in FORTRAN Waterloo, Ontario, Canada.
is 3 to 10 times longer than its dense equivalent and is diff-

icult to understand and modify. For this reason we have not 7. Yale Sparse Matrix Package (¥) - Prof. 5. Eisenstat, Yale

discussed sparse matrix software in any detail. Instead we give University, New Haven, Connecticut 06520.

a list of some of the available software packages in the appendix.
- 24 -

- 25 -




A FORTRAN Program for Iteratively Solving Sparse Linear Equations

WRITE (SCREEN, 920) N, KOUNT, EPSIL
e——mmmsm—===SSSSSSSSSISSEISIISSESS g20 FDRMAT (' N="T, I‘l,' NO. ITERS. = ', IS,' EPSIL = ¢, F‘][].B)

OGRAM C ]
C PR—G A -§§QEUE—= ==z== fezzzs==zo==ZTSSISRSISSESSISS C._-———-—lURITE out SULUTIUN VECTOR
i i i c REEN, 930) (I, X(I), I=1,N)
C This is 2 driver program and problem generator to test the Gauss-Seidel WRITE (SC ’ ’ N R
C Method for Sparse Matrices g30  FORMAT (' 1,5(14,2X,F10,4))
c STOP
c END
c c
Cz========= m=m====SESSE —m—===oSSSSSSSSSSESSSSSSRSETISEESIESS
¢ INTEGER TDXCOL(2400) ,NONZER(1200), SUBROUTINE SEIDEL (CMAT, D, IDXCOL, NONZER, N, EPSIL, X, KOUNT)
K , g C=========?====="‘ SEEmE==ss == - SmESI===I==S === ===
* REAL CM!\?ZZA%?T'D?%ES’;‘ Q'gggg) _CThis routine colves the linéar system of equations x = Cx + d, using the
N EPSIL A é C ! ! C Gauss Seidel Method. The J/mattix C is sparse and is stored to take advan-
DATA SCREEN /5/ : ' Ctage of this sparsity.
C -
C g
WRITE (SCREEN,900) c ‘
9o FORMAT (' INPUT A, B, C, EPSIL (4F5.0), N (14) :') INTECER §°x§35§§“°236§§§ZER(’2”“"
READ (SCREEN,B00)A, B, C, EPSIL, N .ot : ' » IROW, JCOL, NUMNZI, SCREEN
600 FORMAT (4F5 b14) v By Lo REAL CMAT(2400), D(1200), X(1200),
-0, + EPSIL, MAXOLD, MAXNEW, MAXDIF, DELTAX, RELERR, INFNTY
] WRITE (SCREEN, BOD)A, 8, C, EPSIL, N DOUBLE PRECISION SUM ’
————GTART CONSTRUCTION OF BAND MATRIX TEST PROBLEM— c INFNTY = 1.0E20
C a(i1,i) = A, a(iyi) = 8, a(i+1li) =C KOUNT = 0 *
c MAXOLD = 1.0
CMAT(1) = -C/B ¢ )
10XcoL(1) = 2 DO S(Iﬂoﬁ)_ 1, N
NONZER(1) = 1 ' 5 CDN#I&SQ = ol1rou)
p(1) = 1.0/B
C
. IPOINT = 2 G————— START OF MAIN ITERATION LOOP
C
Mt = N-1 _ 7 10 KOUNT = KOUNT + 1
c 00 10 TROU = 2, NI MAXDIF = -INFNTY
CMAT(IPOINT) = -A/B v T JINENTY
IDXCOL (IPOINT) = IROW - 1 C
IPOINT = IPOINT + 1 -
CMAT(IPOINT) = -C/B oo 383 iRg?O' TN
iﬁéﬁﬁ%‘fp?ég}&r= I?OW +1 NUMNZI = NONZER(IROW)
D(IRDH)—- eyl + D0 100 J=1, NUMNZI
NONZE%(I&M 5 JCOL = IDXCOL(IPDINT)
1o CONTINGE ) =2 SUM = SUM + CMAT(IPDINT) * X(JCOL)
IPDINT = IPOIN
CMAT(IPOINT) = -A/B 100 CONTINUE Tl
IDXCOLEIPDINT) = N-1 C
NONZER(N) = 1 ' G———————CALCULATE INFINITY NORMS—
p(N) = 1.0/B ¢ ORM
c XNEW = SuUM + D{IROW)
C DE%TAX = ABS( XNEW - X(IROW) )
c ‘ 1F ( DELTAX .GT. MAXDIF ) MAXDIF = DELTAX
CALL SEIDEL(CMAT, D, IDXCOL, NONZER, N, EPSIL, X, KOUNT) ABXNEW = ABS(XNEW)
c IF( ABXNEW ,GT. MAXNEW ) MAXNEW = ABXNEW

X(IROW) = XNEW

- 26 - 200 CONTINUE
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C
E——-———CDNVERGENCE CHECK: ’
RELERR = MAXDIF /MAXOLD B. DUFF, I.S. and STEWART, G.0Q. (Eds)
MAXOLD = MAXNEW 'Sparse Matrix Proceedings 1978, SIAM Publications, 1979.
WRITE (5,900) KDUNT.NAXDIF,NAXOLD,REL%RR
900 FORMAT (' ITER. NO. =', I4,5X, 3F20.7
TF (RELERR .GT. EPSIL) GOTO 10 9.  FORSYTHE, G. and MOLER, C.
c tComputer Solution of Linear Algebraic Systems', Prentice-
EESURN Hall, 1867.
C
C====z======= —===c=======END OF SPARSE SEIDEL=====z=z====s=s======SS2=2 10. GAREY, M. and JOHNSON, D.
' 'Computers and Intractability: A Guide to the Theory of
NP-Completeness ', Frﬁeman, 1979.
{
11. GEORGE, A. and LIU, J.U.
REFERENCES ‘Computer Solution of lLarge Sparsec Positive Definite Sys-
tems', Prentice-Hall, 1981.
1. BRAMELLER,lA. and HAMAM, Y.M. -
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13. JENNINGS, A.
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3. BRUALDI, R. and SCHNEIDER, H. (Eds)
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AN INTRODUCTION TO NONSTANDARD ANALYSIS

Chnislophen Thompson

1. Introduction

This note describes the axiomatic approach to nonstandard
analysis developed by Nelson and illustrates it by proving the
fundamental theorem of algebra and a form of the spectral the-
orem in finite dlmen51ons.

"at the DIAS in Aprll, 1985

It is based in part on a talk given

1 2. The Axioms

We shall be working in a mathematical universe that con-

talns all the usual familiar objects (e.g. numbers 0O, 1, VZ,
g etc., sets N, R, € etc., function spaces g2, c{o,1] etc.)
and in addition contains new and unfamiliar objects such as
infinitely large natural numbers and infinitely small positive
real numbers. To ensure the presence of the familiar objects
we adopt the usual axioms of set theary, for example the
7Jermelo-Fraenkel axioms together with the axiom of choice.
To make visible the unfamiliar objects we adopt a new undefined
unary predicate standard and axioms (1), (s) and (T) to govern
its use. The resulting theory is called internal set theory
(1ST) and 1s due to Nelson [7].

new of ZFC has the informal interpretation "is a member of"

Just as the binary predicate

(although strictly speaking it is undefined and therefore mean-
ingless), so also has the unary predicate "standard" of IST an
informal meaning: 'x standard' has the interpretation 'x is a

familiar object of classical mathematics'. It is a consequence
of the axioms that 0, 1, vZ, #, N, IR etc. are indeed standard,

as we shall see.

A formula of IST may or may not contain the predicate

"standard". If it does then it is called an external formula,
otherwise it is called internal. Speaking informally, internal
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formulas are those that make sense to a classical mathematician.

We shall use a system of abbreviations jllustrated by

st

¥°o o x for ¥x (x standard) =

st

3°"7x for 1x (x standard) «

Vfinx for vx (x Finite) =>.

Here, "x finite" means that there is a bijection of x with

(me IN : m < n) for some natural number n.

The axioms of 15T are the axioms of 2FC and three new

axioms called transfer (T), idealisation (1) and standardization

(s).

TRANSFER. Let A(x) be an internal formula with free variahle
x and no other free variable: A(x) may contain constants but
they must be standard. Then

(1) vStx A(x) = V¥x A(x).

The transfer axiom implies that all wclassical" objects

are standard. To see this, observe that (1) is eguivalent to

1x A(x) =355 A(x). (1)

Consequently if there is a unique x such that A(x) then that x
In particular, taking A(x) to he "x is a

d", we deduce that R is standard. In a

must be standard.
complete ordered fiel
similar way any uniquely specified classical object such as o,

1, /2, W, C is standard.

Let B(x,y) be an internal formula with free
Then

IDEALISATION.

_variables x,y and possibly other free variables.

(1) yStfitzaxvy e z Blxy) e 3x VSt B(x.y).

The idealisation axiom implies the existence of infinitely
large natural numbers and non-zero infinitesimal real numbers.

To see this we need some definitions. If x € IR or € then

x is infinitesimal (x & 0) if vsthem x| < 1/n,
\ is untimited (Jx] & +=) if¥Vfn € M |x| >0,

\ s limited (Jx] g< #=) 1F 3% e W x| 50

i

!
We call x and Yy infinitely close (and write x Moy) ir |x-yl is
infinitesimal.’ If we let B(x,y) be x€ N.y € Nay < x then

from (1) we deduce that

’_-Ixe]NVStyeIN y < X.

This says that IN has an unlimited element. et us fix on one
such element and call it w. Ther w € IR and therefore 1/w€ R,

It is easy to see that 1/w is positive and infinitesimal.

Let C(z) be a formula, internal or external,

Then

STANDARDISATION.
with free variable z and possibly other (ree variables.

(s) Vstx 3sty Vstz

(ze ye ze xaC(z)).

In words: given any standard set x and any property C, there is
a standard set y whose standard elements are exactly those stan-
dard elements of x that satisfy C. The need for this axiom
arises because in IST it is illegal to use an external formula

C to form a new set y from a given set x by letting y=(ze x:C(z)};
for unless C is a formula of ZFC (i.e. unless C is internal)

there is no axiom to permit the formation of vy.
let x be IR and let C(z) be "z & O". Then we cannot form the
set {(z € R : z X0} within IST; the set y in (S) in this case
is {(0}.

fFor example

Fortunately there are two consequences of (S) that are much

easier to grasp and are sufficient for our purposes. We call
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the first of these the standard part property (sP).
The Fundamental Theorem of Algebra

3.
(sP) Every limited real number 1s infinftely close fo @ The fundamental theorem of algebra states that every non-
standard real number. constant polynomial with complex coefficients has at least one
complex root. The following proof is based on a classical one

For example, V2 + 1/w is limited and is infinitely close (i3], pp- 53-55), but the availability of infinitesimals greatly
to /7 which is standard. If x is limited and x n y where y is eimplifies the technical details.
standard then y is unigue and is called the standard part of X,
written y = °x. A similar property to (sP) is easily seen to ' Let P(z) = ap + @12 F «.o0 * anzn be any complex polynomial
hold for complex numbers by considering real and imaginary with n 2 1 and ap £ 0. ’Me must prove that P has a root. By

parts. transfer we may suppose that P is standard. Then n and all

the aj are standqrd.

The second consequence of (s) is called External Induction ’

(i) UWwe first prove that |P(z)| attains its minimum at some

(EI).
‘lstandard point B in C. Observe that if |z| % += then
(EI) Let A(x) be any formula: internal or external, with x as |p(z)| X +=.  The reason is that if |z] ¥ += then
free variable and perhaps other free variables. Suppose that
A(0) and for all standard natural numbers n, if A{n) then P(z) _ ap + a | a, . B n o
A(n+1). Then for all standard pnatural numbers n we have A(n). 0 — Y 2z LR ] n @n
We can use this to proveuthatnif 2 and w are limited com- ::3 iztli :za:::zge:n:ynon—zero. Now let w € IN satisfyw X +c
plex numbers and z Ny then z X W for all standard n. The
induction step is accomplished by noting that if z, & w, and ; Fo= ((m+ in)/w : myne 2, |m|l, {n] s w?}.
z; % wp (all limited) then z1Z2 Nowgwa. This is because
z, = w, + €, and z; = W2 + €, where € and €, are infinitesimal Because F is a finite set, the minimum of |P(z)| e 2 tuns
and therefore through F is attained at some point a of F. By the remartk
: jabove |0| << +o and so by (SP), a A B for some standard B in

212, - wuwp, = €Wz ¥ B0y + Eafo jt. e will prove that |p(z)| 2 |P(B)| for all z. By transfer,

which is clearly infinitesimal. we can extend the result to it suffices to prove this for all standard z. If z is standard

nd application of (e1). Let P then z  some point ¢ of F, and therefore

n its degree is a standard natural

standard polynomials by a seco

be a standard polynomial. The
re standard complex numbers. If z

[P(z)] & |[P()) =z |P(a)| % [P(B)].

number and its coefficients 3

and w are limited and z ~ w then p(x) & P(uw). .
Since the extreme numbers are standard, it follows that

[p(z)| z |P(B)].
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(ii) It is an elementary fact that every equation of the form
z" = ¢ has a solution in L. It suffices to write c = rele |specific polynomial, a suitably large standard value of w will
and let z = r1/nele/n. make the mesh F fine enough to catch the zeros of F approxim-

ately.

(iii) we now prove that p(g) = O. This is done by examining
p(g+h) when h € C and |h] is small. Applying the binomial

j - tral Theorem
theorem to (g+h)? we obtain . 4. The Spectra

The following result is a version of the Jordan normal

p(R+h) = P(B) + byh + byh + .o # bnhn (hn=an¥0) form theorem. The proof is due to Lutz and Goze [B] and it
is so natural that it deserves to be widely known.
where the bj are standard complex num?ers. Let bm be the n Jf n
first non-zero coefficient. Then :  THEDREM. Let F : €7 ¥ €' be a linear opcrator whose distinct
 eigenvalues are’ A\isAz, ...,Xp, where Aj has multiplicity
P(R+h) = P(R) + bmhm(1+Q(h)), (3) 'mj' j=1y eevsPe Then there is a basis Ujp,Uzs «.erl for t"
. such that
where G(h) is a standard polynomial lwith no constant term; .
Q(o) = 0. Now let h be a solution of the equation A (:) Aj * * *
mee, (ug) i LA = '3

€

Moo - _L.P(B). = g.. i - o %
" b, O Ap O Y
J

Then h % 0 and so G(h) % Q(o) = 0 and hence ja(h)] < 1. From
(3) we have

where A. is an m, X m. matrix.
J J J

p(p+h) = [1 - —EJp(B) - J}P(B)Q(h)
w w
COROLLARY. There is a direct sum d iti
and if P(B) # 0 then we have the contradiction n n decompostrion
t"=F,®F.® ... 0 F,J such that dim(Fj) = my, f(Fj)g_ Fj and
) . FIF. = AjI + Nj where Nj is nilpotent.
|p(B+h)| s t1 - -Ellp(e)l + —;lp(s)lln(h)t < |P(B)].
w w
Thus P(B) = 0 and the proof is complete. PROOF . If f has no repeated eigenvalues so that m, =1 for
. J
all j, then the result is classical and elementary. The diff-
Remarks. This proof is elementary in that it avoids the not- iculty comes from the pessibility that some eigenvalues may be
ions of compactness, continuity and complex integration. It repeated. We can get rid of such degeneracies by an infinites-

imal perturbation and this is the key idea of the proof, which

is also constructive, at least in spirit, because the arqument .
is in three parts.

by contradiction is held back until the end. In practice we

have no unlimited natural number w to help us, but for any
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(i) Choose a "Gaod" Infinitesimal Perturbation g of f

\
inear map g i ¢" » ¢" such that g(x) % fF(x) for
g are distinct

Choose a 1

. " . .
all limited x, the eigenvalues of Uisbzs ««-aly (iii) Deduce 3 "Good" Matrix Representation for f
]

and each p. ~ some A;-. This can be done by making infinitesimal For each 3» v (s iimited because Imjl 1 und therefore

. i . |
changes inJa matrix representing Fe Since the eigenvalues of W, A u, for some standard uj e t". Define subspaces Fle...,Fp

i i n isting of J
g are distinct, there is a basls Vi, ...,v_of C c?n51 | ‘ by
i t ] = 1 (where |X 3
eigenvectors of g. We normalise so tha lVJl |
denotes the Euclidean norm of x). F, = span{ui,uz, ceeaup )y Fao= spanlu, PNTINS P
etc., so that in a certéin sense Fj N Gj' We pass now from a
(ii) Get a nGood" Mmatrix Representation of g i nonstandard situation:/
infinite the |
i finitely close, and group ,

Group all v whlch are in ) “ i _ ) =

corresponding v..J After relabelling we get i t"=6,@® G, ® ) o’ g(Gj)-— Gj' im Gj mj’ and
J
| N(g,(wi)) = diag[Bl,Bz, ..,,Bp]’
o), ete. .
N AT R ¥ A SR T N, x W ovm, ™ 24
Wy n H2 v v Emy v my+1 my+m2 to a standard one. It is easy to believe and not difficult to
prove that
Define subspaces Gj by
A u:l'\ = Fl @ FZ@ e @ pr f(Fj)g Fj, dim FJ. = mj, and
G, = span{vys,Var ...,vml), G, = sDan(vm,+l' ""Vm1+m2),

m(f,(u;)) = diaglAy,hzy -eenhyl
etc. where Aj is standard and Aj X Bj in the sense that corresponding

Then clearly dim G5 = ™ g(Gj) <6y and t" = G1 @ G2 @ - -+ @ Cpe entries are infinitely close, so that

In each G,, use the Gram-Schmidt process to obtain an orthonor- B

X x .., xW
mal basis (wi) from (Ui)' We get XJ
= veesW } A .
G, = spanfuwi,¥zs ""wml)' G = SQBn[wm,+l’ ST PR Ay = I . :
Cx
B . . b e, By the nature of
etc., and <ui,mj> = 6ij within each subspac L Aj
the Gram-Schmidt process -
« * 5. Concluding Remarks
B, [T ce
R Nonstandard analysis is also of use in providing new res-
B H2 : . s .
m(g,(u-)) - 2 , By = . ‘ etc. ults and in providing the framework for mathematical modelling
i . e .
. 5 " of physical processes where different orders of magnitude are
p My involved. Two recent examples are moiré patterns [4] and the
theory of singular perturbations of ordinary differential equ-
- 38 -
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optimal control {21, [s}.
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INTEGRAL MEANS OF UNIVALENT FUNCTIONS - A FRAGMENT ' Robertsan conjectured that

n
: 2
Finfann Hotland 5102k+1| sn+ 1, n=0,1,2, cioon (R)

illi ject d th
Introduction millin conjecture at, if

A notable event in the theory of the class § of normal- n 2
; i - e b, = I(k|yl® - 1/K), n=1,2, ..
ised univalent functions on the open unit disc U occurred last 1

summer (1384) when de Branges [3] settled the long outstanding . }
e i

/

conjecture of Bieberbach [2], -to the effect that if n ,’2 0
1 -k - no=
E(n + 5 MCIEMY 1/k)3 %Aj <0, n=1,2, ... (M)
f(z) = z + Ta 2" ze U I . . .
= Lanz's ’ : since (in the notation just introduced) the inequalities
Fhat follow were known to hold, Bieberbach's conjecture was
belongs to S, then ?ffirmed once Robertson's was, and Robertson's once Milin's was
lan] & ny for n = 2,3, «eees ()  Thanks to de Branges: who settled (M) affirmatively, all three
sre true.
with equality holding for one N, and so for all n, if and only 1
X . i6 n-
f f f the f f(z) = k f 1 wh k 2
i is o e form f(z) (e'?z) for some real 8, uwhere lap] s S |°2k+1| S = 2,3, ..

denotes Koebe's function, i.e.

n 2 n '
n lazian]? ¢ (neddexp(Zag/(ne1))y n = 122, cee (ML)

k(z) = z/(1-z)2 = nz', z € U,

~t18

The first of these follows by expressing the coefficients

of f(z2?) in terms of tho f 2 i
cettled Robertson's conjecture (8] for the coefficients of 0dd ity se of (g(z))? and applying Schuwarz's

functions in S, which was known to imply Bieberbach's, and a

Not only did de Branges settle this conjecture, but he

The second lies deeper, and is a special case of
pne of the celebrated Milin-lLebedev inequalities [7], which we

still stronger conjecture - milin's [7) - into the bargain. . )
#ill enunciate shortly.

We recall these: given f in § write

f(z) = ZEXP(Zﬁynzn). z e Uy The First Integral Mean
Given an analyti i :
and define the odd univalent function g in S as follows: alytic function h on U, and 0 < p < =, we urite
2n

® :
g(l) - /f(Zz) - zexp(XYnzzn) - cEann. . Ip(r.h) = I Ih(rele)lpde, D<r <1,
1 1 0

- 42 - - 43 -




i1n a major assault on the Bieberbach conjecture, Little-
wood [6] showed in 1925 that
sup(11(r,f) i fes) sc/C1 - r), Dsr<?t (L)
and deduced from this that |an] < en, for n = 2,3y e

Almost Fifty years were to elapse before Baernstein succ-

eeded in sharpening inequality (L):
] that, for any p > o,

amongst other remarkable

things he showed in (1

Ip(r,k), 0 st® <1 (8p)

sup(Ip(r.f) : fe §) =

In particular, then, (B1) is equivalent to the statement

that
19(r,f) = /(1 - 2), 0srt <1,
if fe S.
Here we point out that the latter inequality is a simple
consequence of (R), a fact which appears to have gone unnot-

let fe S. Keeping the notat-

g is odd, we have, for

To see this,

and bearing in mind that

iced until nouw.
ion as before,
0sr <1,

2n . 2w :
L2, = [ 1Pl - | lo(rel®)|?
0 0
x 2.2 2 ak
= 2ﬂ§]cn|'r n 2wr Z|c2k+1|

k
2 4\% 2
= 21T (1 - T )§(8|C2j+1| )l‘

2nr2(1 - ra)z(k + 1)r

A

= 2nr2/(1 - rb)’

= 11(I'2,k),
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It is clear that equality holds for some r in

tusing (R).
;1) if and only if f is the Koebe function composed possibly

&h a rotation.

E Integral Means for, p 2 2

H L .
gieberbach's inequality (B) coupled with Parseval's iden-

Fy tells us that

sup(Iz(r F) : f€ S) = I,(r,k), 0 sr <1,

Wwhat ab t

. ? a ?ut he ofher means? Can (Bp) be deduced from
PfflClent inequalities for other values of p as well? In
p remainder of this article we will answer these questions
Tlrmatlvely for the means Ip with p > 2. The approach is
B same as the one adopted in the previous section: we first
rive sh?rp coefficient estimates for the auxiliary function
kz)/z)p 23
H

K2)/2)P/?

rtent conferences,

these are provided by the coefficients of
Hayman, who had often raised this guestien at
announced this result in the course of his
cture on the Fitzgerald-Pommerenke version {a] of de Branges!
pof of (B) at the One-Day Function Theory Conference in
verpool in September, 1984; but gave no indication aof the
pof. We will show that it is a consequence of (M) and some
nor adaptations of the general Milin-Lebedev inequalities,

5ch we proceed to state.

Let

p/2
(k(z)/2) = (1 s e,

g set
D/2 o ©
(f(z)/2) = exp(p%Ynzn) = gan(p)zn,

ere here .and from now on f e S.
Then (see inequality (2.37) on p. 37 of {7]) for every
: 1 and any p > 0

n
fan(p)]| s dn(p)exp(pk§1dn_k(p-1)Ak/zdn(p)), (ML (1))
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Consider the sequence of real numbers

n
kE1dn_k(p)Ak, no=1,2, «oe

re the coefficients in the power series expansion of

These a
and so of the product

the product (1-2)"PLanz",
n

(1 - z)“("")'};:’(mk)z”.
1

jrst factor in
By (m),
Hence

y to see that the coefficients of the f

It is eas
ve if p 2 1.

the last displayed product are non-negati

the coefficients of the second factor are non-positive.

n
k§1dn_k(p)Ak s 0, n=1,2, «0s

if p2g 1.

Returning to (MLp(1)). we now see that for every n 2 1

and any p 2 2

lan(p)l s dn(p) (Hp)

Hence, for O s T < 1,

2 . o
J If(rele)lpde = 2nrpg|an(p)|2r2n

Ip(r,f) i

s 2nrp§(dn(p))zr2n

Ip(rvk)

which gives (Bp) for p 2 2.

- 4B -
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The Integral Means for 1 <p < 2

Our
. thresults for the remaining means are incomplete; t
ive "
der em, we recall another of the Milin-Lebed i ’ i
(see formula (2.33) on p. 35 in [7]): T neaueiities

\
2 Ja ()% /d(p) s n
Lol (P70 (p) s dylper)exn(p & d, i (p)ay /0, (pe1)).

\

(mpy(2))

A i ] i tt ¢ . ti tt F

. S we observe 1 E/DIEulous section, € rqume 0
he exp -

onential on the rlg{ht hand side of this lllequallty 1s

on-positiv /
non=-p e for p;z 1. /Hence we can infer that for every

nz1land any p 2 4

n
kEDIak(p)IZ/dk(p) s dy(p+1). (%)

I X
(In passing, we note that (%) implies (H,), f
1 <p <2, in an average sense: ol for the manoe

n
(z ( 2 n 2 n
Dlak P )" s (glak(p)l /dk(p))(gdk(p))
S (Jelp+1))2 = (Tay(p))?
0

n n
g[ak(p)l H gdk(p). n=20,1, ...).

As a SlllDlE consequence of ( )) we deduce that

Elan(p)|?c"/d @ N
Hane) % dn(p) = (1 - )E(Ea(p)|% /0 (p))s"

s (1 - r)gdn(P+1)r"

= (1 -1)P,

- 47 -




But for p > 1

1/dn(p) = T(n+1)F(p)/T(n+p)

l _

(p-1)Jt”(1 - t)P %4t
]

and

o0
Ip(r,f) = 2ﬂrpg|an(p)|2r2n, 0sr <1,
Hence combining these facts we see that

T . r
J Io(t, ) (r2-t2)P 2t Pgy - 2ng|an(p)12f £2M 1 (:2-¢2)P-2g¢
0 0

- nzf’-z;z"lan(p)lzrz“/(pa)dn<p)

nr2p-2/(p_;)(1_r2)p

n

r
J 1,(t, 1) (c2-t2)P=2¢1 =Py
0
if 0sr <1 andp > 1.

In particular, if 1 < p < 2 and 0 £t < 1, then

T r
I Ip(t, F)(2-t2)P 21 Pyt s I Ip(t, k) (r2-e2)P=2¢! P,
0 0

which is the closest we can come to (Bp) for this range of p.

The Integral Means for 0 < p <1

Something similar holds for p in (0,1). Indeed, if we
utilise another of the Milin-Lebedev inequalities - this time
formula (2.36) on p. 36 of [7] - we find that for any p > 0

glak(p)lerR/dk(p) s exn(pfleklerR)
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2)2

(n+1-k)kjyk]2)r2“)

exp(p(1-r

T(
z

2)2

-=M™M3J —=m™2

s exp(p(1-1 ?( (n+1-k)/k)t2n)

exp(pre/n)
1

(1-r2)-pl

on USiNg (M) again. Equality holds if and only if f = k,

art possibly from a rotat#on.
i/

ap

This inequalitijis a weak substitute for (Bp) in case

g<p <1, Together with Schuwarz's inequality it implies that

glak(p)lrk s(1 -0 0sr <1,

shich can be viewed as (Hp) in an average sense. We remark

too that it forces

glak(pnz/(kn)dk(p) s 1/(1 - p)

with equality holding only when f = k.

Concluding Remarks

It remains open whether (M) implies (Bp) for ‘p in (0,1) U
(1,2). The implication would follow if the following inequal- :
ity were true:

. 2 7 2
glak(p)l $ L)% n= 01,2, ... .

This holds true for p = 1 and for all p 2 2. It is surely

y
true for 1 < p < 2, but I do not see how to prove it. It is |
sven possible that it holds for the remaining values of p as
uell,
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(When the first draft of this note was finished, Hayman
very kindly sent me a copy of his joint. work [5) with Hummel,
in which (Hp) is also proved, for p 2 2, in substantially the
same way as that outlined above, the major difference being
that a stronger inequality than (m), also obtained by de
Branges, is used to show that the argument of the exponential
in (MLD(1)) is non-positive when p 2 2. They mention too
that Grinzpan and Aharonov have apparently made the same obs-

ervation, and point out that (Hp) is false for 0 < p < 2.)
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A NOTE ON A COMMENT OF AXLER AND SHAPIRO

ficchebt O Seancbid

in a recent paper of Axler and Shapiro [1], the following

comment occurs:

wpyrely C*¥ theorems should have c* proofs, not proofs
that rely on Hilbert space ... . One of our favorite
examples of this principle is the following proposition:
If B is a C*-algebra and T € B is left invertible, then
T*7 is invertible. This is fairly easy to prove for
operators on Hilbert space (and thus we get a proof for
"arbitrary C¥-algebras N I A purely C* proof is more
difficult (and more interesting) to discover, but once you
find the purely c* proof you are likely to be convinced

that it's the right proof."

Axler and Shapiro leave the carrot dangling there, and the tem-
ptation to look for a C* proof is compelling. We found two

quite different ones which form the subject of the present note.

For the non-specialist, we start with two definitions and

an explanation.

Firstly, the definitions: A unital Banach algebra B with
involution * is called a B¥-algebra if the property }{x*x|| =
{|x||? holds for each x € B. If H is a Hilbert space and B(H)
is the algebra of bounded linear operators on H, and if A is
‘a closed subalgebra of B(H) with the property that T € A implies
T# € A, then A is called a c*-algebra.

Secondly, the explanation: That every c*¥-algebra is a B¥-
algebra is elementary. That the converse is also true, i.e.
that every B¥-algebra can be represented as a c*-algebra of

gperators on some Hilbert space, is a much more difficult the-

orem. Many theorems about operators on Hilbert space are auto-

matically true for elements of B*—algebras because of this rep-
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tation, and the theorem in question is one af them. We

resen

ghould also mention that some analysts dispense altogether with
the term p¥-algebra, but that we prefer to retain it when we

re pretending we do not know that all B¥-algebras are, in

The task in hand, then, is to find a B¥

prDOf of the above-mentioned theorem.

s
offects c*-algebras.

Let us first examine tpe special case for operators on
ilbert space. A proof u§ﬁng polar decomposition is the only
one which springs immediagély to mind:

TAKE 1. Let T € F(H) be left invertible.
Let T = UP be the polar decomposition of T, where u
is a partial isometry and P is the unique positive
operator such that P2 = T*T. Since T is left invert-
ible, so is P, and so also T*T. Being hermitian,

T*T is therefore invertible.

Short and sweet, but it uses polar decomposition. The
gxistence of a positive square root for each positive operator
{s usually presented as a consequence of the spectral theorem,
and to invoke such a theorem in the present context is rather
Whilst it is

true that square roots and polar decomposition can be presented

like using a pile driver to crack an almond.

without reference to the spectral theorem (see Halmos [3], p.B4),
there is still too much work involved for our liking; in any
case the proof, as it stands, will not go over to B*-algebras
unpe, although square roots can be manufactured in them, polar

decomposition is not always possible.
We soon found the following elementary operator proof:

TAKE 2. Let T € B(H) be left invertible.
Then T has closed range, since ST = I and Txn + y =
y = TSy.
Also T* is right invertible, so T*(H)
Therefore TXT(H) = T*(N(T*)L) = TX(H)

H.
H where #
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o . ‘ . That's easy when you see it, but it could take a while
stands for null space. Whence T*T is Ilght invert- to find. Perhaps it is similar to the proof which Axler and
: s iti i i ible
ible, and, being hermitian, is inverti .

ghapiro describe as "difficult to discover". The lemma, in
. particular, involves some trickery; it also involves a highly
We are quite satisfied with that proof. Moreover, alth- nan_triuial representation theorem. Our second proof, in
ough it is by no means obvious, there is a way of mimicking it ;nntr35t' is surprisingly elementary, no less so than Take 2
to produce a BX proof.  (Actually, we discovered the B* argum- gbove; neither was it difficult to discover!
ent first.) The proof requires the following B* folk lemma ; ;
(see, for example, Goodearl [2], p. 148). Firstly, we remark that{@here is a well-known elementary
proof of the fact that euerw’hermitian element of a B*-algebra
LEMMA A. Let A be a B¥-algebra and q = q2 € A.  Then there has real spectrum, /for the sake of completeness we include
exists p = p* = p? € A such that pA = gA. it here:
: i 1 - g% is normal, so that the B*-
Eﬁﬁgfgebizrz: Z'g:ner:ted by 9 - g¥ is commutative and LEMMA B. Let A be a B*-algebra and let x = xX € A, Then
can be represented as the algebra B of continuous com- o(x) < R.
plex functions on some compact Hausdorff space. Supp- 1 Proof: Suppose a,b & R and a + ib e a(x).
ose q - g¥ corresponds to g € B, The range of qg, t Then a + ib + ic € o(x + ic) for every c € R.
and therefore also 0,((q - g*)(a* - q)), is contained Soal+ (b+c)?=la+ibsicl]?s|[x+ ic|l|?

in the non-negative real axis.

[ (x + ie)(x - ic)l| (B* property)
[x? + e2f|

Hx2] o+ e,

Put x =1 + (g - g*)(q* - q). Then x = x* is invert-
ible.

Also gx = gqgq*q = xg, so each of x and x~ ' commutes with

both g and g¥*.
Put p = qa*x”'.
Then p* = x 'qg¥ = p.

- - - -1
and p? = x 'qg¥ag*x~' = x"'xag*x”! = p.

I

Hence a? + b? + 2bc

A

lezll for all c € R,
It follows that b = D,

Also gp = p and pg = qa*x"'q = gg¥qx”' = gxx7! = q. ] Whereas that lemma uses the lovely classical trick of the

Hence pA = qA. 1 dummy variable, our proof of the theorem uses no trick, only
the elementary fact that the boundary of the set of invertible
slements of a Banach algebra is contained in the set of two-

2 i ible.
TAKE 3, Let A be a B*-algebra and let x € A be left invertible sided topological divisors of zero.

Suppose yx = 13 then xy = q is an idempotent. Let
p = p¥ = p2 € A be such that gA = pA.

Then xA = xyxA G xyA & xA, whence xA = pA, x = px, and @ TAKE 4. Let A be a B*-algebra and x € A.
x¥p = x¥; so x*xA = x*pA = x*¥A = A, yielding x*x inver- Oy will denote left spectrum and 30 boundary of
tible. spectrum.
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0 € o(x*x) =0 ¢ 90 (x*x) (by Lemma B)

=73 (zn)ne NS A, with llznll=1 (nen)

such that x*xzn + 0.
= X
(xzn) xz + 0

=xz_ + 0 (by B¥ property)

=0 € 02(")’

Well, you couldn't get much easier than that, We are
tempted to say that it's "the right proof", byt there may well
be a dozen others with equal claim, Whe knows?
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PLAYING THE NUMBERS GAME IN NEW YORK

Galrielle Ketty

When I arrived in Neuw York I was struck by the curious
phenomenon of lines of pe%ple outside very small newsagents and
tobacconists, It was mi@espread. All over Manhattan from
216th S5t to 14th st, frov;west side to east side there were
snake lines of people on'the pavement. They were Hispanics,
blacks, whites ané Chinese. They ranged from street people
and bag ladies to white-coated MDs and business executives,

Were they lining up to be rubber-stamped? Did I need same

more identification other than my tuwo university I0s, my social
security number, my telephone and computer numbers, bank numbers
and alien card number? I then saw the magic word - Lotto.

Ah! The numbers game I thought, Run by the Mafia I thought.
But what about those MDs? Bver the next couple of days I was
advised by bus drivers, at the hardware store and by my doorman
to go out and buy my Lotto number, Surely, I said, not braving
to reveal my ignorance. Every four-year old in New York obv-
iously knew all about it. Strangers called to me in the street

- got your Lotto number yet?

I enquired from my colleaques, A $41 million prize had
accumulated and the draw was to be in two days time - August
23rd. Some of my colleagues were also buying tickets. A
ststistician went on TV to declare to the public "the bigger
the prize, the bigger the payoff! I could not believe my
ears. On the average I thought ..., in the long run. The
front page of the New York Times, August 22, revealed all,

The New York Lotto 48

Select any combination of six numbers between 1 and 48,

Enter as often as you like, Minimum purchase 2 tickets,
Tickets are 50 cents each. You win:g
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First Prize : all your 6 numbers are draun.
second Prize: 5 of your 6 numbers are drawn.
Third Prize : 4 of your six numbers are drawn.

Fourth Prize: 3 of your 6 numbers are drawn and of
your remaining 3 numbers one matches a
supplemental number that is drawn after
the 6 main numbers. The supplemental

number is used only in figuring fourth

prize.

Under the law that created the New York State Lottery
nine years ago, 45% of the revenue from ticket sales is used
to Finance education, with 40% going into the prize pot. The
remaining 15% goes to administering the lottery. The 40%
that is prize money is split as follows: 50% for the 1st
prize, 11% for the second prize, 28% for the third prize and
11% for the fourth. Prize money is split if there are joint
winners. If there are no winners the money is carried over to
the next drawing in the appropriate prize category. The
reason for the Lotto fever this August was that there had been
no first prize winners in the previous seven drawings. With
the money rolled over, it was predicted that there would be a
total of %47 million in prize money, with $41 million of that

going to 1st prize.

To Play or Not to Play: That is the Question

There are 72 million possible combinations of 6 numbers.
If I buy two tickets, my odds are 6.1 million to 1 of winning

a prize.

Assuming random choice of numbers, lottery officials were
predicting 6 first prize winners. Taking only first prize of
$41 million into account shared among 6, I computed my average
winnings to be approximately a dime, based on a purchase of two

A dime is a positive number!

tickets, A gambling game with

- 58 -

average payoff positive is almost unknoun. But the average
And to

My chances,

means the long run, i.e. repeated plays of the game.
quote Keynes: "In the long run we are all dead."
1 knew, of winning first prize were 1 in 72 million. I spent

my $1 on a nice cool beer. But there are many experts.

more Words to the UWise i

"Your lucky number enqlosed in a privacy folder", read the
Lucky Green Number Machine/on 42nd St. "All numbers randomly

selected by a compyier (experts say random is best)."

The Happy Players Club suggests numbers to play based on
The Lottery Ad-

vantage Newsletter (run by a former stockbroker) provides read-

uprobability and past pattern performance".

ers with a variety of charts to determine, for example, which
numbers tend to win together or which numbers are hot and which
are cold. Advice abounded: "Don't choose a number less than
32 - many people use birthdays and months to select their num-
bers and you have to share the prize." A less empirical app-
roach was offered by the astrologers. "Luck", according to Mr
Martin, a Long Island astrologer and lottery specialist who
advises clients, is determined in part by the "metaphysical
essence of the trine aspects at the time of birth", and people
born under the Sagittarius sun sign, such as Mayor Koch and

Woody Allen, tend to be naturally blessed.

If You Win ...

The State Lottery director advised: "Get a lawyer, hire an

accountant, write a will, and get an unlisted telephone number."

Meanwhile ...

On August 22nd, tickets were selling at the rate of 20,000

~a minute as people waited in line at 3,903 ticket outlets thr- L

I
9

oughout the State. Lines started at 4.00 a.m. and some peaple

- 59 -

-



waited as long as three hours. One came with $1,100 to buy
tickets for himself and everyone on his block. Executives of

companies bought tickets for employees - a summer bonus.

In Case You Missed It:

14-17-22-23-30-47

What They Won

First Prize ¢ $13,666,666.66.

|
Iz‘ Supplementary Number : 33
\
|
|
|
i
|
|
\ Three tickets shared $41'million.

! 3 Second Prize: $2,611.50.

578 tickets had five of the numbers.

Third Prize : $79.50.

48,052 tickets had four of the numbers.

Fourth Prize : $23.00.

65,037 tickets had three of the numbers

plus the supplementary number.

Total number of ticket sales: 36 million approximately.

One first prize ticket was owned by a pool of 21 factory
workers, most of them recent immigrants. Everyone was del-

ighted with this. After taxes, they got $36,000 a year for the

next 20 years.
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postscript

De Moivre, corresponding with Lord Carpenter concerning
his work 'The Doctrine of Chances', wrote: "this is not to
promote play but rather that people knowing the correct odds
in play will become more chaste in their gambling habits",
Times have not changed.

/
/
{
/
New York Times, August 22 - August 26, 1985,

4

Reference

School of Pullic Healilh (Biovstatistics),
Cuny,
New Yonk, N.Y. 10032,

Congratubations!
To Phil Rippon (0U), our Problem Page Editor, on being awarded

a Junior Whitehead Prize by the London Mathematical Society in
June 1985.
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DRAWING THE LINE AT THE FOURTH DIMENSION*

There are three dimensions of space and one of time -

that makes the world four dimensional, as every schoolchild

knouws. But two Austrian physicists have come up with an

ingenious way of physically measuring the number of dimensians

of space and time, and they calculate with something less than

four: 3.99999947 to be exact.

Just an error? well, not necessarily. Space-time

could have a fractional dimension, and it could be something

more or less than four. 5o perhaps Anton leilinger of the
Vienna Atominstitut and Karl Svozil of the Institute for

Theoretical Physics in the Technical University of Vienna are

on to something.

what Zeilinger and Svozil have done is to apply the con-
cept of "fractals" to space-time. Fractals, developed by
French mathematician Benoit B. Mandelbrot, are objects like

coastlines or mountain ranges whose exact lengths, or areas,

or whatever, are impossible to measure in principle. Thus
for example, a geographer might pace out the arc of a bay as
1,000 metres. But suppose he were to measure round every rock
— the length would be greater - say 1,500 metres. And then
around every grain -- greater stilly and so on.

Similar effects occur in pure mathematics. For example

a line can be defined from A to B in this way: first draw a
zig-zag from A to B. Then on each straight portion of the
zig-zag, replace the straight line by a miniature version of
the zig-zag. Now you have a zig-zag zig-zag. Take each min-
jature straight portion of the zig-zag zig-zag and replace it
by a tiny zig-zag. As this process is continued ad infinitum,

the result - which is surely composed of lines, and so_one-

Reprinted from the Guardian, 1 August 1985, with the permission of the
editor.
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dimensional, begins to fill in a whole area between A and 8
put areas are two-dimensional. So is the infinitely zig .

zagged line "really" one- or two-dimensional?

To solve guestions such as that, mathematicians sometimes
redefine terms - and here an early 20th century mathematician
felix Hausdorff, -provided the redefinition. If you '
measur? the "length" (the suf of little lengths in the line)
of an infinitely zig-zagged/line. Hausdorff arqued, the answer
will be infinity, And if Aou measure its "area" (the sum of
little areas in the/line),Jthe answer will be zero - as mathem-

v

atical lines are infinitely thin.

But what if you measure something in between length and
area - a fractional power, between 1 and 2, of the distance
between points in the line, Hausdorff asked. Now, Hausdorff
showed, the answer comes out to be neither infinite nor zero
but finite, for one precise power of distance. It is this ’
power that enables a measure of the "size" of the set of points
(just as length and area measure the size of more familiar
sets). The value of the power required to produce a finite

result is now called the "Hausdorff dimension" of a set

Fractals are then lines, surfaces or what have you that

twist and turn so much their Hausdorff dimensional is fract-
ional.

| So Zeilinger and Svozil asked a simple but profound ques-
#ion: what really is the Hausdorff dimension of space-time?
jt could be more than four, if the collection of points which
@e can reach with our particleé - accessible space-time -
}mists and turns in some other space in which we are embedded

4 i i i
ﬁjust as the zig-zag line twists on the page). This is not

".H

n
reasonable to suppose, for particle physicists are now being
Hiri 3 .

lluen to consider 10 and 12-dimensional spaces, in arder to

mfplaxn the properties of the elementary particles, of which

gur familiar space-time is only a part,
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Or, the Hausdorff dimension of space-time could be less

than four, if we are embedded in strictly 4-dimensional space-
time, all the points of that space-time are not accessible to
us. Werner Heisenberg, for example, had the idea that space-

time might be granular - that there might be steps in space

and time.

But how to measure the Hausdorff dimension of the world?
Zeilinger and Svozil have an answer to that. In the world
of high-energy particle physics, particles are spread out in
the "wave-particles" of guantum mechanics - and as such they
probe every cranny of space-time, By reinterpreting certain
very precise measurements on the magnetic‘moment of the elec-
tron as estimates of the Hausdorff dimension, Zeilinger and

Svozil come out with their value of 3.98899847,

This is so close to 4 that it may be guestioned whether
the result is real. But it may just indicate the beginnings
of the detection of granularity in space-time. For the meas-
urements are limited by the quantum "wavelength" of the part-
icles used. Experimentally, the waves cannot penetrate
"erannies" or discontinuities shorter than their wavelength,
And wavelength decreases with energy. The energy of the mag-
netic moment experiment was low, and so was perhaps like the

geographer pacing the coastline with a long step.

The requirement must be now for higher energy tests (though
the higher the energy, the more difficult precise measurements
become). Ideally, the tests should be done at energies app-
roaching the levels where theorists expect the 10 or 12 dimen-
sional twists and turns to appear. Sadly, however, such energy
regions are astronomically high and probably inaccessible, and
we may have to content ourselves with Zeilinger and Svozil's
3.99999947.

Reference: Phys. Rev. Lett., Vol. 54 P, 2553 (1985).
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TEACHING NOTES

E1GENVECTORS AND DIAGONAL|ZATION

P.D, Baanry

Can we motivate or encounter naturally eigenvectors of
matrices, especially as occgrring in the diagonalization of a
guadratic form, or must thef be produced apparently out of the
blue? /

4

When derivingfihe equation of an ellipse E in standard

form we select the axes of coordinates to be along the major

and minor axes of the ellipse. Thus if

ax? + 2hxy + by? = 1 (i)

represents an ellipse with centre at the origin 0, to convert
it to standard form we need to map its major and minor axes
onto the x' and y' axes. If Py = (xo,yY0) # 0 is a paint on
either the major or the minor axis, we then seek a linear trans-
formation

X = al’,x' + al’zy'
(ii)

= ' '
y = a8,,,x' + a, ,y

which maps the line 0P, to the x'-axis; in matrix form (ii) is

x a a, x!
= (iii)
Y az,l az,z Y' .

As then
Xg = ax.lx;
Yo = az,lx;
for some x; # 0, we have
ay,, = Jxgr 3, = Jy,
- 65 =~




for some j # 0. This gives us the two coefficients in the

first column of the two-by-two transformation matrix in (iii).

We note too that if Qo = (-yo»Xo), then 00, is perpendic-
ular to OP, and so will lie along the other axis of the ellipse.
Thus if our linear transformation is to preserve perpendicular-
ity, as a rotation or an axial symmetry would, we will have

the line 0Q, mapping to the y'-axis. Then

Yo = 31.2Y5
Xo = az.zY;
for some y, # O and so we have
a;,2 = <-kyo» 22,2 = kxg

for some k # 0. This gives us the two coefficients in the
second column of the transformation matrix in (iii), which

thus has been shown to have the form

Jxe -kyo
(iv)
Jye kxo/ »

It still remains to locate Py, and we recall the manifest
property of a point at the end of a diameter of £ that it max-
imizes or minimizes the distance of a point P on E from the
2 4+ y2 is maximized

centre 0. We thus seek a point at which x

or minimized, subject to the condition (i). Recalling the
method of Lagrange multipliers, we wish to locate a point

(x,y) = (x4,¥,) # (0,0) at which

F(x,y) x2 + y2 + pax? + 2hxy + by? -1)

satisfies

oF _ 3F
ax oy a.
This gives
u{ax + hy) + x = D0,
ulhx + by) +y = 0,

- 66 -

that is,

ax + hy = Ax,
hx + by = Ay,
gshere A = -1/u, at the point (x,y) = (xg.y,) # (0,0). Thus
Xo
! Yo

is an eigenvector of the matrix
i
|

[
s - h
/ (v)
h b/
corresponding to the eigenvalue A This eigenvector can nouw
be inserted in the first column in (iv) and so in the first
column in the transformation matrix in (iii), and a similar

conclusion for

gives the second column in (iv) and (iii).

We have hitherto presented this as converting the express-
ion on the left-hand side of (i) to standard form. In matrix

notatien it can be written as

a h X
(x,y)
h b y
and this exhibits the matrix (v) for which we have been encoun-
tering eigenvectors. Our work can also be presented as diag-

onalizing this matrix.

The abouve algebra and geometry can surely be asked of any-
one at this level of linear algebra, but perhaps Lagrange mult-
ipliers seem a late topic in some unappetising course on cal-

culus. Supposing more elementarily that E has been parameter-
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ized, with variable t, to find P we need

3 gt(x2 + y?) = x%; + y%% = 0 (vi)

where, on differentiating (i),

d | .
(ax + hy)a% + (hx + by)%% = 0. (vii)

Now (vi) and (vii) have a non-trivial solution in dx/dt, dy/dt
if
ax + hy hx + by
det = 0,
X y

which is a condition that

0

1(ax + hy) - Ax
(viii)
1(hx + by) = Ay = 0

In (vi) and (vii) we are looking for

Then {(viii) brings in

have a solution in A.
a solution {x,y) which is not (0,0).
the eigenvectors of (v), so with some loss of immediacy we can

omit Lagrange multipliers and still reach our objective.

Depantment of Mathematics,
Univensity College,
Conk.
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PROBLEM PAGE b

The first problem this time is 'going around' at the mom-
ent. 1 heard it from several different people within a period

of a week, and it has a remarkable solution.

1. A rectangle R is partitioned into a finite number of rect-
!

angles Ri, Rz, «..s Rps e?ch of which has the property that at

least one side is of int%ber length.

7
yd

R,

Ra

Prove that R has the same property.

The next problem came from Jim Clunie who learnt it from

Tom Willmore.

2. A rod moves so that its endpoints lie on a convex curve
I, in R? and a point P, which divides the rod into lengths a

and b,‘then describes a closed curve [;.

m
a b

T2

}

Prove that the region lying between F, and T, has area mab.

- 69 -




Now for the solutions to two earlier problems.

1. Let A;+A,,A,,A, be 3x3 complex matrices and let

Express det M as the product of four 3x3 determinants.

This problem was sent in by Finbarr Heolland and also
solved elegantly by Allan Solomon as follows.

Let
M(A) = A, + AR, + AR, + A%a,, A€ C.
Then
det M = Il det M(}), where ¢ = (1,i,-1,-i}.
Aed

To see this, note that

m = IQ®A, + TOA, + T2® A, + T*® A,

where

o
o
-
o

0 0 0

-

1 0 0 0]

and ' ® ' denotes the tensor product.

The matrix T generates Z, and has eigenvalues 1, i, -1

Thus there is a 4x4 matrix Ry such that

RoTR;' = diag (1,i,-1,-i) = oD,

say, and so if R = R, ® I then

- 70 -

0 mii) 0 0
gMR™' = I®A, + DA, + D2®A, + D'®A,=
0 0 m(-1) ©
0 0 0 m(-i)].
Hence /
det M = det/RMR™’ = 1 det m(1),
'

] A€D

¢
as required. l

;
rd
e

Allan points out that this generalises to

N 1
m o= 7T @A,

n=1
where T generates Zy. Also, if {Aj) generates a Lie algebra
G, then {Tk(g A : k€2, A€G) generates a graded Lie algebra.
In an article in 'Group Theoretical Methods in Theoretical
Physics! (academic Press 1977), he employed this algebra (with
G = SU(Z)) to give a new solution to the Ising model on a cyc-

lic lattice of N points.

2. Prove or give a counterexample to the following statement:

if a, 2 0, for n = 1,2, ..., and ap < « then

0N~ 8

n=1
1
° (- mgn)
¥ a, .
n=3
In fact this statement is true. Indeed, for any term
ap such that n 2z e* and
a 1
nSnzr
we have 1 1
a logn) (_L;1 logn) < 1 .
n g nZ =

 ZE . T e




On the other hand, if

S
n = L
then 1 1
Slo9n ¢ (n2)}09n o ez,
and so 1 - 1
an logn e?a,.

1

Since Lapn and zn’/’ are both convergent, the desired result

follouws.

Phil Rippon

- 72 -

BOOKS RECEIVED

“NONL INEAR PQRTIAL DIFFERENTIAL EQUATIONS AND THEIR APPLICAT-
IONS. COLLEGE DE FRANCE SEMINAR VOLUME V11"

fdited by H. Brezis and J.L. Lions

published by Pitman Pullishing, London, 1985, 292 pp.

Stq £16.50.  ISBN 0-273-0§679-0

f
/

[
This book conéains the texts of selected lectures deliv-
ered at a weekly seminar held at the Collége de France. It

includes contributions by leading experts from various centres
on recent results in nonlinear functional analysis and partial
differential equations. The emphasis is laid on applications
to numerous fields including control theory, theoretical phy-
sics, fluid mechanics, free boundary value problems, dynamical
systems, numerical analysis and engineering. The book will

be of particular interest to postgraduate students and special-

jsts in these areas.

“ENNIO DE GIORGI COLLOQUIUM”
Edited by Paul Krée

published by Pitman Pullishing, London, 1985, 169 pp.
Stg £14.50. ISBN 0-273-08680-4

This research note includes sixteen papers reporting math-
ematical research in France and Italy related to the work of

Ennio de Giorgi.

In July 1983, Professor Ennio de Giorgi was awarded the
title 'Doctor Honoris Causa' by the Council of the Université

de Paris VI. The very profound and influential nature of his
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work meant that this award had a considerable impact on the

international scientific community, particularly in France and BOOK REVIEWS
Italy. As a result, a French-Italian colloquium on de Giorgi's

work was held at the H. Poincaré Institute in November 1983, "STATISTICAL METHODS IN RESEARCH AND PRODUCTION" (4th Edn)

De Giorgi's work was concentrated mainly on six areas: Edited by Owen L, Davies and Peten L. Goldsmith

. o s . ti )
evolution problems, minimal surfaces, regularity of solution published by Longman, 19?“' xii + 478 pp. £10.95 (paperback)

/

utions of partial differential equations with constant coeff- ¢

w

of second order partial differential equations, analytic sol-

c s /
icients, Gamma-convergence theory and connected problems, and " . bkt . Ne
In Japanese firms, Statistics is everywhere ....."j

hyperbolic equations with discontinuous coefficients with res- v, statisb{cal charts at loading docks and throughout the

pect to the time variable. factory floor";

"Last year Japanese Industry carried out over 1 million statistical
experiments";

"Japan has an annual National Statistics Day";

"Train-schedules in Tokyo railuway stations are stem and leaf dis-
plays";

"pmerican industry is now investing in massive training and educ-
ation programs in Statistics, Quality Control and Reliability
Methods".

- from a presentation by Blanton Godfrey (Bell Labs) at the

1984 American Statistical Association meeting in Philadelphia.

* Most people nowadays accept that Japanese consumer goods

are of high quality, and much of this progress in quality has
been attributed to the work of W. Edwards Deming, the American
statistician who has been a consultant to Japanese industry
since 1945. The statistical methods that have been of such
value to Japanese industry are essentially develaopments of the

basic methods presented so competently in this book.

The object of the book, stated in the opening lines of the
introduction, is "to facilitate a better understanding and a
wider use of statistical methods by staff engaged in Research
and Production, particularly in the chemical industry". The

book originated as a 'company book' written by a team of authors
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within Imperical Chemical Industries, the first edition appear-

ing in 1947 Revised and enlarged editions appeared in 1949
and 1957.

essentially the fourth edition published )
pdated. This book is excell-

The current edition (available in paper covers) is
in 1972, but with corr-

ections made and some references U ) ) J
ent, and should be available to every engineer working in prod-

uction or research in industry.
the book will continue to be used as a methods

Because of its practical

orientation,
textbook by Statistics students.

The Chapter headings are!

1. Introduction;

2. Frequency Distributions;

3. Averages and [Measures of Dispersion;

4, Statistical Inference;

Statistical Tests; Choosing the Number of Observations;
6. Analysis of Variance;

7. Linear Relationships between Two Variables;

8. Multiple and Curvilinear Regressian;

9, Freguency Data and Contingency Tables;

10. Control Charts;

11. Sampling and Specifications;

12, Simulation.

I found many attractive features in the book:

X An excellent introduction to Significance testing
(Sections 4.5 - 4.8) which covers the t-test, sign test, rank-

sum test and F-test in just six pages, and still manages to

i : ",.. it is wrong to
find space for such sensible comments as i g

associate different levels of statistical significance with

. ' "
different levels of practical importance'.

- 16 -

¥ A useful explanation of the conclusions to be drawn in

Multiple Comparisons (pp. 150 - 153).

* A good discussion of the distinction between Functional

and Regression Relationships {(p. 181).

¥ A treatment of Pure Error and Lack of Fit when fFitting

a Regression with replicated observations (Section 7.32).
{

¥ A good introduction to Multiple Linear Regression
(Chapter 8) which begiﬁs with a realistic example rather than
a definition o;’the Regression model, and goes on to discuss
Model Selection, Transformation of Variables, Analysis of Res-
iduals, Curvilinear Regression and Nonlinear Estimation, Not
surprisingly, this is the longest chapter, and in fact Chapters

6, 7 and 8 account for over one-third of the book.

¥ A chapter on Simulation, which although it is quite
short, will by its inclusion in a Statistical Methods book

underline the importance of Simulation.

¥ A useful collection of statistical tables together with
examples illustrating their use.

¥ Excellent layout and print.

It is virtuwally impossible to find nothing to complain

about in a book such as this, and my complaints are:

- The diagrammatic representation of confidence limits
(Fig., 4.1) is not helpful.

- A rather skimpy coverage (half page) of Dummy Variables
in Regression (p. 274).

- In claiming that the sum of y? variates is also Y?, the

requirement of independence is not mentioned (p. 318).



the references, the opportunity of referring
]

- In vpoatit the Analysis of Frequency Data

in
to the considerable advances

was not grasped.

is the occasional instance of awkward phrasing,
e is

- e truction of Control Charts:

i the cons

following on . '

rtant to take measurements at those points 1n
impo

t which any action consequent on points falling
a .
ontrol limits would rectify the trouble in the
c

w o (p. 341).

such as the
it is also
the process
outside the

shortest possible time

t
th e S'ID].'tCO“'IllIgS are mlnor when |||easured agalns
es

f the book.

However,
the overall excellence O

Patrick D, Bounke,

Univensity Cotlege, Conk.

"GENERAL RELATIVITY"

By Hans Stephandi

Cambnridge Univensity Press, in paperback, 1985,
y

published b
15BN 0 521 31534 4

£13.95 sta.

{s a translation from the German of a book published
is

i ith amendme
d re ublished wil .
" (John Stewart) adds comments in sev-

This
in 1977 an
One of the two translators
eral places as footnotes.
up to date as far as 1980/81.

nts and corrections in 19860.

The bibliography has been brought

professor stephani's book is ane of the clearest text-
ro

la
tmainstream’ general re i
i ully balanced between the mathematics

tivity I have seen in a very
books OD

long time.
and the physics of the

It is beautif

subject. Although there are only 298
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pages of text and it may seem that vast areas of research of

the last 30 years have been omitted, nevertheless the reader
who wishes to pursue any topic further is given three tiers
of references at the end of each section: (i) Text-books, (ii)
Monographs and Collected Works, and (iii) Review and Research
Articles. Because of this I found I could read the book at a
very leisurely pace. Many familiar things struck me with the
force they had when I first learned them.

/

The book is dividedginto 30 large sections which are
grouped into 8 chapters./

After an introductory chapter on Newtonian Mechanics that
includes Lagrange's equations and a study of relative acceler-
ations, all expressed in tensor notation, there is a chapter
on Riemannian and Semi-Riemannian Geometry. In this chapter
"Foundations of Riemannian Geometry" there is a very compact
treatment of tensor algebra which treats symmetries of ten-
sors as well as tetrad and spinor components of tensors and
then comes the Lie derivative, parallel transport, Fermi-Walker
transport, curvature and integral conservation laus. This
chapter ends with electrodynamics in geometrical optics, ther-

modynamics and finally perfect fluids,

Chapters 3 and 4 study Einstein's field equations, the
observational tests of the theory, the linearized theory of
gravitation and gravitational waves. Einstein's quadruple
formula for gravitational radiation is derived. Chapter 5,

a mere 40 pages, gives all the technigues that are used to
classify the exact solutions of Einstein's field equations.
In view of all the research that has been done in this area it

is a masterpiece of compression.

In chapters B and 7 on Blackholes, Gravitational Collapse
and Cosmologqy, I was disappointed at the few pages given to
the Hawking-Penrose singularity theorem, but the reader gets
ample compensation in the very readable accounts of spherically

symmetric stars and the Schwarzschild black hole.
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Chapter 8, called "Non-Einsteinian Theories of Gravitat-
ion", deals with topics of current interest for which Professor
Stephani could find no room earlier. “~Possible tests of alt-
ernatives to Einstein's theory of gravitation, the PPN formal-
ism and quantum gravity. This last chapter is not up to the
standard of the others because the author seems to me to be
very unenthusiastic about the subject matter. Section 30 on
quantum gravity is very skeptical about the outcome of current

research.

An excellent course of lectures could be created from this
book for either an honours degree course or M.Sc. It has

everything the potential research student ought to know!

Patrick Dolan,

Deparilment of flathematics,
Impeniatl College,

London, SW7 23Z.

"MATHEMAT ICAL BYWAYS IN AYLING, BEELING AND CEILING"
By Hugh ApSiman

Published by Oxfoad Univensitly Press, 1984, xii + 97 pp.
Stg £5.95. ISBN 019-853-201-6

This is the first book of a new series called Recreations
in Mathematics from 0.U.P. The series is aimed at 'all lovers
of mathematics' and will include not only new titles, but also

translations and reprints of classics.
Mathematical Byways is a book of problems. The problems
themselves are of a familiar type, many being concerned with

integer-sided triangles and optimising strategies, but the for-
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mat of the book is rather unusual. Each of the chapters is

introduced by a specific problem featuring some aspect of rural
1ife in the three villages of Ayling, Beeling and Ceiling.

For example, in Chapter 1 we meet Farmer Able's pretty daughter
and are asked to work out how far from the ground is her window-
sill if a ladder of length 18 ft 5 ins will just reach it when
there is a packing case with cross-section 5 ft x 5 ft directly
below the window. Later problems involve, for example, the
areas of sheep pens, st{ategies for sheepdog trials and the

shortest possible road ;ystem which connects the three villages.

¢
H
i

i

Each of these speéific problems is followed directly by
the statement df a more general praoblem, which is solved in
detail. The solution to the original problem is then given
and each chapter ends with remarks about the 'composer's prob-
lem' and possible 'extension problems'. In this way each of
the eleven problems in the book is given a very thorough treat-
ment which should certainly be accessible, as the author claims,

to a 'properly taught sixteen year old".

In fact the author's solutions are in some ways almost too
good! Many readers will not, I fear, try to solve the specific
problems, but turn immediately to the general problems (which
are sametimes easier to understand) and so proceed inevitably
to their solutions. With a more conventional style of format
this might have been avoided, and also many more problems of
a similar standard could have been included, without reducing
the depth of their treatment. Most of the extension problems
given look decidedly difficult, though one at least can be sett-

led by a short computer search.

To sum up, this is an interesting book, well illustrated
and with only a few misprints, and I enjoyed the treatment of
the problems given. However I couldn't help recalling how much
more is to be found in the books of puzzles and games by Martin

Gardner or, at a more advanced level, in Donald Newman's splen-

did 'Problem Seminar'.

P.J. Rippon, Tacully of Malhs, 0.U.
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CONFERENCE REPORT

IRISH MECHANICS GROUP CONFERENCE

A two-day conference, sponsored by the National Committee
for Theoretical and Applied Mechanics and the Department of
Mathematical Physics, U.C.C., on "Current Research in Mechan-
ics" was held at U.C.C. on 25/26 July. Tuwenty-five Mechanic-
jans and Applied Mathematicians from lreland, the United States,
the United Kingdom and Canada attended. The main speakers
were Professor J.E. Fitzgerald, Georgia Tech. and Professor
Mm.Mm. Carroll, Berkeley. The fourteen lectures, in order of
presentation, were as follows:

i
!

"Recent Developments in Non-Linear Materials", Professor

J.E. Fitzgerald, Georgia Tech.

"Stability in Thermoelasticity", Dr N.H. Scott, East
Anglia.

"fdge-Function Methods: Completeness and Convergence”,

Dr J.J. Grannell, U.C.C.

"Dynamics of Buried Pipelines", Dr P. O'Leary, U.C.G.,
and Dr S.K. Datta, Boulder (presented by Dr D'Leary).

"Free Vibrations of Orthotropic Plates Using the Edge-
Function Method", Dr R.P, Studdert and Dr M.J.A. O'Call-
aghan, U.C.C. (presented by Dr Studdert).

"gn the Wiener-Hopf-Hilbert Method of Matrix Factorization",

Dr A.D. Rawlins, Brunel.

"Criterion for Failure in Certain Composites", Dr M.H.
Quinlan, U.C.C.

"givectors and Jayvectors", Professor M.A. Hayes, U.C.D.

"Sgme Spatial Decay Estimates in Continuum Dynamics", Prof-

essor J.N. Flavin, U.C.G.

"Developments in Rock Mechanics", Professor M.M. Carroll,

Berkeley.

"The £dge-function Method for Fracture Mechanics", Prof-

essor P.M. Quinlan, U.C.C.

"The Evolution of Resonant Oscillations", Professor M.P.
Mortell, U.C.C. and Mr E.A. Cox, U.C.D. (presented by Prof-

essor Mortell).

/

. /
"T-Matrices for Scattering from Discs", Professor M.F.

McCarthy, U.C.G.

r
"Numerical Mﬁdelling of Hydraulic Fracture Propagation",

Professor J. Curran, Torontao.

JeJ. Granneld,
flathemalical Physics Depaaiment,
u,c.c.

- 83 -




THE IRISH MATHEMATICAL SOCIETY

Instructions to Authors

The Irish Mathematical Society seeks articles of mathematical interest for

inclusion in the Newsletter. All areas of mathematics are welcome, pure
and applied, old and new. |

;

i/
In order to facilitate the editorial staff in the compilation of the

Newsletter, authors are ﬁequested to comply with the following instruct-
ions when preparing their manuscripts.

Manuscripts should be typed on A4-size paper and double-spaced.

2. Pages of the manuscripts should be numbered.

Commencement of paragraphs should be clearly indicated, preferably by
indenting the first line.

4, Facilities are available for italics and bold-face type, apart from
the usual mathematical symbols and Greek letters.

Words or phrases to be printed in italics should be singly underlined
in the manuscript; those to be printed in bold-face type should be
indicated by a wavy underline.

5. Diagrams should be prepared on separate sheets of paper (A4-size) in
black ink. Two copies of all diagrams should be submitted: the
original without lettering, and a copy with lettering attached.

6. Authors should send two copies of their manuscript and keep a third
copy as protection against possible loss.

If the above instructions are not adhered to, correct reproduction of a
manuscript cannot be guaranteed.

Correspondence relating to the Newsletter should be addressed to:

Irish Mathematical Society Newsletter,
Department of Mathematics,
University College,

Cork.




