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Editoniat

I am very happy to take oven as editon of the Newsletten,
and it (s my Linst and most rleasant duty to thank Donal Hunley

£Lon the unstinted dedication, energy and professionalism that

he bnought to the editorial task duning his period of tenune,
He has achieved « remankalle taansfoamation of the Newsletteans
Lrom A4-Loamat, stencilled and duplicated broadsheet, to the

rresent high-quality pullication. The measune of his success

s the great enjoyment with which the Newsletten is received

by the mathematicalt community in Ireland. We wish him weld

as he moves on to othen activities,

It (s g pleasune wlso to welcome Mantin Stynes as assoc-

iate editon, We intend to continue the editonial policy al-

ready estalblished, encouraging contaibutons to wrnite in an exp-

0sitony style as fLar as rossible, The cunnent issue shows

that, to a large extent, oun auims in this diaéction ane leing
met by authons,

It is intenesting to notice, as well, thut this issue con-

tains a Lange proportion of waticles and pupens not waitien ai

the invitation of the editons, We would like to encounage

this trend - rerhaps it is a sign of incareasing acceplance of
the Newsletter as a repositony Lo intenesting mathematics,
with a bias towandas exposition aimed at o wide neadenship, nat-

hen than neseanch, So keep those anticles coméing!
As always thanks ane due to oun typist Leslie Brookes,
whose knowledge of mathematics ensunes thatl paccfreading fec-

omes a very minon task, and to the NBST Lor painting the News-
Letter on behall of the INS.

Pat Fitzpataick




5.3 The following proposed changes in subscriptions (to '

IRISH MATHEMATICAL SOCIETY

take effect for the session 1985-'86) were agreed.

They h 3 . :
I.Mm.S. COMMITTEE, 17th DECEMBER 1984 y have to be submitted to the Society. j
Ordinary and Overseas Members: 5 Irish Pounds;

Based on Minute Notes by N. Buttimore
Institutional Members: 35 Irish Pounds;

Modified Following Comments on Draft of 19/4/'85 }
Library Subscriptions: 20.00 US Dollars

Attendance: N. Buttimore, P, Boland, G. Enright, A. Of'Farrell. or 20 Irish Pounds. .

5.4 The Treasurer gave a preview of the accounts for

Remark s Quorum = 5. /
‘ 1983/'84 which were prepared for th i
‘ ) e forth
fpologies : P. Fitzpatrick, D. Hurley, M. Stynes, F. Holland, : di i i e
. ordinary meeting, and which showed a balance at
S. Tobin. 30/9/'84 of £B55.26.

A.G. O'Farrell (President and Acting Secretary) in the Chair. )
6. P. Fitzpatrick was appointed Editor of the Newsletter,

and M. Stynes as Assistant Editor.

1. The joint meeting with the I.M.S. was discussed. The
7. It was decided to arrange the proposal of M. Newell as

following committee was set up to superintend it:
O'farrell. : President and A.G. O'Farrell as Secretary at the ordinary

"T.T. West, D. O'Donovan, A.G.
megting, subject to the agreement of M. Newell in the

2. From now on, headed notepaper is to be produced at May-
meantime.

nooth, using TEX. It is to be Xeroxed from masters.

Any officer needing paper; contact me. Note that UCD

can copy at 2p/page.
’ . . : AcG., O°F
3. Correspondence. The Acting Secretary had replied to some I arredl
routine letters in routine fashion. This was approved. Draft of 30/5/'85

4, Expenses of delegate. Qur representative on the R.I.A.
National Committee should claim expenses from the R.I.A.,

rather than the Society.

S. Treasurer's Business

5.1 6.M, Enpright, the Treasurer, explained the proposed
changes to the Constitution and Rules of the Society.
These changes were tabled at the ordinary meeting in
April 1984, and are to be voted upon at the forthcoming

ordinary meeting on 21st December 1984 .

5.2 There are 163 members. Student nominees on institut-
jonal members will appear in the March supplement to

the Membership List.




Professor Quinlan suggested that the DIAS School of Theor-

IRISH MATHEMATICAL SOCIETY etical Physics might wish to sponsor the event.
Ordinary Meeting, Tuesday, 4/4/'85, at DIAS 4, Orlov-Shcharansky Campaign. Following the Society's

The meeting commenced at 12.15 p.m, There were 11 mem- ‘ j::sz;:tzz: ;:t:izaT?:;jgé z:et::C;::zi:t::regjuzszgc:;f
bers present., The President, Professor M. Newell, sent his paign. He asked that he be informed by members if their
apologies, and the Vice-President, professor S. Dineen, took institution is not receiving this Newsletter. e
the Chair.

‘ 5. Other Business. The Chairman noted that there were still

1. Minutes. The minutes of the meeting of 21/12/'84 were : a number of prominent institutions which had not become

taken as read. institutional members of the Society. He asked members

. to ensure that their institutions joined, and he alsg

2. IMTA Reciprocity. The meeting approved thg agreement, suggested that other schools might adopt the practice of

which had been negotiated by M. Clancy and recommended by his department, which is to make the gift of an introduct-

the Committee of the Society. Subject to ratification ory year's membership to all visitors.

by the IMTA delegate conference, the agreement provides

that a member of one society will become an associate The meeting ended at 12.35 p.m.

member of the other upon payment of £1.50 to the latter

(Fhis amount being subject te change from time to time). - ' Anthony G. 0’7u4&e££, Secretary

Such an associate member of either society shall be entit- .

led to one copy of that society's journal, but is not en-

titled to voting rights in that society.

It was agreed to ask the Treasurer to coordinate the pay- ERRATA

ment of these fees to the IMTA, by means of an appropriate
The Constitution and Rules of the I.M.S. published in

Newsletter 13 (March 1985) unfortunately contained two errors

~which are corrected as follows:

modification to the procedure for collecting annual dues.

3. IMS-LMS Joint Meeting. The meeting was informed of the

state of plans for this first joint meeting, devoted to

C¥*-algebras and Uperator Theory, which is to take place ’j» Constitution, Paragraph 5: substitute "terms" for "years",
in Dublin on fFriday and Saturday, the 21st and 22nd of 2. Rules, Paragraph 4: insert a second sentence: "The Pr
. . . ° : e85~
March, 1986. The meeting is planned to involve four o ident and Vice-President may not continue in office fo
. ! r

invited speakers, and the final details should be avail- more than two consecuti t "
cutive terms,

able by the end of the year. It was noted with satis-
faction that the response of the LMS to the suggestion of

a joint meeting had been enthusiastic and generous. The
Chairman noted the Society's debt to R. Timoney, who was

responsible for the initial work on this project.




A prize-giving ceremony will be arranged early in Decem-
'3 ber to honour the top scorers. On that occasi S !
NEWS AND ANNOUNCEMENTS Brien uill o ' nelt of e,
e presented with an Award Pin on behalf of the
Mathematical Association of America, whose examination mater

SUMMARY OF RESULTS OF 1885 IRISH NATIONAL MATHEMATICS CONTVEST : i )
ials for the American High School Mathematics Examinatian, have L

The Seventh Irish National Mathematics Contest was held( been used in all previous years' contests

A total of 1,630 pupils Fr0m 

86 schools entered for the contest. Last year, 1,634 pupils
ROLL OF HONOUR

from 84 schools competed.

on Tuesday, February 26, 1985.

Returns were received from 62 schools on behalf of 1,231 Candidate School
. . s e — S
pupilsiwho participated this year. A preliminary analysis of Stephen 0'Brie Score )
' " Gonzaga College, Ranelagh, Dublin §
the results shows that the overall average mark was about 48, . » 108
arrett
(It is our intention to publish the results of a more elaborate _Brennan Oatlands College, Mount Merrion, 96
analysis of this year's contest and of the previous six contests Blackrock, Co. Dublin ’
at a later date.) Thirty-five participants scored 80 marks or Liam C. O'Suilleabhain Belvedere College, Gt Denmark Street 95- ‘%
better, a considerabl: improvement on last year's results when Dublin 1 ’
only 21 reached the same level. The names of the top eleven 3 )
y ~ ames Farrelly Franciscan College, Gormanstown
contestants are shown on the accompanylng Roll of Honour. , 92
Co. Meath
Jeremy W, Bolton* : . .
This year's INMC winner is: ' B y olton Academical Institution, Coleraine, 91
Co. Londonderry
Stephen 0'Brien, Hugh T. McManu
° S Belvedere Coll G
Gonzaga College, ) ege, Gt Denmark Street, 91
Dublin 1
Ranelagh, Paul O'F
au a .
Dublin 6. ‘ rrell St Benildus College, Upper Kilmacud Road, 91
' Dundrum, Dublin 14
Stephen scored 108 out of a possible 150, a highly commendable Al
5 ex T. Bradley Clongowes Wood College, Naas, Co. Kild . .
achievement,. - Cotum L » . are 90
o
um Lawlor C.B.S., The Green, Tralee, Co. Kerry 30
Yip . X .
P U. Lee Coleraine Academical Institution, a0

Gonzaga College - which, incidentally, produced last year's

winner as well - also returned the highest team score (the sum Coleraine, Co. Londonderry

of the highest three scores by individual contestants), viz., Brian Salmon 0'Connell School, Nocth Ry
267. The winning team was composed of Stephen 0'Brien, Gavin Dublin 1 s NOT Richmond Street, a0
0'Sullivan and Malachy McAllister. Second place was taken by
Belvedere College, Dublin 1, with a score of 267, and third X DﬂjﬁOt[mrticnmte i the TINC
by 0'Connell School, Dublin 1, who scored 261.

- g -




SUMMARY OF RESULTS OF 1885 IRISH INVITATIONAL NATHEMAT;CS

CONTEST
The Third Irish Invitational Mathematics Cantest was held

on Tuesdays March 19, 1985. Those who scored 80 or moTe in

the INMC were ijpvited to take part in the [IMC; returns were

received an behalf of 29. Contestants had three hours to

answer fifteen gquestions with integer solutionss
Abbey Grammar, Newry, Co.

partial credit

was not agiven. Colm Morgan from

Down, was our top scorers; Colm gat eight questions correct, a

very fine performance on what was a difficult test.

Here is a selection of the questions:

(3) Find c if a, b and c are positive integers which satisfyf

c = (a + pi)? - 107i, where i2 0= -1,

(g) As shoun in the figure on the
right, AABC is divided into
six smaller triangles by
lines drawn from the
vertices through a common
interior point. The

areas of four of these

triangles are as indicated.

Find the area of AABC.

(7) Assume 3, b, c and d are positive integers such that

as = b*, c’ = 4% and ¢ - a = 19. Determine d - D.

(8) An ellipse has foci at (9,20) and (49,55) in the xy-plane
and is tangent to the x-axis. What is the length of its

ma jor axis?

(This would have been peyond the scope of most Irish

students. It is, however, @& very nice question. Tom Laffey

thinks that the principles behind the solution make a theorem

that was missed by our predecessors. I myself incorporated

the result into a course on Conics, which I gave to B.A. stud-

ents this year.)

? 2 vertices o a r gular tetrahed
1 et A B C and ‘D be e e e egron,

each of whose edges measures 1 metre A bug, starti
. s arting

v observes the f @ t h
r X » v ollowi g e
from erte A Wir ruie a eac ver-

tex it '
chooses one of the three edges meeting at that
a

v 8] g
EItEX, eac edge bel equally llkely to be chosen and
13

crawls along that edge to the vertex at its opposite end

e = :

Let p n/729 be the probability that the bug is at. vert
rtex

A when it as crawled 7 etres. Find the value of n.

Finbann Holland




PERSONAL ITEMS

of the Mathematics Department;, UcG, is visiting
n

o ey T te University for the

the Department of Mathematics at Kent Sta

academic yearT 1985-'86.

EN{ | ccC ill
l on Rob.i /{aate of the athenatlcs DEDGItHel t, U y W |
Pnofess

at the UHlUBISltY o owa of Sabbatlcal leave during the
be I

academic year 1985-'86.

atistics Department, uce,

3 f the St .
" gald&ezge e 1 leave during the academic

at Columbia University on sabbatica

year 1985-'86.

he of the Department of Experimental Physics,

Dn Nialf O Munchad S

- h
ucc, will spend the period September 1985-Marc
» . T

at tﬁe University of British Columbia.

: i lect-
¢ b Seancléid has been appointed to a temporary

T ikt ucc, for the academic

at the Mathematics Department,
His research interests a

ureship

re 1 Gperator Theory
year 1985- 86.

Ala tain wood as beer appoil ted to the WEStlHQ“DUSE Chair
Dn AU

of Applied Mathematical Sciences at NIHE, Dublin.

will be

A MATRIX JOKE

Rolin Hante

1. If x = (xij)€ AT'™ s an nxn matrix with entries xij in
a ring A with identity 1, under what conditions does it have
a two-sided ;nverse xte aMr Ny If the ring A is commutative,
then the answer is very nearly the same as for the real or the

complex numbers:
x invertible in A™" &= |x| invertible in A, (1.1)

where |x| denotes the determinant of x, defined [5, Chapter 5]
in any one of the usual ways. If the ring A is not commutat-
ive then the formulae for the determinant become ambiguous,
unless we restrict to matrices x = (xjj) which are commutative,
in the sense that their entries form a commutative set [xij}.
With this restriction implication (1.1) was demonstrated for
2x2 matrices of Hilbert space operators by Halmos [T, Problem
55], extended to nxn matrices of Banach algebra elements using
the spectral mapping theorem [3, Example 2.4], and is nouw given
in full generality by Halmos again [2, Problem 70]. In thiél
note we will demonstrate that (1.1) holds separately éor left
and right inverses, ‘at least for 2x2 matrices: the arqument

seems to depend on a joke.

2. Suppose that x = (xij) is a commutative nxn matrix over
the ring A, with determinant |[x| € A, and cofactor x~ € a"*",
in the sense of the usual 'adjugate' or 'classical adjoint!

matrix of x: then we recall Cramer's rule,

xTx = xx = |x|1, (2.1)

and

where 1 = (6;3) is the identity matrix. If also y = {yij) is

another commutative matrix, and if in addition the entries of




y commute with the entries of x, then we have the product

formula

(xy)™ = y X, (2.3)

and hence also
(2.4)

Ixyl = Ixlbyl = FAIRSE

conversely

n

(1.1) is clear from (2.1)3
. ns
in A ’

Backward implication in
wo-sided inverse x !

if a commutative matrix x has a t
ts entries commuting

and if x“t =y is commutative and has 1
with those of X then (2.4) will guaran
The second Halmos argument (2,
t if z € a"r™ and t o€ A a

tee that lxl is invert-’
ible in A. problem 70] demon-
re arbitrary

strates this by noting tha

then there 1is implication

xz = zx =% x"h o= x 1tz (2.5)

and
(2.8)

(t1) = ANDj j(xj 3t = txyj)e

n

x(t1)

3. The analogue of (1.1) holds separately for left and right

. N n,nN . .
inverses: if x€ A ’ is commutative then

A" e x| left invertible in A (3.1)

x left invertible In

and
x right invertible in AT e |x| right invertible in A. (3.2)

we shall confine ourselves to the proof of (3.1) when n = 2:

THEDREN If a, bs C> d are mutually commuting elements of A

then

2 &= ad-bc left invertible 1in A,

(a g) left invertible 1In A2’

c
(3.3)

proof. Fram (2.1) we have

EY(E = ("906%) - (2)EY ©o

whic ° .
h gives backward llpllCatlDl in (3 ) Co VEISEly if
.

(a: b')(a b 10

c' d'/ \c d = (D 1)’ (3.5)

with no ivi ﬁ
commutativity assumptions on a', b' ! L

(3.4) S ’ , c'y d' in A, then

B5) (%) = (279 (5.6

We jw come to what we think is the oke: i you take apart
(5.6 and then reassemble its our constituent eqUathHS ou
s Y

get

( d: ~b:)(ad—bc( 0 ab
-c a 0 ad-bc) = (c d)‘. (3.7)
The joke i H
s now over: another application of (3.5) gives t
. wo

(possibly equal) left inverses for ad-bc in A:

(a'd'-b'ct)(ad-bc) = (d'a'-c'b')(ad-bec) = 1 (3.8)

ana
The n logue of (3.3) or riglt i!verses, or indeed for
left and for Ilght zero-divisors Yy be .
. left '
: e y ma e to the reader
It is also pDSSlble to extend the argument 0 (3.3) to 3Ix3
matrices, althoug\ the kaE is not earl SO u u shall
N £
N Y
. l Y. e
give elsewhere [4} at inductive DIOO‘ o (3- ) and (3-2 baSEd
[s] 1.1 m f f
na proo [s] ( o ) due to [s] La ey ) ;
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FREE TOPOLOGICAL GROUPS

Beanuad R. Gellaum

The purpose of this paper is to provide a brief expository

sketch of [1].

If X is any set, the free group F(X) is defined abstractly
as follows: F(X) is a group such that if G is any group and if
¢ = X » (G is any map of X into G then there is a homomorphism

¢ F(X) » § so that the diagram below commutes:

» F(X)
o l‘i’ (%)
G

The embedding 6 is fixed and is independent of ¢ and of G.

I1><|

The existence of F(X) is assured tv the construction des-

cribed next.

€ £n . . :
52... xa in which x; is

. . €
A word is a finite sequence x;!x i

an element of X and each €3 = t1. The product of two words
€ [ § Sm
xi' ... xq" and yit ... yu" is the word xS xﬁ”y?' e ygm.

The collection W of all words is thus an associative semigroup.
The subsemigroup S generated by all words of the form x?‘... xﬁ”

in which x1 = x2 = ... = xp and

Tei=0
i=1

leads to the quotient structure W/S, a group F(X) for which

€ -€1 . .
Xp e Xy is « representative of the inverse of the element
€, en

represented by x;l... x5 .
If X is a topological space, the natural ob ject correspon-
ding to F(X) is a topological group for which the same diagram -

(¥) obtains and where 6 is a fixed topological embedding, G is




Since a topolog-

int and U is

a topological group and ¢, are continuous.
ical gron I'is completely regular (if x is a po
an open set containing x there is a continuous map f 3 re[0,1}
such that f(x) = 1, f(I Nu) = 0) X must be completely regular.
by the

The guestions of existence and uniqueness are answered
and [4]

following theorem which is proved independently in [3]

and can be proved in still another way (1] as outlined below.

Theorem. If X is completely regular space there is a topolog-
ical group F(X) a topological embedding 8 : X w F(X) such that
for & a continuous map into the topological group G the diagram

(*) commutes and ® is a continuous homomorphism.

The proof consists of a number of simple steps:

1, Let IH, be the group of all quaternions of norm 1.

2. Let C(X,IHl) be the set of all continuous maps
Fr X =M.

3. For each f in C(X,MH,) let M™,f be M, and let # be the
Cartesian product gﬂﬁlf.

Then # is a compact topological group and the map
8 : X » {f(x)}(the index is f) is a topological embedding of

X into # (here the complete regularity enters for the first

time)

4, The group IH; and the group R of rotations of IR? are
isomorphic (according to the correspondence:
for R in R and (x,y,z) in IR® let xi + yj + zk be the
correspanding quaternion; then the quaternion corres-

ponding to R(x,y,z) is g{xi + yj + zk)g' for a unique

g in ™, (g' = conjugate of a).

5. The group R and hence M1 contains an infinite set
{g1,02, -.. } that is free [2]. That is, if
gt ... o8 = 1 then the word gf' ... gp' is in the

subsemigroup S of the semigroup W of words generated

by the set (91,025 --- ).

REFERENCES
1. GELBAUM, B.R.
"Free Topological Groups"
ps", PAMS, 12 (1981) 737-74
4025, T
2. HAUSDORFF, F, |
§

6. If n i N
(PicJy.q is a set of n different points in X-there
is in C(X,™M,) an f such that f(py) = g. (Hefé the

complete regularity of X enters again.)

Thus the group Fy(X) generated in # by 8(X) is a free and
topological group (Fp(X) (for the set X) in the topology inher-
itid from #). Thus 7, the set of all group topologies an
F(X), is not empty. The topology sup(7) makes F(X) a tepol-
ogical group described in the conclusion of the th;orem stated

above.

Remarks. 1. The nub of the proof is found in S and 6
above. The existence of some group topology on F(X) permits
the conclusion (via sup(7)) that F(X) may be topologized to
confarm to the diaqram (*),

2. If X is set, F(X) is unique and if X is a
completely regular space F(X) is unique. -

' . 3. A topological group G is free by definition
if whenever x;' ... xﬁ“ = 1 then the word xi' cee xEM s in
the . subsemigroup S in the semigroup W of words cons:ructed‘
from the set G. Thus FD(Z) is a topological group and is Freé
EUF does not, a priori, conform to the requirements of (x) if
X is a completely regular space. Indeed, if G = F(X), the
free topological group, then for (*) to be valid F(Y; must

indeed be endowed with the topology sup(7).

?
Grundzuge der Mengenlehre', Leipzig, 1914
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HYPERBOLIC BEHAVIOUR OF GEODESIC FLOWS™

Donal Hunley

INTRODUCTION

Geodesic flows, particularly those on manifolds of neg-
ative curvature, have been a rich source in the determination
and display of possible types of macroscopic behaviour of
motions in dynamical systems. Their study goes back to Had-
amard and Poincare who considered the existence of periodic
geodesics on some classes of surfaces. Later, in the 1930s
Hedlund, Hopf and Morse studied the topological and ergodic
properties of the flows on compact surfaces of negative curv-
ature [H]. Already, they recognised the special role of the
local instability of trajectories and proved that this was
closely linked with the statistical (ergodic) behaviour of the

flows.

One of the ways of expressing this local instability is
the hyperbolic behaviour of the derivative of the flouw. The
central idea is that close to any fixed trajectory, the behav-
iour of neighbouring trajectories resembles the behaviour of
trajectories in the neighbourhood of a saddle point singular-
ity. Anosov [A] was the first to give an explicit formulation
of hyperbolicity. He then used this condition as a basic
assumption to study a class of dynamical systems which are nouw
referred to as Anosov systems. The geodesic flow on compact
manifolds of negative curvature is a very important example of

these flows,

The conditions formulated by Anosov in 1967 are the

) strongest type of hyperbolic conditions. In 1977, Pesin [P]

formulated a weaker set of hyperbolic conditions and studied
the dynamical systems satisfying these conditiaons. Again, the

geodesic flows on a class of manifolds without focal points

X This is the text of a talk given by the author to a Mathematical Symposium
held at the Dublin Institute for Advanced Studies, on April 18th, 1984,




provide an important example of a system satisfying Pesin's

conditions.

In this article I wish to outline the study of the hyper-

bolic behaviour of geodesic flows.

Preliminaries

1.1 Notation

Let M be a smooth compact Riemannian manifold .¢ dimension

nz 2. The tangent and unit tangent bundles of M will be
denoted by TM and SM, respectively, with corresponding fibers
TaM and SypM at me M. The projection map from these bundles
to M will be denoted by 7. Fimnally < , > and p( , ) will
denote the Riemannian metric and the corresponding distance

function.

1.2 Geodesics

A geodesic is a curve c(t) on M whose tangent vectors are
parallel, This is expressed in terms of the Riemannian conn-

ection of TM by the equation

or in local coordinates by

g2ct i deddck
dt? kgt dt

where Pﬁk are the Christoffel symbols.

If c(t) is a geodesic, then <c(t),c(t)> is constant and
we assume it has the value 1, that is, the geodesics are par-
ameterized b;'arc length. Since M is compact, the geodésics
are infiniteiy extendable in both directions so that c(t) is a
curve from IR to M. For any pair x and y of distinct points

of M there exists a geodesic joining x to y (generally speak-
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iK!TV(SN) 2 Tu(smM) + Tay)M [Eb].
CKor T (TM) Tw(y)M is defined as follows: let £ & T,(TM) and

ing, not unique). Among such there is always one whose length

is equal to p(x,y). If ve SyM for some m € M, there is a
unigue geodesic c(t) satisfying the initial conditions c(0) =m

and ¢(0) = v. We will denote this geodesic by c,(t).

1.3 Geodesic Flow

The geodesic flow is defined on the unit tangent bundle

SM as follows. The flow map ¢:IR x SM + SM is given by

o{t,v) = ¢,(t).

Geometrically fhe flow map takes the tangent vector to a geag-
We will

assume that the metric on M is smooth and thus the map ¢ is

desic, and moves it a distance t along that geodesic.

smooth. The vector field of the geodesic flow is called the

geodesic spray and denoted by S.

To facilitate studying the hyperbolic properties of the

geodesic flow, it is necessary to consider the derivative.
To, : T(Sm) » T(sm)

where & ¢ SM'+SM is the map Pr(v) = ¢(t,v) = cy(t).

venient formulation of the map Ty is got by considering the

A con-

geometry of T(SM) and Jacobi vector fields along geodesics of
M.

1.4 Geometry of T{(sm)

If ve SM, then the tangent space TV(SM) is decomposed

The first is the
vertical subspace which is the (n-1)-dimensional subspace given
by the kernel of the map Tn|TV(5m) 2 Ty (SMm) + Tp(y)(Mm) while

the second is the horizontal subspace which is the n-dimension-

into two complementary subspaces as follows.

al subspace given by the kernel of the connection map

(The connection map

let X : (-e,€) + TM be a curve with initial velocity &, then
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KE = Va(D)X(D) where 0 = moX : (-€,e) + M is the footpoint

curve).

If ve SpM and vl is the orthogonal complement in TpM,
then K : T (SM) + v and the map i, : T,(SM) » T,Mov* given by
iyE = (TwE» KE)

is a linear isomorphism. The Sasaki metric on SM is defined
by <<E,n>> = <Twg,Tan> + <KE,Kn> for £,n € T(SM). Then iy is an
isometry. The Riemannian volume u on SM defined by the Sasaki
metric is called the Louiville measure and it is invariant

under the geodesic flow [a+5].

1.5 Jacobi Fields
Let c(t) be a fi«ed geodesic on M. A vector field Y(t)

on c(t) is a Jacobi field if
92Y + R(&,v)c = O

where ¥ is covariant differentiation along c and R is the Rie-
mannian curvature tensor on M. Jacobi fields are the variat-

ional vector fields of variations of c by geodesics.

If £ e T,(5M) then £ determines the unique Jacobi field
Yg(t) along the geodesic c,(t) with initial conditions
Yg(O) = Tng and vvg(o) = KE.

If £(t) = (Tég)E, it can be shown [Eb] that

Twe(t) TnoTore = Ygl(t)

it

and

Ke(t) KoTd £ = VYg(t)

This gives a bijection between TV(SM) and the Jacobi

fields on cy. Further, if Z(v) is the subspace of T, (sm) .

spanned by the geodesic spray vector field S{(v) we have
e 2(v) = Y = at,(t) for some a € IR.

- 24 -

L .
If T,SM is the orthogonal complement of Z(v) in Ty{SM) with

respect to the Sasaki metric, we have

L .
£ e T,(SM)é=>Y, is a perpendicular Jacobi field on cy [Eb].

Thus the two subbundles Z and T'SM are Téi-invariant.

1.6 Stable and Unstable Jacobi Fields

We now restrict M to be a manifold without conjugate
points. Thus if Y(t) is a Jacobi vector field along a geo-
desic c(t) which is not identically zero, then Y(t) = 0 at
no more than one point along c(t). This class includes manif-
olds of non-positive curvature and manifolds without focal

points.
e

L
Let v E€ SM, let we v , and let Ym,s(t) be the unique
Jacobi field on cy(t) such that

Yy,s(0) = w and Yy, s(s) = 0.

Then the limit Yg(t) =
vector field on c,(t) [

for t > 0.

Yu,s(t) exists and is a Jacabi
Clearly Y (0) = w and Y (t) = O
We call Y, a stable Jacobi field.

Lim
e
Eb]

The unstable Jacobi fields Yy(t) along cy(t) are got by

considering the limits as s + -,

Ye(e) = Lim vy, s(t)

For each w e vL, there is a unique & (w) € TC(SM) for
which Y£~(m)(:) = Ygy(t) and a unique e*(w) such that
Yer(u)(t) = vy(t) [Eb].

Using these limitimg Jacobi fields we now get the stable

and unstable subspaces of TU(SM) which are defined as follows:

Xs(v) = (€& T,(SM) : vg(t) is stable, i.e. Ye(t) = Y (t)
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The subspaces £ (n) and E¥(n) are called the stable and

where w = TmE}.
unstable subspaces.

(Ee Ty(sm : Yg(t) is unstable, i.e. Ye(t) = vy(t)

>
=y
—_
<
~—
H]

These conditions mean that at each point n‘€ N the tan-

where w = TwE}.,
gent space TyN can be decomposed in an invariant way into

. ' three subspaces E (n), £7(n) and 2(n) such that T -
The subspaces Xs(v) and Xu(v) are (n-1)-dimensional sub- (n) su a ¢t’E {n) is

spaces of TV(SM) which are invariant under the geodesic flow.

a contraction, T¢t|E+(n) is an expansion and Z(n) is the sub-

’ . space generated by the flow vector field. Furtherhére th
The two subspaces coincide and consist of the space of perpen- €

dicular parallel vector fields on c,(t) in the case of M having

coefficients of contraction or expansion are uniform on N,

Near any fixed trajectory {¢¢(n)] the behaviour of neighbour-

sectional curvature K = 0. If M has no focal points, then . ¢ Cect . bl the b
. i ing trajectories resembles e behaviour of t jectori i
a Jacobi field Y(t) is stable (unstable) if and only if |[]Y(t)]] ] u rajectories in
the neighbourhood of a saddle point.
is bounded for t 2 0 (t s 0) [Eb], [Es]. (If M has no focal

points, then for any Jacobi field Y(t) along a geodesic c(t)

such that Y(t,) = 0, we have [lvy(t)]]| strictly increasing as ; 2.2 ‘Geodesic Flows of Anosov Type

t + w,) We will show later that in the case of manifolds ) . .
Returning to the geodesic flow, we see that the subspaces

with strictly negative curvature, Xg(v) 1 X, (v) = {0}, L
9 ‘ s u Xg(v) and X, (v) of T,(SM) are candidates for the subspaces

E (v) and E'(v) required by the Anosov canditions. If M has

2.1 Amosov Flouws negative sectional curvature they do satisfy the conditiom.

The strongest type of hyperbolic condition is the foll- :
g Y Theorem [A]. Let M be a compact manifold with negative sect-

owin hich s first formulated by Ano Al. .
g uw wa u e Y sov [A] ional curvature. Then the geodesic flow satisfies the Anosov

. conditions.
Let N be a smooth manifold and let ¢ : IRxN > N be a com-

plete flow which is smooth. Then it is an Anosov flow if the . . )
Proof. Since M is compact there are constants r, and 1, such

following holds: there are two continuous nontrivial distrib- . that

utions E- and EY of TN such that
-rf s K (P) s -1}

(i) TaN = E7(n) @ £E¥(n) @ Z2tn), where 2{n) is the sub-

space of TN generated by the flow vector field. for all sectional curvatures Km(P). Then for any v € "SM,
w1 v, the stable Jacobi field Y (t) along th desi

. + o+ - - w g the geodesic c,(t)

(i1) Toe(ET(n)) = E7(d¢(n)) and Tor(E (n)) = El(¢t(“)) satisfies the imequalities

for any ne N, te€ R.

(iii) there exist constants a z 1, b > o such that for !Iw][e—rlt < IV || s flw]]e'rzt R
ne N
[H+ M.
[Toe (D] s allulle™® iF ve £7(n)

l . . We also have the following bound for the covariant der-
HToe ()] 2 a7 [lulle® if ve E7(n) : dvative of Y (t) [Eb]:

v




oy (] s el lva(e) | -

Now let E € Xg(v) and w = TwE, Then

[lToee]]? FHOYg(e),ovg (e ]2

i

LISl 1z« [lovg(e)f]?

Hlul]2e 2525 « (r) 7] ful|2e72"2"

A

which, by (1) and (2)

Hlellze 2251 + £2).

BA

Thus || Téel| s /1+r2 e'rztllgll and so we have the required
contraction for Xg(v). The required inequality for X,(v) is

gaot by using the fact that X,(v) may be identified with Xg(-v)

[Eb]. .
Finally if £e Xg(v) N} Xg{u), then Yp is a parallel Jacobi

field [Esch], i.e. Ve = 0. Then
‘|T®t€|x = |lell for te IR
and” so
B Xg(v) N xy(v) = (0},

Thus,the geodesic flow is an Anosov Flow.

While the above theorem shows that strict megative curv-
ature is sufficient to ensure that the geocdesic flow is Anosov,
it is not a mecessary condition. Eberlein [Eb] gave an example

of a manifold, with non-positive curvature containing open sub-

sets where the sectional curvature is zero on all tamgent planes,

and yet the geodesic flow is Anosov. Klingenberq’ [K] proved

that if the geodesic flow is Anosov, then M has no conjugate
points, and Eberlein then gave the following necessary and

sufficient conditions.

Let M be a compact manifold without conjugate

Theorem Eb].

 The geodesic flow

points. Then the following are equivalent.

(a)

The geodesic flow is Anosov.

28

:certain geometric
flows [P],

(b)
(c)

Xs(v) N xy(v) = (0) for all ve sm.

There exists no nonzero perpendicular Jacobi vector
field Y(t) on a geodesic c(t) of M such that [y (e) ]
is bounded for all t € IR.

3.1 Weaker Hyperbolicity

The hyperbolicity condition due to Anosov is the strongest
type in the sense that the subspaces E'(n) and £ (n) of the
tangent
and the

space TN generate the complement of Z(n) in ToN (2.1)
expansiqn and contraction of the flow are uniform with
respect to n. By relaxing either or both of these réquire- =
ments we get partial rather than complete hyperbolicity (when
the subspaces E*(n) and £7(n) do not span TN N Z(n)) énd/or

nonuniform rather than uniform hyperbolicity.

Pesin studied these various weaker hyperbolicit} éondit- 
ions and gave the connections with Lyapunov exponents [P].
on manifolds with no focal points satisfying
conditions are complete nonuniform hyperbolic

[B].

The theory of the weaker hyperbolicity cond-

~itions is much more complex than the Anosov case and is beyond

the scope of this article.
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REMARKS ON ‘AN ELEMENTARY NUMBER THEORY RESULT®
David Singmasten

In a joint note published in this Newsletter (Ng. 12,

December 1984, pp. 10-13), Peter Birch and I showed that

¢(n) > n/logn except for n = 1,2,3,4,6,10,12,18 or 30. For

convenience, let us set ®(n) = n '¢(n)logn, so the above says

o(n) > 1, except for the values given, Our proof used Bert-

rand's Postulate, so it was not entirely elementary. I have

just found that Alan Baker gives an entirely elementary proof
|

that &®(n) > & for n > 1 [1, p. 12].
1

argument shows the asymptotic result ®(n) > 5 - € for all large

Further care with his

enough n and explicit calculation would show ¢(n) > 2/5 for

all n > 2.

Baker's argument, in more detail, is as follouws. First
consider o(n), the sum of the divisors of n. Then
o(n = d = = -
(n) Lqin Zdin”/d = nzdlnl/d s nZdlnd ', so
o(n) s n(1 + logn). - (1)
Consider now f(n) = o(n)e(n)n 2. This is multiplicative and

f(pj) =1 - p';‘l. Then

f(n)

1
v

i\
=
~
—
-
i
he)
1
3
~

M5 (1-p-d=ty 2z 1M ; (1-p-d-t
pl|n plsn’ 7P P F ot

A

2 H1§m2<n(1_m—2) = $(1+[/A]7"), for n 2 4, so that
o(me(n)n™? 2 4(1+n %), (2)
i and this is seen to hold for n 2z 3.
< From (1) and (2), we have
o(n) z %n(1+n'§)(1+log n)~', for n 2 3. (3)
- 31 -




Baker's argument takes the simpler result f(n) z 3

to deduce

instead of

(2) and then uses 1 + logn < 2logn for n > 1
o(n) > &. But (3) clearly gives the asymptotic result
6{n) > % - €, for large enough n. Explicit calculation of

the ratio of n/leogn to sn(1+n ?)(1+log n)"! gives a ratio of

0 for n = 1, of .349 for n = 2 and a ratioc 2z .412 for n > 2,

so this elementary method yields o(n) > 2/5 for n > 2.
shows that we actually

Fur-

based on our result,
.59725 for n > 2.

ther calculation,
have ®(n) 2 (log6)/3 =
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2. THE TEST:

MATHEMATICAL EDUCATION

REPORT ON THE BASIC MATHEMATICAL SKILLS TEST
OF FIRST YEAR STUDENTS IN CORK RTC IN 1984

Depantment o¢f Nuthemutics and Computing,

Cork Regionul Technical Ccllege

1. INTRODUCTION

A test was given to all first year students in October

1984 to assess their basic mathematical competency. The res-

ults of this test show that our student intake have fundamental

deficiencies in their basic mathematics.

" While the direct remedy of this situation is outside our
control, it is hoped that those involved in the teaching and
drawing up of mathematical syllabi at primary and secondary

level will consider the implications o7 this report.

ITS CONSTRUCTION AND PURPOSE

A copy of the test paper is given in Appendix A. It con-

sists of 20 guestions which the students had to attempt with-

- out the aid of tables or calculators in the allotted time of

one hour, The aim of the questions and acceptable answers

are also given in Appendix A.

After careful consideration as to what basic mathematical

skills students should have after completing their Leaving

Certificate (L/C) the pass level for this test was set at 15

or more correct answers.

As well as the answers to the test guestions, the sex and

_best L/C mathematics grade of the students were recorded.




The test was administered in the fourth week of term.

Students were told in advance about the test and what sort aof

questions to expect,
to them. They were also advised that the results of the test

could be taken into account in assessing their end-of-year

but sample papers were not made available

grade.

3. THE STUDENTS WHO TOOK THE TEST

All first year full-time students who were taking 3rd

level courses oOT their equivalent were required to take this

test. The total number involved was 682 all of whom had
taken'the L/C examination in mathematics, the majority with

1984 Leaving Certificate, repeat and mature students sitting

in 1983 and earlier.

It was anticipated that students undertaking degree cour-

d differ in their capabilities from students undertak-

diploma or professional business qualificat-

ses woul

ing certificate,
This was confirmed by the data and the subsequent anal-
e students and what

ions.
ysis will distinguish between the 83 degre

we term the 599 non-degree students.

[ OVERALL RESULTS

An overall pass rate of 27%, Table 4.1, confirmed that

there are basic deficiencies in the mathematical skills of

first year students.
TABLE 4.1

Results for All Students

pass (%) Total

682

187 (27)

when these figures are broken down by degree and non-

it becomes clear that the overall pass rate

However,

degree students,
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of 27% is misleading (see Table 4.2).

TABLE 4.2

Results for All Students by Degree and Non-Degree

Degree Non-Degree
pass (%) Total Pass (%) Total
66 (80) 83 121 (20) 599

The radical difference in pass rates of degree and non-degree
students is related to the better L/C mathematics grade of the

former. This point is considered in Sectiaon 7.

5. THE EXTENT OF THE PROBLEM s

With a pass in the test set conservatively at 15 or moreb
correct answers, the extent of success and failure by the
students is of interest. Did all thoze who failed get_ 13 or

14 correct answers?
The

and all those who passed 20 correct?
graphs in Fig. 5.1 answer these questions,.

for degree students, 20% failed with 14% of students get-
ting 13 or 14 correct ansuwers. However our concern about the
80% of degree students who passed is caused by the fact that

only 14% of students managed 19 or 20 correct answers

For non-degree students the extent of the failures is
alarming, not only did B0% of them fail, 48% of certificate
Only 1%

of non-degree students managed 19 or 20 correct answers

students could only get 10 or less correct answers.

Areas of difficulty for the student may be seen in the

tab i
? le of Appendix B where a question by question analysis is
given.




FIGURE 5.1

percentage of Students by Number of Correct Answers

pPercentage of Students

1 2 3 4 5 6 78 910111213 1415161718 19 20
Number of Correct Answers

NON-DEGREEL

percentage of Students

1t 2 3 4 56 78 9 10 11 1213 141516 17 18 19 20
Number of Correct Ansuwers

The Data for these Graphs are given in Appendix C

7/lPass

Test
Fail
Test

6. STUDENT RESULTS BY S5EX

Did the sex of students affect their test performance?
The details are given in Table 6.1.

TABLE 6.1

Student Results by Course Type and Sex

Sex pass (%) | Total (%) Sex Pass (%) | Total (%)
Male 43 (80) | 61 (73) Male 94 (21) | was (74)
Female 17 (77) | 22 (27) Female 27 (17) 155 (26)
Total (%)| 66 (80) | 83 . Total (%) | 121 (20) 599

Given the results of statistical tests of hypothesis and
the awkward theoretic problems raised by the data (e.g. are
they a random sample?), we consider that the sex of students

is not a significant factor in test performance.

In Table 6.1 we see that the ratio of male to female

- students in both degree and non-degree courses is 3:1. This

ratio does not apply to individual courses as some are exclus-

ively male while in others females predominate.

7. RESULTS BY LEAVING CERTIFICATE MATHEMATICS GRADE OF
STUDENT

The test results classified by L/C mathematics grade of

~all students is given in Table 7.1. In Table 7.2 we distin-

guish between degree and non-degree students. One mature
non-degree student whose L/C predates the present grading

system was omitted in both tables as being atypical.




TABLE 7.1

Results of All Students by L/C Mathematics Grade

L/C Grade | No. of Students | No. passed | Pass Rate * 35,E.X
A 1 1 1.000
Higher B 32 30 0.938 + .129
Course C 68 55 0.809 * 143
D 52 31 0.596 + .204
E 5 1 0.200
A 37 22 0.595 ¢ .241
Lower B 204 40 0.196 = .084
Course C 197 5] 0.030 + .036
D 85 1 0.012 £ .035
681 187

X §.£. = Standard Error, three standard errors are used to allow multiple
comparisons.

From Table 7.1 we see that test performance is closely

associated with L/C mathematics grade obtained, with signific-

ant difference between students with grade A and those with

grades B, C or D on the lower course.
ade B and those with grades C or D on the

The differences bet-

ween students with gr

lower course are also significant.

It is tempting from Table 7.1 to order the L/C mathematics

grades as follows:

Higher Course Lower Course

m O O D P

o O m =

put this is only a tentative ordering since in some instances
(grades A and E, higher course) there are too few observations
and in others (grades B, C and O, higher course) the distinct-

jon is not clear.

TABLE 7.2

Resglts of Degree and Non-Degree Students

by L/C Mathematics Grade

DEGREE ’ NON-DEGREE
L/C Grade No. of No. Pass No. of No. Pass
Students | Passed | Rate |Students | Passed | Rate
. A - - - 1 1 1.000
Higher B 19 18 0.947 13 12 0.923
Course C 38 31 0.816 30 24 0.800
D 16 12 0.750 36 19 0.528
E - - - 5 1 0.200
A 4 0.667 3 18 0.581
Lower B 1 0.250 | 200 39 0.195
Course C - - - 197 6 0.030
D - - - 85 1 0.012

83 66 598 121

From Table 7.2 we see that the better performance of degree
to non-degree students is indeed related to their superior L/C
grade. We also note that non-degree students with similar
L/C grade to degree students (viz. grades B and C, higher cou-
rse) are able to perform as well.

Fi .
- k1nally in Table 7.2 we see that 81% of non-degree students
intake had grade B, C or D on the lower course mathematics

paper. Their subsequent poor test performance indicates a lack

DT basic mathematical skills in the majority of non-degree
first year students.




ARPPENDIX A

fpasic mathematical skills" we mean a facility

By the term
in the following list:

in handling the topics given

(i) addition, subtraction, multiplication, division,

‘use of brackets,
(ii) “indices and logss,
(iii) ratio and proportion, percentages,
. (iu) approximations,
(J) units,

(vi) ‘factorisations,

(vii) transposition and evaluation of formulae,
(viii) simple eguations,

(ix) elementary geometry,

(x) elementary trigonometry.,

10.

11,

13.

14,

15.

CORK REGIONAL TECHNICAL COLLEGE

BASIC MATHEMATICAL SKILLS TEST 1

NANME 2 CLASS:

TIME: 1 Hour

Write answers clearly in boxes provided.

Instructions: Answer ALL questions. All questions carry equal marks.

Use of calculators and mathematical tables not allowed.

Roughwork paper provided

Evaluate

What value would you assign to 31 + 47 x 10 - 37
Find the value of V6.4 x 10°.

Fvaluate 3.21 x 107% - 6.71 x 107",

If log x = 2, what is log(x®)?

Solve for x: log3 + log8 - log12 = log x.
Express 4“.4:47% in the form 42,

IF 5 = =7, find x.

The price of an article is £32.50 including 25% VAT,
What is the price excluding VAT?
Divide 72 in the ratio 1:5.

The approximate value of (0033;3 i (;2?9)2

is (a) 32, (b) 3.2, (c) 320, (d) 21.3, (e) none
of these.

Express 0.01 m® in cm?.

By using factors or otherwise, find the value of
221% - 2202,

Factorise 2x%? - x - 3,

Re-arrange the formula x = y(1+at) to give t in
terms of the other quantities.

10.

11.

12.

13.

14.

15.

498
B x 102
3.1429x10°°
6
2.25
a7
-4

£26

12:60

(b! or 3.2

10% cm?®

441

(x+1)(2x-3)

X 1

t == .

ay a

or equivalent




16. Evaluate s in the formula s = ut + at® when 16. 168 =
= = % = : q o
u=20,a=4 t=8 5|3 8 2|38 9lalg
- - n| —
17. Find x if 3(x-2) = 12 + (5x-7). 17, -11/2 = 2 el
fasn)
. . R 2 R\~ < ISR N o o~
18. Find the solutions of the equation (x-1)2 -~ 4 =12, 18, 5, -3 o Qg
fs)) w
19, Aabe is a right angled triangle. 19. V3 - | ®° o U Y o |
b c = - @ N
17 Find |bel. = = i
a8 @ ag] . [s) | N
4 N s 2 0 - — wn — . fas] | o
20, If cosh = & find the value of 1 - sin®A. 20. 16/25 o - |~ - | &2
) 2 =
o~ .
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" o g g = = ~ | olwo
3 A < - ~M u,;
APPENDIX B p o |o z o= =
Question by Ouestion Test performance “ o Al s TS 218 K
u
TABLE B.1 ol S RE G BEE
© o~
Number and Percentage of Students Who Answered Each Question Correctly = T |lo g < |2l o~
o - © I B
u w
. Degree Non-Degree All Students b ) @ ~
Question No- 83 (%) se8 (%) s82 (%) a s < 19%a 2 R2
~
1 79 (95) 439 (73) 518 (78) E ~ © ©
2 39 (47) 189 (32) 228 (33) O © L e P AT ~alm
3 73 (88) 358 (60) 431 (63) - . ol =
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UNDERGRADUATE PROJECTS IN GROUP THEORY:
COMMUTATIVITY RATIOS

7. Poantenr

Many universities have tried undergraduate projects in

mathematics with varying success, put often one hears that al-

though in applied mathematics, the students' work can be creat-

jve and, to some limited extent original, in pure mathematics,

the project is often to write an account of some theory which

the student has searched for in "the 1iterature". Can one do
Can one provide practical and "creative"

I want to suggest

better than this?

material for a project in pure mathematics?

that one can, by describ’ 1 two projects in Group Theorty with

which 1 have been involved.

GCroup theory 1ike many other pranches of pure mathematics

taught at university level can tend to be too much in the def-

inition—theotem-proof tradition. Stucents can finish up with
apparently good knowledge of Sylow subgroups and the finer

points of soluble groups but faced with an actual group they

may not have the faintest idea where to start if required to
analyse the subgroups, conjugacy classes, quotients groups
etC., 1.2 they do not know how to handle the more elementary

theory, SO their knowledge of the general deeper parts of group

theory consists of a collection of statements about ill wunder-

stood concepts. (If in doubt, set a group of students to work

out from scratch a complete 1ist of isomorphism types of groups

up to some small given order. Can they do it?)

The situation on potential project material 1is similar to

that on the traditional group theory course work. 0f course,

there are CoOurses in group theory which have a reasonable, even

an adequate, supply of examples in them and similarly there are
several different solutions to the problem of designing icreat-

ive" hrojects in the subject. The three main approaches one

can take would seem to be (i) use presentations, (ii) use rep-
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resentations, or (iii) concentrate on geometric symmetry gr
.. oups.
In the two projects that I supervised, presentations of groups
were used as the basic tool since these were being treated i
in

a 3rd year course on Knot Theory running at the same time

In this note I will describe briefly the subject matter
of a 3rd year project equivalent to a half paper in the final
exams. I will describe in a further note the content of aa
full-paper-equivalent project taken the following year by a

different student.

First a word of caution, the group theory involved is not

deep, or complicated. The prerequisites were an intuitive

idea of presentations and a reasonable ability to handle modul

ar arithmetic. No claim is made for originality of the res

ults or for BlEQa ce of the ethods; what is 1ir DOIta t is that
the stude t, once the main idea was outlir Ed, co |pleted the

calculations by themselves. Certain pieces of theory had to

be sketched out for them, but details of proofs were to be pro

vided by them. This was not always done successfully, but the

d
end result was some very good work by a student who was not
of the "high flyers". o

For the non-group theorist, let me recall the idea of
a

presentation. I will give an example. The dihedral group
9

D,, of order 8 is the
group of symmetries of a s
e sentation quare and has

<X,y : x" = y? = (xy)? = e>

That i
" is t?e elements x and y generate D4 and the relations
x'o=oe, = =
y e and xyxy = e are sufficient to give all relat-

jonships between products of powers of x's and y's in D
. t

The i j
e idea of the project was to calculate commutativity

ratios fo i ili
r various families of groups. The commutativity ratio

is the | ili
e probability that two elements taken at random in a group

6 wi
will commute (see D. MacHale [3]). This ratio R(G) can b
e

calculated by the equation




number of commuting pairs
{order of G)?

R(G) =

and is closely linked to the number of conjugacy classes of G.

It is however a more intuitive invariant than the latter. The

families studied were the dihedral groups and generalised

quaternion groups; an attempt was made at general metacyclic

groups. T will give the calculations for dihedral groups and

give the results for the other families.

Dh» the dihedral group of order 2n has presentation

(A 2

Dp = <x,y: x = Y5 = (xy)? = e> (for n z 3)

-1 =1 n-1
= X y SO

first note that xyxy = € implies yx = x ¥
a simple argument shous that any element of Dp has a unique
normal form xlyJ for 0 £ i sn-1, 0 5 J 2 1. In this normal

form, multiplication is given by
A 9
Ly M5y = <y
where
oz i+ k + jk(n-2) (mod n)

s = j + 2 (mod 2)

(This formula and the existence and unigueness of the normal
form had ‘to be proved by the student. Although fairly simple
inductive proofs, they demand care in their presentation.)

It is now clear that (xiyj), (xkyg) is a commuting pair
if and only if

mod n

ik

jk(n-2) 2i(n-2)

ar

25k = 2%i (mod n)

As should come as no surprise, the cases N odd and n even are
different.
I1f n is odd, 2jk = 241 if and only if jk = fi. An attack case

by case follows:

If j = 0 and & = 0, this works f i
e or all i and k., (This, of

course, corresponds to x x = xkxi - not surprising!)
This gives n? commuting pairs.

gimilarly j = 0, 2 = 1 gives n more.

if j =1 and & = 1, then i = k giving another n.

Thus for n odd

2
R . n° + 3n
(Dn) = 42

for n even, one gets some additional solutions, namely when

jko - 21 = % mod n.

As 1s easily checked, this gives 3n more commuting pairs and

n® + Bn

R(Dn) = iz
n

if n is even.

It should be noted that the student using group tables for

small values of n found the patterns for n odd and n even by
e

themselves. I then pointed out that the presentation should

give one those patterns in general. They then went away and

produced the calculation summarised above

For the dicyclic group of order 4n,

<2,2,n> = <x,y 1 x" = y2, yTlxy = x>
the calculations are similar, giving
2
R(<2,2,n>) = n® + 3n
4n?

As both dihedral and dleCllC groups are EtaCYCIlC groups, I

then SUQQEStEd that the same ethods would DEI‘, aps work for all
1i p 3 li

|EtaCYC 1Cc groups. or the an-group theorist a ﬂEtaCYC ic

group G is i i
p a group with a cyclic normal subgroup, whose corr-
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esponding gquotient group is also cyclic. One easily checks

that such a group must have presentation

G = <x,y: x" = e, y ixy = <5, y" o= x°>
where m, n, I, S are positive integers, T,S < m and rn = 1 and
rs = s {mod m). (A discussion of this can be found in [2],
P 65.) Any element in G can be written uniguely in the form
.yixj (the reverse order being adopted to accord with [21).

Multiplication in this form gives

(i + k, & + jrk) ifF i+ k <n

(i,3)(k,0) =

(1 + k, L + jrk + ) if i+ kzn

The condition for commutativity betuween (i,3) and (k,%) is

JeK - 1) = (et - 1) (mod m),

This is as far as I can go. The student, in fact, failed to
get to this point due to a slip earlier in their final calcul-
ations. I had hoped for some indication of the number of sol-
utions, at least for special values of r and s as this is ex-
actly what happens for the D, and <2,2,n>, but apart from
obvious cases such as s = 0, T = 1 (6 = Ch x Cy) or the dihed-
ral and dicyclic families themselves, noO particularly nice
families were apparent. I did not look very far into this and
in retrospect I should have looked at some of the other famil-
ies of metacyclic groups such as Coxeter and Moser's 1S-meta-
cyclic groups (see (11). Pperhaps someone would like to set

this as an undergraduate project on modular arithmetic and

group theory.

Ny own view of the project was that the student obtained
s remarkable feeling for the calculations involved, Ltheir
sense of enjoyment was obvious and the benefit to their gener-
al understanding of other group theory based courses: "Groups
and Knots" (2 joined units), "Rings, Modules, and Linear Alg-
ebra" (1 unit), and "Group Theory" (1 unit) was considerable
even though the use of presentations as such was only a part

of the Groups and Knots course and none of the material in the
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project was directly useful in that.

The point may be that presentations provide aone means by
which students can "do" group theory. "Doability" would see
m

to be a useful concept in teaching mathematics. You only

. really learn mathematics by "doing", i.e. by handling examples
until you feel what a theorem says, by recreating in some

small way the original raison d'etre of a concept and so on.
The problem is that one must balance such ideas with a need to
cover a reasonable amount of ground so as to satisfy the exter-
nal examiner. In a project one can sometimes avoid this pre-
ssure to some extent, since the process of discovery, the acc-
uracy of calculation and, that which is of great importance,
the presentation, are what will be looked for by the examiner.
Perhaps one should hope that some step in a similar direction

might be made in the conventional exam. setting as well
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HISTORY OF MATHEMATICS

J. MacCULLAGH AND W.R. HAMILTON

THE TRIUMPH OF IRISH MATHEMATICS 1827-1865

N, D, Mclillan

INTRODUCTION

In the first article in this series [Newsletter, No. 10,

mathematical component of the

pp. 61-75] the reform of the
in the period 1790 to 1831 uwas

Dublin University curriculum

described. Ireland took the lead in this period internation-
ally in that Trinity was the first university to introduce into
its curriculum the new mathematical methods developed in rev-

olutionary France. The Irish reform which culminated in the

election of Bartholomew Lloyd to the Provostship of Dublin

University in 1831 preceded the British reform movement in

mathematics.

The University produced two outstanding mathematicians in
this secand period, James MacCullagh and William Rowan Hamilton.
The former established a powerful geametrical research tradit-
ion by introducing a new mathematical methodology and by his
inspirational teaching methods. Hamilton on the other hand
introduced some of the most original and innovative mathematicall
concepts in the history of the science of algebra. The .dev-

elopment of their respective contributions are described chron-

ologically.

The objective of this article is to reveal the nature of

the two mathematical methodologies in this Dublin Mathematical

School, because it was from the synthesis of these two method-
ologies that G.F. Fitzgerald was able to found the science of

Relativity.
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JAMES MacCULLAGH AND THE GEOMETRIC TRADITION: THE QUEST FOR THE
CARTESIAN SYNTHESIS '

The geometric reform of the Dublin University curriculum
[1] may be dated from 1758 when Fuclid was first introduced
into the curriculum, but the research tradition was established
by James MacCullagh [2]. MacCullagh's geometric ability was
unrivalled in his day. His publications are marked by their
lucid economic style and their supreme elegance. It is known
that he was very conscious of the educational effect of his
writings on the minds of his contemporaries, especially his

studeﬂts.in Trinity.

MacCullagh's first major paper, on the Rectification of
the Conic Sections, was read at the Royal Irish Academy on 21st
June 1830, It was a critique of the mathematical methods used
by Fresnel in his theoretical studies on the laws of double
refraction of light in crystals. MaéCullagh presented a
series of conic theorems aimed at providing the mathematical
tools which would enable the theory of light to be placed on a

firm geometrical base,.

On the 28th May 1832 at the Royal Irish Academy he read
paper on The Theory of Attractions in which he opened up an-

other research interest.
a

In this paper MacCullagh resolved
long-standing dispute over the correctness of Laplace's theory
of attraction which had been at issue for a number of years
between three of the greatest mathematicians of the period:
Laplace, Lagrange and Sir James Ivory. His geometric approach

resolved this dispute in favour of Laplace.

After three further years of struggle with his geometrical
conceptions, MacCullagh read on the 24th June 1835 another
paper: Geometrical Propositions Applied to the Wave Theory of
Lighe. In this he explained internal and external conical
refraction using geometrical principles to replace Fresnel's

th . .
ree principles of conservation of vis viva (energy), the

nif . . .
uniformity of elasticity of the ether and the continuity of
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displacement parallel to the refracting interface.

On the 9th January 1837 he produced On the Crystalline
Reflexion and Refraction in which he proposed a theory of
tric simplicity which was compatible with all
previous physical notions® [2]. He predicted results from

d compared the results with experimentally known

"great.geome

his theory an
data. The continuity condition was replaced by a principle

of equivalent vibrations,
e equivalent and these considerations were exten-

which supposed that vibrations in

two media ar
ded to both the parallel and perpendicular components.

MacCullagh's mathematicalAdescription of light propagat-

ijon was quite remarkable. Despite the difference of mathemat-

ical representation today, it is clear that the Maxuwellian

fEquations of flectromagnetism are only MacCullagh's equations

with the addition of a single term, the famous displacement

current [31.

In MacCullagh's next paper, The Dvnamical Theory of Cryv-

stalline Reflexion and Refraction, read at the Academy an the
gth December 1838 he deduced all his previous geometrical res-
"a single physical hypothesis and from strictly

The full extent of this dynamical

ults from
mechanical principles".
theory was presented in The Dynamical Theory ot
two of his devoted followers [&a].

en the modern mathematical description of light

Light

pdsthumously by In this

theory can be se
and in fact the equations of electromagnetic propagation are

compatible with MacCullagh's equations.

accapted a generally held
y of light

The contemporaries of Mactullagh
view that his work had established a consistent theor
His Royal Irish Academy obituary claimed for him a position of

eminence above fFresnel, because 1t was believed that he had

"established

"the general equations of the motion of the propagation

of light, not only in all knouwn media, but also for all
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publishedi

'

media whi i
ich could ever be discovered, or even conceived."

ﬁis honours were of the highest order. The Royal Soc-
jety in 1842 awarded him the Copley medal, but the recognition
by the Royal Irish Academy in awarding him the Cunningham Medal
in 1837 was his most treasured honour because of his Irish

nationalism.

WILLIAM ROWAN HAMILTON

A revival of interest in Hamilton can be seen from two
r?ceét biographical studies [5, 5a] both of which emphasize
blS isolated life at Dunsink Observatory and his idiosyncras-
ies. Hamilton was a child prodigy and in particular was

noted for his early ability to calculate. He was essentially

self-taught in mathematics and probably therefore benefited
more from the atmosphere of Trinity under Bartholomew Lloyd

than from the actual teaching, since by the time he came to

college he was already an accomplished mathematician

He was by nature an algebraist and like all truly great
mathematicians his work revolved around one great idea, in
9

Hamilton' i [
n's case the Characteristic Function V, which he claimed

was the most complete and simple definition that could be given

of the application of analysis to optics. This function fo
r

him contains the whole of mathematical optics and in this he

reveals himself clearly as a follower of Lagrange and Laplace
Hamilton's early work on Caustics [6) contained the germ of .
the idea, but this idea was first properly exploited in hi
classic series of memoirs Theory of Systems of Rays TheS
memoirs appeared between 1827 and 1833 and develoée; Dptic:e
merely as an aspect of the calculus of variation.

idea of least time and Mapertuis'

Fermat's
least action i i
. principles are
in eff i i
t ect exploited by considering all possible curves between
wo poi '

points A' (x',y',2z') and A (x,y,z) and selecting a curve

giving the smallest value of the integral of the type




- dx dy dz
v = J(X’Y9Z du’du'du)du
The stationary value of this curve is called the ray.,.in

cs but is referred to as the extremal in the calculus of

The theory is both mathematically and physically
poth-

opti
variation.
rthy because it was independent of the physical hy
The wavefronts of the Huygen

notewo
esis about the nature of light.

tﬁeory are derived from the difection cosines o, B, Y of the

téy, where these are the partial differential coefficients of
the principal function V, so that

(s8]
<

3y _ v _
3% g = v and Y =

l

Q]
N

o =

The differential form
adx + Bdy + ydz
ine the wavefront, and in optics

has to be derived to determ

the solution is simply then obtained by making V the length

of the ray.

This method was pregnant with possibilities. Hamilfon

n he applied it to a special

showed its power initially whe
" double ref-

crystal problem and predicted that in place of a

raction of light the ray would be refracted into a cone. This

startling predictioh was made in his classic series of memoirs

in 1832 and experimentally confirmed by Humphrey Lloyd [71.

In the development of the properties of extruanals, he

made significant discoveries and Synge [8] has pointed out

that because of the extreme difficulty of this work
ater mathematicians:

it was

ignored only to be rediscovered by 1
Kummer in 1860 on the general theory of rectilinear congruen-

ces; Bruns in 1885 rediscovered and renamed the third charact-

eristic function as the 1image function; and Jacobi developed

the theory of infinitesimal contact transformations using only

one of Hamilton's equations now knouwn as the Hamilton-Jacobi
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equation.

The next step in Hamilton's mathematical odyssey was to
extend his calculus to dynamics. He began this work in 1833
with a paper On the General Method of Expressing the Paths of
Light and of Planets by the Coefficients of a Characteristic
Function which generalized and extended this optically devel-
oped theory into mechanics, and extended his treatment from
two to three bodies. Other works on this topic were his paper
in 1834 On a General Method in Dynamics, and an essay in 183%
He demonstrated that his method when applied to the then know;
solar system of ten planets, simplified the problem of solving
the sixty differential equations of Lagrange, to the search
for a single function which satisfies two partial differential
equations of the first order and the second degree. Hamilton
prop?sed a general treatment for an attracting system of bodies
by his reduction of the mathematics "to the study of one cent-
ral function'. His method was as in his ray theory to reduce
the problem to one based on the initial and final co-ordinates
of the body, which resulted in the characteristic function V
beiég a function of the 6n co-ordinates of initial and final
positions and the Hamiltonian H. This energy operator was
constant along any real path, but would vary if the initial

and final points were varied.

In the first essay he considered methods of approximatin
the characteristic function as applied to planets and comets ’
and iétroduced a new auxiliary function called the principal
Funct%on S. In the second essay he introduced his famous
canon%cal equation of motion and deduced that S was equal to
the time integral of the Lagrangian between fixed points
The statement that the variation of this integral must b; equal

0O Zero 1s ow referred to as Har 1t lDIE-
1 con's princ

paper AZgEbla of Pure Time that once agalf had at its eart

"the i i
great idea" of his calculus of variation. In this study




he attempted to place the algebraic notions of negative and
ation which was for him to

imaginary numbers on a firm found
He believed

be found in "the ordinal character of numbers".

these must be ordered on an intuitive basis in time and that

this ordering was morTE deep-seated in the human péyche than

the intuition of order in space.
Hamilton was philoscphically determined to replace the

n Algebra of the Point by one based on the intersect-

Cagtesia
ion of two lines. Four elements were necessary to determine

the relation of one line in space to the other:

(i) The relation which the length of the line
bears to the length of the other line;

(ii) The angle through which one line must be
turned to coincide with the direction of
the other;

(iii) The plane in which the two lines lies

(iv) The determination of this plane with

respect to some reference plane.

The combination of the four elements then forms the Calculus

He developed this theorys appropriately one
e dealt with Couples, then

of Quaternions.

might says in stagess; firstly h

Triplets and finally Quaternions. The value of the couple

(a,b) depends on the order 3as well as the magnitude of its

constituent step and in this study he identified the operator

i to change a real number a, intc an imaginary number V-1a,
tating this on the Argand Diagram by gp°, and 30 0N,
He concluded that i was equivalent to /-1 and

Given this res-

by ro
where 12 = -1.
that this was "a perfectly real operation®.
ult he moved on to cansider the triplet (a,p,c) and he was

motivated by a desire to connect in some new way tcalculation

with geometry.

The "triple algebra", so called by de Morgan, led directly

to the Quaternions, since Hamilton discovered that these oper-
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ators were non-commutative, and it was his genius to gradp
that it was possible to develop a meaningful and consistent
algebra which is not commutative, the first in the history of
mathematics. The date of inspiration is indelibly recorded
in the annals of history by Hamilton writing his famous equat-
:g:;“ Brougham Bridge on the Royal Canal on the 16th October

suggestion) that there is not one algebra but many with a wid
8

Boole subsequently demonstrated (based on Hamilton's
range of fundamental postulates [g9].

Hamilton introduced the dot product and vector product
in his algebra which contained within the one algebra a total

. . ' 2
description of three-dimensional space. He introduced the

two well kpown operators in modern mathematical physics

po= 18

and

the latter named 'del' subsequently by Gibbs. This work led
directly through the mediation of FitzGerald to the theory of
Relativity developed by Einstein who essentially extended this

theory to four dimensions.

The importance of Hamilton's work for these later devel-
opments can be judged from a large number of mathematical
papers on related topics, such as his 1861 memoir On Ceometric-
al Npts ip Space. It has been pointed out that Pauli's spin
matrices introduced in 1927 are simply Hamilton's i,j,k [10]
and that Hamilton first made the discovery of the distinction

between group and wave velocities.

His diver i i
se contributions have been recognised by a num

be f e
r of significant scholars. The work of Hankins [5] has

h v . vi F . ifes hil
that of Vi an h : at-
. s C temporary Graves [11] gives the best appreci t
ion © his ndi i i n H hon

sta ding in his ow day. is onours were rather

limited
, and although he was President of the Royal Irish
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Academy from 1837-1845, won the Royal Society's Medal in 1836,

and had the enviable reputation in his own day of being the

leading man of science in Ireland, he never was elected a

Fellow of the Royal Society.

THE DYNAMICS OF COMPETITION

The mathematical competition between MacCullagh and Ham-

ilton was an essential component in propelling these men to

the greatness they both achieved. The personal rivalry bet-

ween the two men has been well documented [3] and was produced

principally by MacCullagh's jealous reactions to a series of

discoveries by Hamilton. Both men were attacking the same

hods and perhaps it was not therefore

h should feel that his studies had

problems by different met

surprising that MacCullag

already anticipated some of Hamilton's discoveries, most not-

ably conical refraction. While this rivalry became very bit-

nflict engendered by the internat-

ure of light and the importance

ter and personal it was a co

ional controversy over the nat
given at the time to unification of the sciences of mechanics

and light [12].

In this age of great international competition mathematics

was the acknowledged battle centre for the sciences and the

ultimate theory of the mechanical philosophy. for MacCullagh

this golden grail was to be won by providing a geometrical sol-

ution to the problem based on a mechanical model of the ether,

the long sought Cartesian synthesis. For Hamilton on the

other hand a new algebra was seen as the solution and his the-

oretical foundation of the physical sciences would have reg-

uired no mechanical model or ether modelling.

The conflict in the two men's methodologies was between

that of the applied mathematician and the pure mathematician,

the materialist and the idealist, and the Newtonian and contin-

ental schools.

MacCullagh was in the last analysis a disciple of Barthol-
omew Lloyd and a natural philosopher in the Newtonian sense of
the word, while Hamilton the self-taught mathematician was
unequivocally a supporter of French mathematical "physique™,
This difference can be seen in their views on the central quesg-
tion under debate internationally at the time, the wave-corpus-
cular controversy [13] over the mature of light. MacCullagh
was a "faint hearted supporter" of the wave theory with Newton-
ian doubts that the wave theory's physical basis had not been
rigorously established. Hamilton was a true "supporter" of
the wave theory [14]. Dublin also boasted in its midst at
this time Dienysius Lardner, a collaborator of the Edinburgh
Newtonians who formed the central core of the "objectors" to

the wave theory [15].

Dublin in the 1830s was opened up to the maelstrom of this
international research controversy and this provided the dy-
namic for what were probably the most significant developments
in the history of Irish mathematics. The fact that Dublin
mathematicians were able to move to the forefront of science
at this time was because Bartholomew Lloyd [16] had reformed
the curriculum of Dublin University and made it possible for
the young lions of the emerging school to base their research
on the most advanced paradigms of the day. However, from this
period on, the research traditions in Dublin mathematics were
based on its own bifocated traditions of geometry and algebra

and not merely on foreign inspiration.
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BOOK REVIEW )

“GEORGE BOOLE. HIS LIFE AND WORK® (profiles of genius, Mo.2)

By Desmond MacHale

Boole Press, 1985, £25.00

xv + 304 pp.

I The Boole Press achieves a notable publication in this

second boak in their biography series.
in which George Boole (1815—185A)

The name of the house

itself reflects the esteem

is held in Ireland; and this book meets the expectations that

the reader might hold, for Dr MacHale has produced a fine and

rounded portrait of one of the great thinkers of the 19th cen-
tury. Boole is a remarkable example of a man who mastered

his disadvantaged origins to take the founder chair in mathem-

atics at Queen's College Cork and,
¢ and also systematise and extend

in his research, to lay douwn

a main line of study in logi

knowledge of differential egquations.
unlikely to be eclipsed as 3 general bio-~

MacHale's book is a

ma jor achievement,

graphy and deserves to be a best-seller.

In addition to a general description of the works, Mac -

Hale provides much information, often little-known, on Boole's

1ife and career: pirth in Lincoln to a pcor but intelligent

cobbler (Ch. 1)3 proprietor of N
his 20th to his 35th years (Ch. 2);

n thch hitherto virtually nothing was known,
He also pays due attention

is own schools 1in the area from
and then extensive accounts,

o} on the period

at Cork (mainly Chs 5,6,8,11,14).

to Boole's attempts to write poetry
f his thought (Ch. 14). A

(Ch. 12), and the extremely

important religious components O
variety of portraits and photogra

ends with a full bibliography of Boaole's
e archives of the Royal Soc-

phs adorn the text, which
writings (a summary

description of the Nachlass in th

jety would have been wvelcome'), a selection of related writings

on Boole (supplemented in the bibliography attached to this

review), and an excellent index.
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In the final chapter of the book, mﬁich might ha
petter called an appendix, MacHale elaborates upon thve be?n
tree of p. 4 to describe Boole's family. They co ? fam%ly
wife Mary Everest Boole (1832-1916), a notable fi mprl?e "
(Boolean) educational psychology in her ouwn ri ht?U;e ln'
daughters, who include a mathematician, a chem?st, a:; :l;e
’ ov-

elist; i
;s and various descenda ts, who count among their n b
umper

e mathe atician C.H Hin 1 1 n e ent logist
th oMo into > S gra dso [s]
herm a omo
H.E Hinto and niece the vathematician Joan inton and the
sE e v

applied mathematician Sir G.I. Taylor

II On the prehistory of Boole's achievements, MacHale i
strong, making Boole appear more isolated than was the S
ané eyen attributing to him some achievements of othe o
principal main source of the mathematical traditions tz'whiZﬁe

he contrib i
ibuted is the work of Lagrange, who tried to algebri
ise

mathematic#, and’in the context of the calculus initiated &
study of differential operators and functional equati o
MacHale’notes this tradition but mishandles it by atz:?z- i
th? o?erator form (d/dt)x to Leibniz (p. 45): in fact ' e:lng
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dx, and ‘'dx/dt' means there 'dx + dt'. o mrosues
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In his

I11 Boole's researches belong to both these areas.
spare time from school-teaching he worked especially on diff-
erential operators, systematising the theory in his great paper
of 1844 '0n a general method in analysis' (pp. 61-66).

Here he stressed the laws of commutativity and distributivity ,
and also the index lauw

nmnn(g) 17m+n(g) (1)

where 7 was some differential (or difference) operator. Then,
a few years later, inspired by a disagreement on logic between
Sir William Hamilton and Augustus de Morgan®, he outlined his
programme for 'a mathematical analysis of logic' (pp. 68-72),
giving again the laws of commutativity and distributivity but

replacing (1) by the index lauw

x? = x, or x(1-x) = 0. (2)

I am very surprised that MacHale endorses Russell's quite
mistaken view that Boole's Boolean algebra made him the 'dis-
coverer of pure mathematics' ® for it is clear even from the
titles of his books that Boole saw his work as mathematics
applied to logic, and especially to mental processes. Thus
The laws of thought (1854) means exactly what it says: a math-
ematical psychology’. The processes described in (2) and
their consequences could apply to any area of thought, includ-
ing mathematics itself: MacHale rather misses the importance
for Boole of the example of singular solutions to differential
equations (pp. 220-222), since they (as a 1) have the dual
Properties of solving the equations (like an x) but lying out-

side the general solution (3 1a 1-x).

Indeed, mathematics and logic themselves seem to be com-
plementary parts of a 'universal calculus of symbols', to use
the happy phrase of Laita (1877).
in (1982, 37) the following theme for Boole's ideas, and one

On its basis I presented

which moreover has a Boolean structure, as self-reference would
demand (see Fig. 1). The view that the mind has the power
to pass from the particular to the general, marked by the cen-

tral arrow in the diagram, is crucial to his theory: it seems
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to have informed the rather rigid style of his school-teachimg
(pp. 41-43), was stressed explicitly in a lecture of 1851

(quoted on p. 99) and may have motivated his practice of Work-
ing at night in the dark (p. 166, repeated on P. 228), freeing
the mind from the geometrical and visual and allowing symbols

free rein.

FIGURE 1

Representation of Boole's System,

together with the corresponding Boolean structure

Universal calculus General

of symbols r
(reasoning of all kinds) 1
Logic Mathematics

(reasoning in language)

Classes Propositions Operators Quantities T Tax
T — f —
xy x{1-y)(1-x)z (1-x){(1-2)

Particular

In addition, Boole's logic carried with it a strong rel™-
igious connotation, in that the universe 1 was reflected in
the ecumenical views of the time, especially of F.D. Maurice,
Boole's hero in his later years (p. 206), whose portrait was
laid before him as he died (pp. 240-241), These sides of
Boole's idea rapidly died with him, despite their advocacy by
his widow (or perhaps, considering the eccentricity of her

style, because of it),

During his last years Boole concentrated once again on
mathematics, producing important text books on differential

and on difference equations, in which both differential oper-




ators and functional equations were prominent; in addition, he
wrote papers in these areas, and also in probability, where he
continued a concern launched in the later chapters of The laws
of thought. MacHale devotes his Ch. 15 to these areas, per-
haps a little lightly; for example, the significance of his
contributions to probability is not easy to assess. He notes
Mrs Boole's involvement in the textbooks (pp. 219-220), but his
later general judgement that 'she had very little knowledge of
mathematics and little more than a superficial understanding

of her husband's work on logic' (p. 258) seems grossly unfair:
Laita (1980) argues persuasively for the general correctness

of her testimony. In many ways we are indebted to her for the
prosecution of his later studies, as well as for the line of

genius which she and her husband bequeathed to the world.
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FOOTNOTES

1. Hesse (1952), not in the bibliography, describes some
materials in the Nachlass; see also footnote 6. G.C. Smith
is working on the correspondence between Boole and W. Thomson
(later Lord Kelvin), held at Kelvin's end in the Cambridge and
Glasgow University Libraries.

2. MacHale discusses on pp. 259-260 aspects of C.H. Hinton's
book The fourth Dimension (Hinton 1904). However, Hinton's
geometrical treatment of syllogistic reasoning - in which he
drew on sister-in-law Alicia Stott Boole's ideas (Hinton,

p. 90) - presents a symmetry which surely should not obtain

{(p. 102, where the box AEQ should be dropped from the scheme).

3. See Van Evra (1984). In a curious detail of non-trans-
mission of thought, the French 'logique' of Lagrange's time
did not come over. A form of semiotics (to us) in the hands
of men such as Condorcet and Condillac, it linked specifically
to algebra (Albury 1980, Auroux, 1981), and to other things,
such as the education of the deaf. However, the general con-
cern with signs is evident in England especially with Babbage,

and to some extent in Boole.

4, These words were introduced, in connection with functional
equations, by Servois (1814), one of several French figures
whose work refutes MacHale's claim that 'Boole was the first
person to define clearly the concept of an operator’ (p. 65).
Further, I know of no information to back his claim on p. 218
that 'Boole's premature death alone prevented him from being
enrolled by the French Academy of Sciences'. Finally, it is
disheartening to see the mathematician V.A. Lebesgue called
'Lebesque' on pp. 46-48, 54, and even indexed on p. 301 as

't ebesque, Henri', which misidentifies the mathematician as

well as mis-spells the name.

S. On this influence, see Laita (1979). MacHale shows him-
self on p. 285, n.B not to be abreast of the current interest
in de Morgan: see especially Joan Richards (1980) on the lead
up to de Morgan's position on algebra, Pycior (1983) on its

development, and Merrill (1978) on his contributions to logic.

6. See pp. 130, 217; and also p. 224. In an improbable move,
Mrs Boole hoped around 1905 that Fussell might edit Boole's
manuscripts for publication; he declined, and recommended Cout-

urat, but nothing was done (see my (1977), 137).

7. On Boole as a 'psychologist logician' as opposed to Mill
as a 'logical psychologist', see John Richards (1980). The
apologies for Boole's psychologism given in Musgrave (1972) are

based on misunderstandings.

I. Grattan-Guinness, Middlesex Polytechnic
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BOOKS RECEIVED

"OPTIMAL SEQUENTIAL BLOCK SEARCH"

By Li Weixuan

Research and Exposition in Mathematics 5. Berlin: Heldermann
Veanlag 1984, viii + 209 p., soft cover, 38.00 DM.
ISBN 3-88538-205-9

Sequential block search is a mathematical method to search
for the optimal value of a unimodal function. It has become
an important.method in operations research not only because it
has extensive practical applications but also because it is a

basic technique in multi-variate optimization.

Sequential search was first studied by J. Kiefer in 1953
and has since been developed by many mathematicians working in
various fields. In this book, the author presents a compre-
hensive account of the mathematical aspects of this tapic, and
the emphasis is on results by Chinese researchers which appear

here for the first time in English language.

"MODAL THEORY, AN ALGEBRAIC APPROACH TO ORDER, GEOMETRY AND
CONVEXITY"

By A.B. Romanowska and J.D.H. Smiih

Research and Exposition in Mathematics 9. Berlin: /Heédewmann
Vealag 1985, xii + 158 p., soft cover, 38.00 DM.
ISBN 3-88538-2089-1

Modal theory is a new algebraic discipline, comparable in
scope and intention with the well-established disciplines of
linear algebra, lattice theory, and semigroup theory. The
topics of modal theory, belonging mostly to universal algebra,
have broad connections to the theory of semigroups, semilatt-
ices, lattices, convex sets and geometry; also included are

interesting applications to computer science. The work summ-

- 70 -

arizes various recent results in a new, unifying manner. The

value of the work lies in thé investigation of general proper-

ties of modesvand modals (idempotent entropic algebras that are
not necessarily associative) and in the analysis of various

special cases.




PROBLEM PAGE

Both the new problems this time are inequalities.

1. If 1 <p s 2 and a = g% show that
%osep
(EE§E> 2 1 + (tana)cos(pB), for 0 = 0 s a.
This was shown to me by Matts Essen of Uppsala. It can

be done by elementary calculus, but function theorists may like

to speculate on how the inequality arises 'naturally'.

The other problem was submitted by Bob Grove of Auburn

University, Alabama,

2. Suppose that 0 = ¢, = ... s 65 < m, that A=[sin(|e;-0;[)],
and that |[A]] = max(|[Ax]]| ¢ ||x|] = 1}. Show that

A

1Al

cot(f%),

and characterize the case of equality.

Now for the solutions of some previous problems.

1. Consider the sequence of digits

19B842376B........
obtained using the rule:

"after 1984 every digit which appears is the final digit of the

sum of the previous four digits."

Does 1884 appear later in the sequence and, if so, when?
What about 18857

This problem was suggested by Pat Fitzpatrick who says

that it originated in a Hungarian mathematical magazine.
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First note that if we reduce all digits mod 2 then the

sequence is
1100011000 ..w.. &

which is periodic with period 5. Hence 1985, which reduces

to 1101 mod 2, can never appear.

To see that 1984 must reappear note that there are only
10* four digit numbers. Hence; some block of four digits
must repeat, say abcd. Since the sequence of digits can be
generated backwards in a unique manner from any given block
of four digits, we can arrive at a second occurrence of 1984

by working backwards froum the second occurrence of abcd.

Working with a computer one finds that 1984 reappears
after 1560 steps. However, Pat points out that this fact can
be ascertained even in the event of a power failure, using a

little algebra to reduce the effort. Here is the idea.
The problem can be written in the form

@n+s T 8n+3 * 8nip + Bney + ap  (mod 10)

where ag = 1, a; = 9, a, = 8, a; = 4, We know that this seq-
uence has period 5 when reduced mod 2 and so it is enough

(since 2 and 5 are coprime) to find the period n when the seqg-
uence is reduced mod 5. The original sequence will then have

period 5n,.

Recasting the problem in matrix form we have

Unsy = ABug(mod 10), for n = 0,1,2, ...,
where
ap 0 1 0 0O
0 0 1 O
Upn = an+1 and A = .
an+2 0- 0 0 1
anys 1T 111




We are then seeking the smallest n such that

AnBo = Yo (ITlDd 5).

Now the vectors ug, U, uU,, U, are linearly independent

over Z5 since

19 8 4
g 8 4 2 -
= =149 2 -1 (mod 5),
8 4 2 3
4 2 3 7
As
ATy, = u; (mod 5), for i = 0,1,2,3,
this shows that
A" 2 T (mod 5).

The matrix A satisfies its own characteristic equation,
that is,

x4 - x3 - x2 o ox -1 = 0 (%)

and, since this polynomial is irreducible over Z,, the smallest
field containing Z sand A is GF(5"). (I am grateful to Bob
Margolis at the Open University for a short refresher course
on Galois theory!) This means that the multiplicative order
of A in GF(5") is a divisor of 5%-1 = 624 = 2%.3.13. It is
now a tedious but elementary exercise to check (with the aid

of (*)) that the multiplicative order of A in GF(S%) is 312.

So the answer to the original problem is indeed 1560=5x312.

Remarks 1. It is easy to check that A® = I(mod 2) and so the
above discussion shows that the period is 1560 whenever

det(uouiusus) is relatively prime to 10.

|
\
|
|
;

2. Tim Lister at the Open University noticed that
9126 appears in 1984 ... after exactly 780 steps (half a

period). In fact

A'S® = -1 (mod 5),

since the non-zero elements of GF(5%) form a cyclic multiplic-

ative group, and so
A78% = -1 (mod 10).

So this is no coincidence!

3. In his book "Geometry", Coxeter credits Lagrange
as the first to notice that the final digits of the Fibonacci
numbers form a periodic sequence with period 60. Houwever,

he gives no algebraic discussion of this fact.

1. Playing solitaire on an unlimited board, on which is
drawn a horizontal line, you are required to lay out pegs below
the linme in such a way that a single peg can be manoevured as

high as possible above the line.

The diagrams below illustrate positions which enable a
peg to reach the second, third and fourth rouws, respectively.

The blocking of the pegs indicates, informally, the order of
play.

o 0o 0 @ O © 9 9 9 0 0 ©
o IIIIIII o o[e] e o)} e o
o o o o ol|le e e o o o

Position 1 Position 2




' Any position can now be assigned a value b ddi
o] (e} (o] (o] (e} O O g 9 y adding the
e . —— v— values of the pegs.
le o] e 0)0)0)0)
] (o] @ @ @® ® @ We choose p in such a way that a move of the following 1
.« i
type |
o|l® © e|e® e e - ——— |
o @ [ ]
[ ] o O n n+1 n+2
o O O @ y y y
Position 3 i leaves the value of the position unchanged. Evidently we
; require that
Notice that, while playing position 2, we obtain position :
1 moved up one row. Similarly, while playing position 3, we i ITRL- U“+1 . u”+2’ that is, p2 + u - 1 = 0,
obtain position 2 moved up one row.
i and so u = 5(V/S5 - 1) = 0.618, a not-unfamiliar number!
However, there is no arrangement of pegs below the line
which enables a single peg to reach the fifth row above the ; It is now easy to check that no move can increase the
line. Here is the beautiful proof of this fact given in vol- value of a position, and so to reach H it is necessary to start
ume 2 of "Winning Ways for your Mathematical Plays" by Berle- ' with a position whose value is at.least 1. If such a position
kamp, Conway and Guy (warning: these books are addictive!). exists, with all pegs below the line, we may assume that it

contains only finitely many peqs.

Choose a particular hole H on the fifth row. It is
enough to show that H cannot be reached. Assign to H the However, a straightforward calculation shows that the
value 1 and then assign to any other hole the value un, where total value of all the holes lying below the line is 1. Hence
n is the length of the shortest path (parallel to the axes) to ; no such position exists.
H. Here p is a number between 0 and 1 to be chosen in a mom-
ent. ! Remarks 1. This valuation of positions makes the attainment.
. | i of row 4 look rather a modest achievement, since the hole below
; /// j H has value only p. It is much harder, for example, to reach
P |
e | the following position
U 1 u
2 2 H
u M u : o
.. e TERRTE . i
TREERTE SN TE e
URERRTRRNNTE | o
|
TLENRTE I ! O
T ®
. O @ o]

IR




which has value

W+ u* + S = 1 - u" = 0.854.

It seems unlikely that aone can reach every position (below H)

which has value less than 1, but I don't know of .a counter-

example.

2. A similar calculation reveals that for the anal-
ogous problem in three dimensions it is impossible for a peg
to reach the eighth row. The seventh row can be reached,

however.

Phil Rippon,
Open Univensity,

Milton Keynes.

CONFERENCE REPORT

GROUPS IN GALWAY 10-11 MAY 1985

A Conference on Group Theory, sponsored by University
College, GCalway, the Royal Irish Academy, and the Irish Math-
ematical Society was again held at University College, Galuway,
on Friday and Saturday 10th and 11th May 1985, The invited
speakers were T.0. Hawkes (Warwick), G.D. James (Cambridge),
T.J. Laffey (UCD), P.D. MacHale (UCC), T.G. Murphy (TCD), and
5.J. Tobin (UCG). Lectures were also given by D.W. Lewis
(UcD) and M. 0'Searcéid (UCC).

Se4dn Tobin opened the Conference with his talk entitled
'Razmyslov Algebras' (see I.M.S. Newsletter 13 (March 1985)
pp. 57-65). He expleined Razmyslov's construction of a non-

soluble group of exponent p?, for odd primes p.

Tim Murphy, in his lecture on ‘Tensof Croups', discussed
the duality between linear groups and the sets of tensors which
they fix, He also illustrated the use of Penrose's notation
for tensors, and his hand-out demonstrated the qualities of the

TEX computer typesetting system.

Gordon James described 'A g-Analogue of the Symmetric
Group Algebra'. Given a field F of characteristic p, and a
nonzero element q of F, he defined an F-algebra H, whose prop-
erties (for example the number of its simple right ideals, and
the dimension of its centre) can be obtained from those of the
group algebra over F of the symmetric group by substituting g

for p.

Tom Laffey's title was 'Some Maximal Subgroups of the Gen-
eral Linear Group'. He began by presenting a short proof (due
to Radjavi) of the fact that every element of SL,(F) is a comm-
utator in GLL(F), except when n = |F| = 2. He then proved ’

that the invertible monomial matrices form a maximal subgroup
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of GL4(F), provided |F] > 5, and he showed how this, and rel-
ated results, have been used to classify certain linear maps

from a space of square matrices to itself.

Des MacHale spoke on 'The Relationship Between |G| and
lAaut D! for a Finite Group'. He reported on functions f(n)
such that if pf(n) givides |G|, then p" divides |Aut G|, and
also on results related to the conjecture that if G is a non-
cyclic p-group of order p? or more, then |G| divides [Aut GJ.

He finished by mentioning a number of other open questions.

In the last lecture of the Conference, Trevor Hawkes

dealt with three topics involving 'Linear Methods in Soluble
Groups'. He first proved that if H is an F-projector of G,
where F is a saturated formation, and if every irreducible
character of H can be extended to G, then H has a normal comp-
lement. He then showed tnat the Fitting length of G is bound-
ed in terms of the composition length of a Fischer subgroup
(nilpotent injector). Finally he reported on groups with a

fixed-point-free operator group.

Labhair Miche4dl O'Searcéid faoi 'Comhaireamh p-Fho-
ghripai '. David Lewis gave a talk on 'Sums of Sguares in

Division Algebras'.

We would like to thank the lecturers, the sponsors, and

the participants for their continued support.

Rex Dank
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The dates of the BAIL IV Conference have been harmonised with

thoseyof the 10th International Conference on Numerical Methods
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of Fluid Dynamics, 23-27 June 1986, in Beijing. Participants
are thus enabled to enjoy a short post-conference tour of China
and then travel by rail from Beijing to Novosibirsk, departing
Wednesday, 2nd July and arriving Saturday, 5th July. It is
proposed that participants from Western Europe fly as a group
to Moscow and then onwards to Novosibirsk in order to avail of
economical air fares. In addition, it is expected that an-
other group will trével by train from Beijing to Novosibirsk.
If sufficient interest is shouwn, a group may also be organised
to fly from Western Europe to Beijing.  Further information
about these travel arrangements may be obtained from the BAIL

Secretariat in Dublin.
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P.0. Box 5, 51 Sandycove Road, Dun Laoghaire, Co. Dublin,
Ireland.

Telephone (+353-1) 808025; Telex 30547 SHCN EI (Ref. BOOLE);
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