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FREE TOPOLOGICAL GROUPS

Beanuad R. Gellaum

The purpose of this paper is to provide a brief expository

sketch of [1].

If X is any set, the free group F(X) is defined abstractly
as follows: F(X) is a group such that if G is any group and if
¢ = X » (G is any map of X into G then there is a homomorphism

¢ F(X) » § so that the diagram below commutes:

» F(X)
o l‘i’ (%)
G

The embedding 6 is fixed and is independent of ¢ and of G.

I1><|

The existence of F(X) is assured tv the construction des-

cribed next.

€ £n . . :
52... xa in which x; is

. . €
A word is a finite sequence x;!x i

an element of X and each €3 = t1. The product of two words
€ [ § Sm
xi' ... xq" and yit ... yu" is the word xS xﬁ”y?' e ygm.

The collection W of all words is thus an associative semigroup.
The subsemigroup S generated by all words of the form x?‘... xﬁ”

in which x1 = x2 = ... = xp and

Tei=0
i=1

leads to the quotient structure W/S, a group F(X) for which

€ -€1 . .
Xp e Xy is « representative of the inverse of the element
€, en

represented by x;l... x5 .
If X is a topological space, the natural ob ject correspon-
ding to F(X) is a topological group for which the same diagram -

(¥) obtains and where 6 is a fixed topological embedding, G is




Since a topolog-

int and U is

a topological group and ¢, are continuous.
ical gron I'is completely regular (if x is a po
an open set containing x there is a continuous map f 3 re[0,1}
such that f(x) = 1, f(I Nu) = 0) X must be completely regular.
by the

The guestions of existence and uniqueness are answered
and [4]

following theorem which is proved independently in [3]

and can be proved in still another way (1] as outlined below.

Theorem. If X is completely regular space there is a topolog-
ical group F(X) a topological embedding 8 : X w F(X) such that
for & a continuous map into the topological group G the diagram

(*) commutes and ® is a continuous homomorphism.

The proof consists of a number of simple steps:

1, Let IH, be the group of all quaternions of norm 1.

2. Let C(X,IHl) be the set of all continuous maps
Fr X =M.

3. For each f in C(X,MH,) let M™,f be M, and let # be the
Cartesian product gﬂﬁlf.

Then # is a compact topological group and the map
8 : X » {f(x)}(the index is f) is a topological embedding of

X into # (here the complete regularity enters for the first

time)

4, The group IH; and the group R of rotations of IR? are
isomorphic (according to the correspondence:
for R in R and (x,y,z) in IR® let xi + yj + zk be the
correspanding quaternion; then the quaternion corres-

ponding to R(x,y,z) is g{xi + yj + zk)g' for a unique

g in ™, (g' = conjugate of a).

5. The group R and hence M1 contains an infinite set
{g1,02, -.. } that is free [2]. That is, if
gt ... o8 = 1 then the word gf' ... gp' is in the

subsemigroup S of the semigroup W of words generated

by the set (91,025 --- ).
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Thus the group Fy(X) generated in # by 8(X) is a free and
topological group (Fp(X) (for the set X) in the topology inher-
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confarm to the diaqram (*),
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HYPERBOLIC BEHAVIOUR OF GEODESIC FLOWS™

Donal Hunley

INTRODUCTION

Geodesic flows, particularly those on manifolds of neg-
ative curvature, have been a rich source in the determination
and display of possible types of macroscopic behaviour of
motions in dynamical systems. Their study goes back to Had-
amard and Poincare who considered the existence of periodic
geodesics on some classes of surfaces. Later, in the 1930s
Hedlund, Hopf and Morse studied the topological and ergodic
properties of the flows on compact surfaces of negative curv-
ature [H]. Already, they recognised the special role of the
local instability of trajectories and proved that this was
closely linked with the statistical (ergodic) behaviour of the

flows.

One of the ways of expressing this local instability is
the hyperbolic behaviour of the derivative of the flouw. The
central idea is that close to any fixed trajectory, the behav-
iour of neighbouring trajectories resembles the behaviour of
trajectories in the neighbourhood of a saddle point singular-
ity. Anosov [A] was the first to give an explicit formulation
of hyperbolicity. He then used this condition as a basic
assumption to study a class of dynamical systems which are nouw
referred to as Anosov systems. The geodesic flow on compact
manifolds of negative curvature is a very important example of

these flows,

The conditions formulated by Anosov in 1967 are the

) strongest type of hyperbolic conditions. In 1977, Pesin [P]

formulated a weaker set of hyperbolic conditions and studied
the dynamical systems satisfying these conditiaons. Again, the

geodesic flows on a class of manifolds without focal points

X This is the text of a talk given by the author to a Mathematical Symposium
held at the Dublin Institute for Advanced Studies, on April 18th, 1984,




