CAPACITIES, ANALYTIC AND OTHER

Anthony G¢. 0’ Furnctl

(1.1) Let £ be a compact subset of C. If f is analytic on

§2 _ £, then it has the Laurent expansion
_ a az
fo= ag+ o+ 75+

near «, where 52 is the Riemann sphere. The (Ahlfors) anal-

ytic capacity of £ 1s the non-negative number
y(€) = sup |a,(F)]

where f runs over all functions, analytic on 52 - E,yénd

bounded by 1 in modulus. A compact set E has y(E) = 0 if

and only if € is removable for all bounded analytic functions,
i.e. if and only if given U open and f:U0 ~ E » L, analytic
and bounded, there exists an analytic continuation of f to U.

For open sets U, y(u) is defined as
sup |[y(E):E£ € U, E compact].

For arbitrary sets A C [, the outer analytic capacity v¥(a)
is defined as

inf {y(u):A €U, U openl.

(Readers interested in more details should consult [H] for

references.)

(1.2) Analytic capacity plays a key role in the theory of
amounts to the same
Let O(E)

For X com-

uniform rational approximation (or, what
thing, holomorphic approximation) in one variable.
denote the set of functions, holomorphic near E.

pact in C, let R(X) denote the set of uniform limits on X of

elements of 0O(X).
At condition that all functions continuous on X belong

Vitushkin showed that a necessary and
sufficie
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to R(X) is that
y(U ~ X) = y(U)

for all open sets U (or, equivalently, for all open discs U).
The capacity y, in combination with another, the continuous
analytic capacity o, provides a similar resolution (also due

to Vitushkin) of the problem of which X have
R(X) = (f: f is continuaus nn X and analytic on int X} .

See [6] for other uses of y in connection with R(X).

(1.3) There are two important open guestions about y. The
first is to give a reasonable "real-variable" characterisation
of the y-null sets. For instance, Vitushkin has conjectured
that y(E) = 0 if and only if almost all projections of £ on
lines have outer length zero. Thanks to some work of Havin-
son, Calderon and others, we know this is true for og-rectif-
iable sets, and for those totally unrectifiable sets known

to be y-null [mM]. This problem is particularly irritating
because the bounded analytic functions are practically the
only "reasonable" class of analytic functions for which the
null sets lack a real-variable description.

see [C].

for instance,
The only significant exception are the Smirnov E
classes, but they do not count, because, when defined, theyD

have the same null sets as Yy [H].

The second problem is whether y is quasi-subadditive,

i.e. whether there exists a universal constant k > 0 such
that

Y(Ey U E,) < kly(E,) + y(Ep))

whenever E; and &, are compact in C. There is a sizeable
logjam in uniform holomorphic approximation theory because
of this problem. For example, if £ is compact, with y(E) =

and f:52 i i i
f:5° 5+ € is continuous, do there exist functions f ;52 .
n
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tending uniformly to f on S22, holomorphic wherever f is and

on a neighbourhood of E7? If vy is quasi-subadditiue, the

answer is yes. If Yy were subadditive, one could define a
(the "analytic-fine topology") on €, finer

that ought to be especially help-

special topology
than the Euclidean topology,
ful for studying R(X). This topology might provide the real

answer to E. Borel's dream of the perfect notion of analytic

function.

(1.4) The most penetrating work on the subadditivity problem

is in [D]. Davie showed that quasi-subadditivity would

follow from the statement:
y¥(E U F) = y(E) + <(E)y(F)

wherever £ is compact and F is open, where «(E) > 0 is indep-

endent of F. We know that

y(E u F) s y(E) + <(E)Y(F)
wherever E and F are compact. It may not seem like much of
a gap, bul there it is.

in what follows, we shall present another formula for

y(E), and use it to cast a little light on the subadditivity

problem. [t will become clear that subadditivity is Jjust

another version of the only "“"real" problem in analysis, which

is how to handle

(2.1) Dolzenko generalised the concept of analytic capacity.
Suppose B is a Banach space of functions on €, such that 2 <8,
) < B*, and the inclusions are continuous. Here 0 = H(C,C)

denctes the space of test functions. We assume that, if B

has a predual By, then 2 < By, continuously. Also, we assume

fe B =T e B. The analytic B-capacity of a compact EC [ is
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Yg(E) = sup [a:i(F)]

where f runs over all functions in the unit ball of B that

are analytic on S2% - E.

Examples are B = LD (with respect to area measure L?)
¢ (for continuous and bounded), Lipo, lipa, BMO, VMO Ek (

bounded continuous derivatives up to order k), some weighted

Lp spaces, Sobolev spaces, etc.

(2.2) The number a,(f) equals

whenever I' is a rectifiable contour around £, in the usual

sense. A more entertaining formula is
1 ay -
o (f) = Llf W o1 o OF
where ¢ € D is any test function with ¥ = 1 on a neighbourhood
of E. This follows from Green's formula. It suggests the

nat i
atural way to generalise YB from the Cauchy-Riemann operator

to other differential operators.

Let £ be a compact subset of Pd, let B be a Banach space
of functions an €, and let f(md, L) be the Schwartz space of
C® functions from RS to C. Let L : ((Hd, E)*’{(Wd,m) EP a
linear differential operator with C% coefficients. Choo;e

d .
ve MR, €C) withy = 1 on a neighbourhood of E, and define

L
YB(E) = sup | F(x)L*w(x)de(X)ly

where f runs over all elements of the unit ball of B which
satisf = d i
> isfy Lf 0 on R- - E, in the (weak) sense of distributions.
e value of the integral does not depend on the choice of y
L

fo i
T such f. This concept embraces those capacities used by
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Hedberg, Polking, Bagby, and others [HE] in connection with

various approximation problems. The classical Newtonian

capacity is YL , where A is the Laplacian.
0

(2.3) The technique of fhe dual extremal problem is based
on the following fact, which may be proved by using the Hahn-
Banach theorem.

Let By be a subspace of a Banach svace B,

Duality Lemma.
and let A€ g*.

1} = dist(A,Bé).

un

(1) Then sup [[AF|:f € Bos Pellg

(2) [f B has a predual By, if Bg is B#) for some sub-

space B1C: By and if A€ By, then

sup (|afl:f e By, [lflly s 1) = gist (A, 8,).

This lemma allows us to turn to an extremal problem in one

Banach space into a corresponding problem in the dual, or

in the pre-dual (if there is a pre-dual).
od use in the paét, but still has plenty

This technigue

has been put to go
of energy left. Qur present purpose is to apply it to get

formulae for the kind of capacities described above, SO as

to cast some light on the subadditivity problem.
(2.4) Applying part (1) of the Duality Lemma gives the formula

L : X
yo(e)y = inflft ¢ - S
; gl g,
where § runs OVET all elements of B* such that

fe B
= S5f = 0.

Lf = 0 off E

1f B has a predual By

gives the nicer formula

(and D =By is continuous), part(2)

L . »
YB(E) = inf L% - L*o]|
] Bx
where ¢ runs over all test functions supported on md ~ E
Recalling that W is any given test function with ¥ = 1 near E
we conclude that B
vg(E) = inf (]]L*
8 = in [t ¢|]B*1 de pH, & = 1 near E}.

(2.5) Applying this formula to classical analytic capacity
we get .

.1 3¢
y(£) = 5 inf (||§§||L1: bed, & = 1 near E).

(2.6) Applying it to the analytic capacity associated to

_ " . .
B Lp (the "analytic p-capacity” of Sinanjan), we get

1. ¢
E = = — . 7
YLD( ) - inf (’IBT!ILQ‘ b€ pH, ¢ = 1 near E}
for 1 < p < =, where g is the conjugate index to p. This

B has the property that B is mapped continuously to itself
by the Beurling transform:

(Ti)(z) = L) o0

| (22)? de?(g),
where the integral is interpreted as a limit in B norm of
principal value integrals of smooth approximation to f
Th i i ' , ‘
' e theory of the continuity properties of this and similar
integral operators is known as the Calderon-Zygmund theory

[A,S]. The operator T has the property that

T3¢ . 3¢

9z 3z

£ ’ i '
or all ¢e @, so that if T maps B - B continuously, we deduce

th i
at vg is comparable to the real-variable capacity

- 30 3
in (I’BXIIB* + !]5%[|B : ve D, ¢ = 1 near E}.
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Apart from LD (1 < p < ), the spaceslLipa and BMO are Beurling-
inpvariant dual spaces, SO this argument also applies to their

analytic capacities. In all three cases, this real-variable

formula gives a proof of quasi—subadditiuity. for instance,

for BMO we get

YBMD(E) - inf (]} |V¢|I|L1 : ¢eb, ¢ =1 near £},

ig within constant multiplicative bounds of".

where ~ means
strict to real-valued ¢, and we

1t makes no difference to re
get

YBMU(E) ~ inf [||¢|lm1,1= be V, ¢ = 1 near E}
1,1

= inf [{lhl|m1,1:h e v h = 1 near £}

= inf (|[Infln,1:he W', bz 1 near £);

which is obviously subadditive. Here m1’1 denotes the
functions with L1 distributional deriv-

Sobolev space of L,

atives. see [V].

(2.7) This method extends to other hypoelliptic operators.

Suppose L* has an inverse P ) + & such that PLd = 0 whenever
be 0. For instance, the Cauchy transform does this for
53 and, more generally, convolution with a fundamental sol-

utian does it for elliptic constant-coefficient L.

Suppose L has order m. Denoting the partial derivative

assaociated to the multi-index j by Dj’ we may ask about the

continuity properties with respect to B of the operator DjP,

for | ] = m. If all these map By continuously into By, then
YE(E) is comparable to the real-variable capacity
inf { 'X ||Dj¢}|8*: oe s ¢ = 1 near EJ.
[ jl=m
s for constant-coefficient elliptic operators, with

This work

B = Lp (1 < p < w), Lipa, M0, Lip(k+a), some Sobolev spaces,

etc. The assoclated Y; are then subadditive.
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(2.9) If L has real-valued coefficients, then YL is a real
. . . . b i
variable capacity even if B is not Beurling invariant Fo
. T

instance,

4 .
YLm<E) = inf [[|A¢"L1: be D, & = 1 near E}
inf {IIA¢|]L1: be D, ¢ = 1 near E, ¢ real)
inf [f|A¢||L : o€ D, ¢ 2 1 near E, ¢ real)
1 ’ '

This is pretty clearly subadditive.

(2.10) The upshot is that among the usual crop of elliptic
operators L and dual spaces B, the case L = 3 and B L i

] - = is
practically the only one we cannot handle with ease :nd

we cannot handle it at all.
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RAZMYSLOV AND SOLVABILITY

S.J. 7olin

The exponential growth in the number of active mathemat -
icians in the present era is sometimes illustrated by the
remark that there are as many mathematicians alive today as
have lived - and died - since classical times. A less pict-
uresque but more interesting indicator of mathematical activity
is the rapidity with which well known conjectures and problems,
sometimes of long standing, are being resolved. A recentk
article in the Newsletter (No. 11) by David Lewis on the
Merkuryev-Suslin Theorem illustrates this point, and the pres-
ent article (also expository, also concermed with Russian work)

provides another example.

INTRODUCTION

Many readers will be familiar with, or at least aware of,
the Burnside Problem in group theory, namely: must a group be
finite if it is finitely generated and has exponent k?

Having exponent k means that the group elements all satisfy
the lauw xk = 1 and some element has period precisely k. The
problem was stated in 1902 [1]}, and answered negatively in
1968; an outline of developments and a bibliography, may be
found in [4] and [3]. The story is by no means complete,

and many praoblems remain open concerning these qroups, but

one problem concerning solvability has been settled completely

by the work of Ju. P. Razmyslov in Moscouw.

Let Bk denote the Burnside Variety of all groups satis-
fying the law xk = 1; let Bk,n represent the free group of
rank n in Bk (then the n-generator groups of exponent k are
just the quotient-groups of Bk,n)' It has been knouwn for
many years (> 25) that:




