UNDERGRADUATE PROJECTS IN GROUP THEORY:
COMMUTATIVITY RATIOS

7. Poantenr

Many universities have tried undergraduate projects in

mathematics with varying success, put often one hears that al-

though in applied mathematics, the students' work can be creat-

jve and, to some limited extent original, in pure mathematics,

the project is often to write an account of some theory which

the student has searched for in "the 1iterature". Can one do
Can one provide practical and "creative"

I want to suggest

better than this?

material for a project in pure mathematics?

that one can, by describ’ 1 two projects in Group Theorty with

which 1 have been involved.

GCroup theory 1ike many other pranches of pure mathematics

taught at university level can tend to be too much in the def-

inition—theotem-proof tradition. Stucents can finish up with
apparently good knowledge of Sylow subgroups and the finer

points of soluble groups but faced with an actual group they

may not have the faintest idea where to start if required to
analyse the subgroups, conjugacy classes, quotients groups
etC., 1.2 they do not know how to handle the more elementary

theory, SO their knowledge of the general deeper parts of group

theory consists of a collection of statements about ill wunder-

stood concepts. (If in doubt, set a group of students to work

out from scratch a complete 1ist of isomorphism types of groups

up to some small given order. Can they do it?)

The situation on potential project material 1is similar to

that on the traditional group theory course work. 0f course,

there are CoOurses in group theory which have a reasonable, even

an adequate, supply of examples in them and similarly there are
several different solutions to the problem of designing icreat-

ive" hrojects in the subject. The three main approaches one

can take would seem to be (i) use presentations, (ii) use rep-
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resentations, or (iii) concentrate on geometric symmetry gr
.. oups.
In the two projects that I supervised, presentations of groups
were used as the basic tool since these were being treated i
in

a 3rd year course on Knot Theory running at the same time

In this note I will describe briefly the subject matter
of a 3rd year project equivalent to a half paper in the final
exams. I will describe in a further note the content of aa
full-paper-equivalent project taken the following year by a

different student.

First a word of caution, the group theory involved is not

deep, or complicated. The prerequisites were an intuitive

idea of presentations and a reasonable ability to handle modul

ar arithmetic. No claim is made for originality of the res

ults or for BlEQa ce of the ethods; what is 1ir DOIta t is that
the stude t, once the main idea was outlir Ed, co |pleted the

calculations by themselves. Certain pieces of theory had to

be sketched out for them, but details of proofs were to be pro

vided by them. This was not always done successfully, but the

d
end result was some very good work by a student who was not
of the "high flyers". o

For the non-group theorist, let me recall the idea of
a

presentation. I will give an example. The dihedral group
9

D,, of order 8 is the
group of symmetries of a s
e sentation quare and has

<X,y : x" = y? = (xy)? = e>

That i
" is t?e elements x and y generate D4 and the relations
x'o=oe, = =
y e and xyxy = e are sufficient to give all relat-

jonships between products of powers of x's and y's in D
. t

The i j
e idea of the project was to calculate commutativity

ratios fo i ili
r various families of groups. The commutativity ratio

is the | ili
e probability that two elements taken at random in a group

6 wi
will commute (see D. MacHale [3]). This ratio R(G) can b
e

calculated by the equation




number of commuting pairs
{order of G)?

R(G) =

and is closely linked to the number of conjugacy classes of G.

It is however a more intuitive invariant than the latter. The

families studied were the dihedral groups and generalised

quaternion groups; an attempt was made at general metacyclic

groups. T will give the calculations for dihedral groups and

give the results for the other families.

Dh» the dihedral group of order 2n has presentation

(A 2

Dp = <x,y: x = Y5 = (xy)? = e> (for n z 3)

-1 =1 n-1
= X y SO

first note that xyxy = € implies yx = x ¥
a simple argument shous that any element of Dp has a unique
normal form xlyJ for 0 £ i sn-1, 0 5 J 2 1. In this normal

form, multiplication is given by
A 9
Ly M5y = <y
where
oz i+ k + jk(n-2) (mod n)

s = j + 2 (mod 2)

(This formula and the existence and unigueness of the normal
form had ‘to be proved by the student. Although fairly simple
inductive proofs, they demand care in their presentation.)

It is now clear that (xiyj), (xkyg) is a commuting pair
if and only if

mod n

ik

jk(n-2) 2i(n-2)

ar

25k = 2%i (mod n)

As should come as no surprise, the cases N odd and n even are
different.
I1f n is odd, 2jk = 241 if and only if jk = fi. An attack case

by case follows:

If j = 0 and & = 0, this works f i
e or all i and k., (This, of

course, corresponds to x x = xkxi - not surprising!)
This gives n? commuting pairs.

gimilarly j = 0, 2 = 1 gives n more.

if j =1 and & = 1, then i = k giving another n.

Thus for n odd

2
R . n° + 3n
(Dn) = 42

for n even, one gets some additional solutions, namely when

jko - 21 = % mod n.

As 1s easily checked, this gives 3n more commuting pairs and

n® + Bn

R(Dn) = iz
n

if n is even.

It should be noted that the student using group tables for

small values of n found the patterns for n odd and n even by
e

themselves. I then pointed out that the presentation should

give one those patterns in general. They then went away and

produced the calculation summarised above

For the dicyclic group of order 4n,

<2,2,n> = <x,y 1 x" = y2, yTlxy = x>
the calculations are similar, giving
2
R(<2,2,n>) = n® + 3n
4n?

As both dihedral and dleCllC groups are EtaCYCIlC groups, I

then SUQQEStEd that the same ethods would DEI‘, aps work for all
1i p 3 li

|EtaCYC 1Cc groups. or the an-group theorist a ﬂEtaCYC ic

group G is i i
p a group with a cyclic normal subgroup, whose corr-
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esponding gquotient group is also cyclic. One easily checks

that such a group must have presentation

G = <x,y: x" = e, y ixy = <5, y" o= x°>
where m, n, I, S are positive integers, T,S < m and rn = 1 and
rs = s {mod m). (A discussion of this can be found in [2],
P 65.) Any element in G can be written uniguely in the form
.yixj (the reverse order being adopted to accord with [21).

Multiplication in this form gives

(i + k, & + jrk) ifF i+ k <n

(i,3)(k,0) =

(1 + k, L + jrk + ) if i+ kzn

The condition for commutativity betuween (i,3) and (k,%) is

JeK - 1) = (et - 1) (mod m),

This is as far as I can go. The student, in fact, failed to
get to this point due to a slip earlier in their final calcul-
ations. I had hoped for some indication of the number of sol-
utions, at least for special values of r and s as this is ex-
actly what happens for the D, and <2,2,n>, but apart from
obvious cases such as s = 0, T = 1 (6 = Ch x Cy) or the dihed-
ral and dicyclic families themselves, noO particularly nice
families were apparent. I did not look very far into this and
in retrospect I should have looked at some of the other famil-
ies of metacyclic groups such as Coxeter and Moser's 1S-meta-
cyclic groups (see (11). Pperhaps someone would like to set

this as an undergraduate project on modular arithmetic and

group theory.

Ny own view of the project was that the student obtained
s remarkable feeling for the calculations involved, Ltheir
sense of enjoyment was obvious and the benefit to their gener-
al understanding of other group theory based courses: "Groups
and Knots" (2 joined units), "Rings, Modules, and Linear Alg-
ebra" (1 unit), and "Group Theory" (1 unit) was considerable
even though the use of presentations as such was only a part

of the Groups and Knots course and none of the material in the
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project was directly useful in that.

The point may be that presentations provide aone means by
which students can "do" group theory. "Doability" would see
m

to be a useful concept in teaching mathematics. You only

. really learn mathematics by "doing", i.e. by handling examples
until you feel what a theorem says, by recreating in some

small way the original raison d'etre of a concept and so on.
The problem is that one must balance such ideas with a need to
cover a reasonable amount of ground so as to satisfy the exter-
nal examiner. In a project one can sometimes avoid this pre-
ssure to some extent, since the process of discovery, the acc-
uracy of calculation and, that which is of great importance,
the presentation, are what will be looked for by the examiner.
Perhaps one should hope that some step in a similar direction

might be made in the conventional exam. setting as well
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