3. KAKUTANI, S.
"Free Topological Groups and Infinite Direct Product
Tapological Groups", Proc. Imp. dcad. Japan, Vol. 20

(1944) 595-598.

4, MARKOV, A.A.
©g Syobodnich Topologiciskich Gruppach", Izv. Akad. Nauk
SSSR, Ser. Mat., VYol. 9 (1945) 3-64; AMS Translations

Series 1, No. 30 (1850) 11-88.

Univeasity College Gulway

SUNY - Bullalo

HYPERBOLIC BEHAVIOUR OF GEODESIC FLOWS™

Donal Hunley

INTRODUCTION

Geodesic flows, particularly those on manifolds of neg-
ative curvature, have been a rich source in the determination
and display of possible types of macroscopic behaviour of
motions in dynamical systems. Their study goes back to Had-
amard and Poincare who considered the existence of periodic
geodesics on some classes of surfaces. Later, in the 1930s
Hedlund, Hopf and Morse studied the topological and ergodic
properties of the flows on compact surfaces of negative curv-
ature [H]. Already, they recognised the special role of the
local instability of trajectories and proved that this was
closely linked with the statistical (ergodic) behaviour of the

flows.

One of the ways of expressing this local instability is
the hyperbolic behaviour of the derivative of the flouw. The
central idea is that close to any fixed trajectory, the behav-
iour of neighbouring trajectories resembles the behaviour of
trajectories in the neighbourhood of a saddle point singular-
ity. Anosov [A] was the first to give an explicit formulation
of hyperbolicity. He then used this condition as a basic
assumption to study a class of dynamical systems which are nouw
referred to as Anosov systems. The geodesic flow on compact
manifolds of negative curvature is a very important example of

these flows,

The conditions formulated by Anosov in 1967 are the

) strongest type of hyperbolic conditions. In 1977, Pesin [P]

formulated a weaker set of hyperbolic conditions and studied
the dynamical systems satisfying these conditiaons. Again, the

geodesic flows on a class of manifolds without focal points
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provide an important example of a system satisfying Pesin's

conditions.

In this article I wish to outline the study of the hyper-

bolic behaviour of geodesic flows.

Preliminaries

1.1 Notation

Let M be a smooth compact Riemannian manifold .¢ dimension

nz 2. The tangent and unit tangent bundles of M will be
denoted by TM and SM, respectively, with corresponding fibers
TaM and SypM at me M. The projection map from these bundles
to M will be denoted by 7. Fimnally < , > and p( , ) will
denote the Riemannian metric and the corresponding distance

function.

1.2 Geodesics

A geodesic is a curve c(t) on M whose tangent vectors are
parallel, This is expressed in terms of the Riemannian conn-

ection of TM by the equation

or in local coordinates by

g2ct i deddck
dt? kgt dt

where Pﬁk are the Christoffel symbols.

If c(t) is a geodesic, then <c(t),c(t)> is constant and
we assume it has the value 1, that is, the geodesics are par-
ameterized b;'arc length. Since M is compact, the geodésics
are infiniteiy extendable in both directions so that c(t) is a
curve from IR to M. For any pair x and y of distinct points

of M there exists a geodesic joining x to y (generally speak-
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iK!TV(SN) 2 Tu(smM) + Tay)M [Eb].
CKor T (TM) Tw(y)M is defined as follows: let £ & T,(TM) and

ing, not unique). Among such there is always one whose length

is equal to p(x,y). If ve SyM for some m € M, there is a
unigue geodesic c(t) satisfying the initial conditions c(0) =m

and ¢(0) = v. We will denote this geodesic by c,(t).

1.3 Geodesic Flow

The geodesic flow is defined on the unit tangent bundle

SM as follows. The flow map ¢:IR x SM + SM is given by

o{t,v) = ¢,(t).

Geometrically fhe flow map takes the tangent vector to a geag-
We will

assume that the metric on M is smooth and thus the map ¢ is

desic, and moves it a distance t along that geodesic.

smooth. The vector field of the geodesic flow is called the

geodesic spray and denoted by S.

To facilitate studying the hyperbolic properties of the

geodesic flow, it is necessary to consider the derivative.
To, : T(Sm) » T(sm)

where & ¢ SM'+SM is the map Pr(v) = ¢(t,v) = cy(t).

venient formulation of the map Ty is got by considering the

A con-

geometry of T(SM) and Jacobi vector fields along geodesics of
M.

1.4 Geometry of T{(sm)

If ve SM, then the tangent space TV(SM) is decomposed

The first is the
vertical subspace which is the (n-1)-dimensional subspace given
by the kernel of the map Tn|TV(5m) 2 Ty (SMm) + Tp(y)(Mm) while

the second is the horizontal subspace which is the n-dimension-

into two complementary subspaces as follows.

al subspace given by the kernel of the connection map

(The connection map

let X : (-e,€) + TM be a curve with initial velocity &, then
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KE = Va(D)X(D) where 0 = moX : (-€,e) + M is the footpoint

curve).

If ve SpM and vl is the orthogonal complement in TpM,
then K : T (SM) + v and the map i, : T,(SM) » T,Mov* given by
iyE = (TwE» KE)

is a linear isomorphism. The Sasaki metric on SM is defined
by <<E,n>> = <Twg,Tan> + <KE,Kn> for £,n € T(SM). Then iy is an
isometry. The Riemannian volume u on SM defined by the Sasaki
metric is called the Louiville measure and it is invariant

under the geodesic flow [a+5].

1.5 Jacobi Fields
Let c(t) be a fi«ed geodesic on M. A vector field Y(t)

on c(t) is a Jacobi field if
92Y + R(&,v)c = O

where ¥ is covariant differentiation along c and R is the Rie-
mannian curvature tensor on M. Jacobi fields are the variat-

ional vector fields of variations of c by geodesics.

If £ e T,(5M) then £ determines the unique Jacobi field
Yg(t) along the geodesic c,(t) with initial conditions
Yg(O) = Tng and vvg(o) = KE.

If £(t) = (Tég)E, it can be shown [Eb] that

Twe(t) TnoTore = Ygl(t)

it

and

Ke(t) KoTd £ = VYg(t)

This gives a bijection between TV(SM) and the Jacobi

fields on cy. Further, if Z(v) is the subspace of T, (sm) .

spanned by the geodesic spray vector field S{(v) we have
e 2(v) = Y = at,(t) for some a € IR.
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L .
If T,SM is the orthogonal complement of Z(v) in Ty{SM) with

respect to the Sasaki metric, we have

L .
£ e T,(SM)é=>Y, is a perpendicular Jacobi field on cy [Eb].

Thus the two subbundles Z and T'SM are Téi-invariant.

1.6 Stable and Unstable Jacobi Fields

We now restrict M to be a manifold without conjugate
points. Thus if Y(t) is a Jacobi vector field along a geo-
desic c(t) which is not identically zero, then Y(t) = 0 at
no more than one point along c(t). This class includes manif-
olds of non-positive curvature and manifolds without focal

points.
e

L
Let v E€ SM, let we v , and let Ym,s(t) be the unique
Jacobi field on cy(t) such that

Yy,s(0) = w and Yy, s(s) = 0.

Then the limit Yg(t) =
vector field on c,(t) [

for t > 0.

Yu,s(t) exists and is a Jacabi
Clearly Y (0) = w and Y (t) = O
We call Y, a stable Jacobi field.

Lim
e
Eb]

The unstable Jacobi fields Yy(t) along cy(t) are got by

considering the limits as s + -,

Ye(e) = Lim vy, s(t)

For each w e vL, there is a unique & (w) € TC(SM) for
which Y£~(m)(:) = Ygy(t) and a unique e*(w) such that
Yer(u)(t) = vy(t) [Eb].

Using these limitimg Jacobi fields we now get the stable

and unstable subspaces of TU(SM) which are defined as follows:

Xs(v) = (€& T,(SM) : vg(t) is stable, i.e. Ye(t) = Y (t)
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The subspaces £ (n) and E¥(n) are called the stable and

where w = TmE}.
unstable subspaces.

(Ee Ty(sm : Yg(t) is unstable, i.e. Ye(t) = vy(t)

>
=y
—_
<
~—
H]

These conditions mean that at each point n‘€ N the tan-

where w = TwE}.,
gent space TyN can be decomposed in an invariant way into

. ' three subspaces E (n), £7(n) and 2(n) such that T -
The subspaces Xs(v) and Xu(v) are (n-1)-dimensional sub- (n) su a ¢t’E {n) is

spaces of TV(SM) which are invariant under the geodesic flow.

a contraction, T¢t|E+(n) is an expansion and Z(n) is the sub-

’ . space generated by the flow vector field. Furtherhére th
The two subspaces coincide and consist of the space of perpen- €

dicular parallel vector fields on c,(t) in the case of M having

coefficients of contraction or expansion are uniform on N,

Near any fixed trajectory {¢¢(n)] the behaviour of neighbour-

sectional curvature K = 0. If M has no focal points, then . ¢ Cect . bl the b
. i ing trajectories resembles e behaviour of t jectori i
a Jacobi field Y(t) is stable (unstable) if and only if |[]Y(t)]] ] u rajectories in
the neighbourhood of a saddle point.
is bounded for t 2 0 (t s 0) [Eb], [Es]. (If M has no focal

points, then for any Jacobi field Y(t) along a geodesic c(t)

such that Y(t,) = 0, we have [lvy(t)]]| strictly increasing as ; 2.2 ‘Geodesic Flows of Anosov Type

t + w,) We will show later that in the case of manifolds ) . .
Returning to the geodesic flow, we see that the subspaces

with strictly negative curvature, Xg(v) 1 X, (v) = {0}, L
9 ‘ s u Xg(v) and X, (v) of T,(SM) are candidates for the subspaces

E (v) and E'(v) required by the Anosov canditions. If M has

2.1 Amosov Flouws negative sectional curvature they do satisfy the conditiom.

The strongest type of hyperbolic condition is the foll- :
g Y Theorem [A]. Let M be a compact manifold with negative sect-

owin hich s first formulated by Ano Al. .
g uw wa u e Y sov [A] ional curvature. Then the geodesic flow satisfies the Anosov

. conditions.
Let N be a smooth manifold and let ¢ : IRxN > N be a com-

plete flow which is smooth. Then it is an Anosov flow if the . . )
Proof. Since M is compact there are constants r, and 1, such

following holds: there are two continuous nontrivial distrib- . that

utions E- and EY of TN such that
-rf s K (P) s -1}

(i) TaN = E7(n) @ £E¥(n) @ Z2tn), where 2{n) is the sub-

space of TN generated by the flow vector field. for all sectional curvatures Km(P). Then for any v € "SM,
w1 v, the stable Jacobi field Y (t) along th desi

. + o+ - - w g the geodesic c,(t)

(i1) Toe(ET(n)) = E7(d¢(n)) and Tor(E (n)) = El(¢t(“)) satisfies the imequalities

for any ne N, te€ R.

(iii) there exist constants a z 1, b > o such that for !Iw][e—rlt < IV || s flw]]e'rzt R
ne N
[H+ M.
[Toe (D] s allulle™® iF ve £7(n)

l . . We also have the following bound for the covariant der-
HToe ()] 2 a7 [lulle® if ve E7(n) : dvative of Y (t) [Eb]:

v




oy (] s el lva(e) | -

Now let E € Xg(v) and w = TwE, Then

[lToee]]? FHOYg(e),ovg (e ]2

i

LISl 1z« [lovg(e)f]?

Hlul]2e 2525 « (r) 7] ful|2e72"2"

A

which, by (1) and (2)

Hlellze 2251 + £2).

BA

Thus || Téel| s /1+r2 e'rztllgll and so we have the required
contraction for Xg(v). The required inequality for X,(v) is

gaot by using the fact that X,(v) may be identified with Xg(-v)

[Eb]. .
Finally if £e Xg(v) N} Xg{u), then Yp is a parallel Jacobi

field [Esch], i.e. Ve = 0. Then
‘|T®t€|x = |lell for te IR
and” so
B Xg(v) N xy(v) = (0},

Thus,the geodesic flow is an Anosov Flow.

While the above theorem shows that strict megative curv-
ature is sufficient to ensure that the geocdesic flow is Anosov,
it is not a mecessary condition. Eberlein [Eb] gave an example

of a manifold, with non-positive curvature containing open sub-

sets where the sectional curvature is zero on all tamgent planes,

and yet the geodesic flow is Anosov. Klingenberq’ [K] proved

that if the geodesic flow is Anosov, then M has no conjugate
points, and Eberlein then gave the following necessary and

sufficient conditions.

Let M be a compact manifold without conjugate

Theorem Eb].

 The geodesic flow

points. Then the following are equivalent.

(a)

The geodesic flow is Anosov.

28

:certain geometric
flows [P],

(b)
(c)

Xs(v) N xy(v) = (0) for all ve sm.

There exists no nonzero perpendicular Jacobi vector
field Y(t) on a geodesic c(t) of M such that [y (e) ]
is bounded for all t € IR.

3.1 Weaker Hyperbolicity

The hyperbolicity condition due to Anosov is the strongest
type in the sense that the subspaces E'(n) and £ (n) of the
tangent
and the

space TN generate the complement of Z(n) in ToN (2.1)
expansiqn and contraction of the flow are uniform with
respect to n. By relaxing either or both of these réquire- =
ments we get partial rather than complete hyperbolicity (when
the subspaces E*(n) and £7(n) do not span TN N Z(n)) énd/or

nonuniform rather than uniform hyperbolicity.

Pesin studied these various weaker hyperbolicit} éondit- 
ions and gave the connections with Lyapunov exponents [P].
on manifolds with no focal points satisfying
conditions are complete nonuniform hyperbolic

[B].

The theory of the weaker hyperbolicity cond-

~itions is much more complex than the Anosov case and is beyond

the scope of this article.
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REMARKS ON ‘AN ELEMENTARY NUMBER THEORY RESULT®
David Singmasten

In a joint note published in this Newsletter (Ng. 12,

December 1984, pp. 10-13), Peter Birch and I showed that

¢(n) > n/logn except for n = 1,2,3,4,6,10,12,18 or 30. For

convenience, let us set ®(n) = n '¢(n)logn, so the above says

o(n) > 1, except for the values given, Our proof used Bert-

rand's Postulate, so it was not entirely elementary. I have

just found that Alan Baker gives an entirely elementary proof
|

that &®(n) > & for n > 1 [1, p. 12].
1

argument shows the asymptotic result ®(n) > 5 - € for all large

Further care with his

enough n and explicit calculation would show ¢(n) > 2/5 for

all n > 2.

Baker's argument, in more detail, is as follouws. First
consider o(n), the sum of the divisors of n. Then
o(n = d = = -
(n) Lqin Zdin”/d = nzdlnl/d s nZdlnd ', so
o(n) s n(1 + logn). - (1)
Consider now f(n) = o(n)e(n)n 2. This is multiplicative and

f(pj) =1 - p';‘l. Then

f(n)

1
v

i\
=
~
—
-
i
he)
1
3
~

M5 (1-p-d=ty 2z 1M ; (1-p-d-t
pl|n plsn’ 7P P F ot

A

2 H1§m2<n(1_m—2) = $(1+[/A]7"), for n 2 4, so that
o(me(n)n™? 2 4(1+n %), (2)
i and this is seen to hold for n 2z 3.
< From (1) and (2), we have
o(n) z %n(1+n'§)(1+log n)~', for n 2 3. (3)
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