4. INTRODUCTION

FATOU'S THEOREM AND UNIVALENT FUNCTIONS
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We also write, in the usual notation, H® to denote the class

of functions that are analytic and bounded in U.

The basic result connecting functions in H® and angular

limits is the following well-known theorem of Fatou.

THEOREM 1. (Fatou, 1906)

Let F e H™, Then f has an anqular limit at all points
exp(if) on C except possibly for a set of 8 of measure zero,

that is, angular limits exist almost everywhere on C.

This important result has been generalised in a number
of ways, but our interest here is in the fact that the result
as stated is sharp in at least two senses. In the first
place, given any subset £ of C of (linear) measure zero, there

is a function f in H” for which the radial limit

Lim f{rz)

=+

fails to exist for all ¢ in E [4], and secondly, if ' is any
curve in U that approaches the point 1 tangentially, there is
a function g in H® which does not approach a limit as z app-
roaches any point o0 along etOr [3]. The situation for
functions in H” is thus clear-cut: we cannot, in general red-
uce the size of the exceptional set in Fatou's theorem for
such functions nor can we replace angular limit by tangential
limit in .any uniform sense. To obtain improvements in either
of these two directions, therefore, some extra condition must
be imposed on our functions, and the extra condition we con~

sider here is that of univalence.
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3. UNIVALENT FUNCTIONS

A function f is said Lo be univalent in U if it is anal-

ytic and one-to-one on U, that is,

f(21> = f(Zz)y z,, 2, € U = 2, = 22
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THEOREM 2. (Beurling. [1, p. 561)
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fails to exist where g, is a point on C which corresponds to

the boundary element ab of G.
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TANGENTIAL LIMITS

{et ¢ be a decreasing continuous function on [0,1] with
®(1) = 0 for which
A - g as r o+ 1. (2)
(r)
Let K > U, 8 € [0,2n] and set
0(6,8,K) = (ze usle’® - 2] = Ko(r))

here r = |z| The region © makes tangential contact with C
W = .

t exp(i®); when ¢(r) = (W—rz)%, for instance, 02(¢9,0,1) is
a H

the disc of radius 3 centred at sexp(if).

Definitieon. For any ¢ satisfying (2), we say that f has a

T - limit ¢ at exp(ie) on C if, for every positive K,

$

f(z) >4 as z - ele, z e (¢,0,K)

s] Cc
We are 10w 1 a ositio to state our next theorem whil

i special case of some recent results of Nagel, Rudin and
is a

Shapiro.

THEDREM 3. ([5]).
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For 0 < r < 1, set 1
' ¢(r) = (log Tj;) »
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and let f € D, the Dirichlet space. Then f has a T¢ _
at almost all points on C.

limit

Nagel et al. also show in [S] that, for certain other
kinds Df exceptional sets E - intermediate between sets of
log-capacity zero and measure zero - every f in D has a T. -
limit at all points g e CN\E where, this time, ¢(r) = (1-r)°,

0 < e <1, and € depends only on the size of the exceptional
set E. All these results of course extend immediately to

the full class of univalent functions. In particular, there-
fore, by Theorem 3, each univalent functian has, at almost

all points ¢ on C, a limit within a region that makes tangent-
ial (indeed exponential) contact with C at z. This is in
sharp contrast with the behaviour of functions in H®, desc-

ribed in Section 2.

The results we have discussed so far all relate to the
existence qf certain kinds of restrictedllimits at points on
C and one might ask whether, for a univaient fy there must
always be some point ¢ on C at which f has an unrestricted

limit, that is, at which

lim f(z)
2+
exists as z + ¢ in any way from inside U. Such a point ¢,

however, would correspond to a prime end of f(U) whose imp-
ression [B, p.- 276] consists of a single point and Caratheo-
dory [1, p. 184] has given an example of a bounded simply
connected domain G which has no such prime ends. Then, by
the Riemann mapping theorem again, there is a univalent func-
tion f with f(U) = G and this function cannot have an unres-
tricted limit at any point on C. There is an interesting
subclass of univalent functions, however, the members of which

always have unrestricted limits at some points on C.




5. STARLIKE UNIVALENT FUNCTIONS

A univalent function f, with f(0) = 0, is said to be
starlike if the image domain f(U) is starshaped with respect
to 0, that is, f(U) contains the line segment [D,m] whenever
it contains w. We give.two examples of starshaped regions
in Fig. 3; note that the region in (b) may have infinitely

many slits.

(a) (b)
FIGURE 3

IfF f is starlike and bounded in U, then

lim F(rele) = F(e) (3)
r+1
exists for every 8 in [0,27]. (Indeed it can be shown that
such functions have, for every ¢ in (0,1), a T¢ - limit with

o(r) = (1-t)% at a1l points on C. Details, the reader will
be relieved Lo learn, to appear elsewhere.) By classical
results of Baire on pointwise limits of sequences of contin-
vous functions, it follows from (3) that the set A of points
of discontinuity of ? is a set of the first category. Hence
B = [0,27]\A, Lhe set of points on which Fis continuous, is
a set of the second category and is thus uncountable and every-
where dense in [0,2n]. Next, by the usual Poisson represent-
ation formula,
2m
Flz) = 5= | P(r, 8-t)F(t)at,

where P is the Poisson kernel, and it follows from this, by

a standard result, that if f is continuous at t = 8o,
lim fF(z) = f(80)
%2,
‘as z + ¢, = exp(iB,) in any way from inside U. Noting Fin-

ally that the set of points at which any function is discon-

_t;nuous is of type FO’ we have thus proved one part of our

concluding theorem; the second part is an easy consequence

of (the proof of) {3, Theorem 1].

THEOREM 4.

A subset E of C is the set of points at which some boun-
ded starlike function f does not have unrestricted limits if

and only if E is of type Fy and of first cateqgory.

A bounded starlike function thus has unrestricted limits
at a set of points on C which may have measure zero but is

uncountable and dense on C.

6. SOME OPEN QUESTIONS

A number of guestions arise naturally from the results
discussed above, and we conclude this note with a brief sel-

ection.

(a) Can we reduce the size of the exceptional set in
Theorem 2 or in Theorem 3 for functions in D or for

univalent functions?

In this context we note that the existence of an angular
limit at a point on C does not imply the existence of 2 T¢ -
limit with &(r) = (1-r)° for any € in (0,1) at that point
either for functions in D or for univalent functions. Det-

ails, again, to appear elsewhere.




(b) Is the conclusion of Thecrem 3 sharp, with respect
to the type of tangential limit obtained, for star-
like functions, for univalent functions or for func-
tions in D? Is there a function ¢ (satisfying the
conditions in Section 4) such that there exists a
univalent function f which does not have a Ty - limit

at any point on C?

Answers on a postcard, please.

REFERENCES

COLLINCWOOD, E.F. and LOHWATER, A.J.

"The Theory of Cluster Sets', Cambridge University Press,
19606.

KOOSIS, P.

"lectures on Hp Spaces", London Math. Soc. Lecture Note

Series, 40, Cambridge University Press, 1980.
LOHWATER, A.J. and PIRANIAN, G.

"The Boundary Behaviour of Functions Analytic in a Disk",

Ann. Acad. Sci. Fenn. Ser. Al, No. 239 (1957).

LUSIN, N.N. and PRIVALOV, I.I.
"Sur l'Unicite et la Multiplicite de Fonctions Analytig-
ues", Ann. Sci. Ecole Norm. Sup., (3) 42 (1925) 143-191.

NAGEL, A., RUDIN, W. and SHAPIRDO, J.H.
"Tangential Boundary Behaviour of Functions in Dirichlet-

Type Spaces", Annals of Math., 116 (1982) 331-360.

POMMERENKE , Ch.
'Univalent PFunctions', Vandenhoeck and Ruprecht, 1975,

RUDIN, W.
'Real and Complex Analysis', 2nd Ed., McGraw-Hill, 1974.

Nepuntment of Muthemutics,

Univeasity College,

Counk,

BOOK REVIEWS

"FIELD EXTENTIONS AND GALOI!S THEORY"
By Julio R. Bastidu

Published by Addison-Wesley, 1984, £41.40 stg.
ISBN 0-201-13521-3

The author begins with a four-page "Historical Introduct-
ion" followed by fifteen pages devoted to "Prerequisites" and
ten (!) to "Notations". The work proper is divided inlo four
chapters entitled "Preliminaries on Fields and Polynomials",
pp. 1-40; "Algebraic Extensions", pp. 41-91; "Galois Theory",
pp. 92-211 and finally "Transcendental Extensions", pp. 212-

280.

"In this book, Professor Bastida has set forth this

classical theory, of field extensions and their Galois groups,

with meticulous care and clarity. The treatment is self-

contained, at a level accessible ta a sufficiently well-

motivated graduate student, starting with the most elementary
facts about fields and polynomials and proceeding pasinstakingly,
never omitting precise definitions and illustrative examples

and problems. The qualified reader will be able to progress

rapidly, while securing a firm grasp of the fundamental con-

cepts and of the important phenomena that arise in the theory
of fields. Ultimately, the study of this book will provide
an intuitively clear and logically exact familiarity with the
basic facts of a comprehensive area in the theory of fields.
The author has judiciously stopped short (except in exercises)

of developed specialized topics important to the various app-

lications of the theory, but we believe he has realized his

aim of providing the reader with a sound loundation From which

to embark on the study of these more specialized subjects."




