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1. INTRODUCTION
Consider a set of data (xi,yi), i = 1,2, ..., n with
0 s x, < %, < .. <x s 1 and y; = F(xi) e, do= 1,2, ...,n

where F is a well behaved function of x and the errors {ei}
are independently and identically distributed each with mean
zero and variance v. F is known as the regression function
of Y on X and its estimation from a finite set of observations

is one of the central problems in statistics.

The usual parametric approach to regression estimation
assumes F to lie in span {¢j : 1 = j s m), the set of linear
combinations of the basis fuTctiDns @1{@2, . ®m and then
estimates F by the function F in span (¢j : 1 £ 3 5 m) which

minimises the residual sum of squares given by
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We wish to choose Fin a larger class of functions cont-
aining span {¢j : 1 £ j £ ml as a subset. We minimise the
Res 5SS plus a penaltyvcorresponding to a measure of the dist-
ance of F from span {¢. ¢ 1 < j s m}. For example we might

- (2) 3
choose F € H to minimise
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where H = {g : [0,1] » Rlg,g' are absolutely continuous and
flg"(x)zdx < wf. The presence of the penalty imposes smooth-

0
ness on the estimator. If we cannot make any smoothness ass-
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umptions regarding F, then Y contains information about F(xi)
and none about F(x) for x # Xie This makes estimation of F
impossible. The constant ¢ is chosen by the user and controls
the trade-off between roughness as measured by L:g"(x)zdx and

fidelity to the data as measured by
n
B 2
iZT(Yi g(x;))*%.

In what follows we describe the use of roughness penalties
in more detail, examine the relationship between choice of
penalty and choice of Bayesian analysis, briefly describe the
large sample properties of such estimators and finally consider

a method for using the data to guide the choice of c.

2. POLYNOMIAL SMOOTHING SPLINES
Consider choosing a function g to minimise
‘ ' ()
(y; - 9lx))?* + ¢ Ig (x)2dx 2.1

1 a 0

e~

i
A unique solution to this minimisation problem exists in the

space

plm) {g : [0,1) » | g, gy ..., Q(m—1) are

1
absolutely continuous and J g(m)(x)zdx < o}
0

and we choose our regression estimate F to be that solution.

Schoenberg (1964) has shown that f lies in the linear space

Sm of polynomial splines of degree 2m-1. Sm consists of all

functions g : [0,1] - R such that

(i) g is a polynomial of degree 2Zm-1 in each interval

[xi, xi+1]' i = 1,2, .. N=1.

(ii) g is a polynamial of degree m-1 in the intervals

[0, %10 [xy1)

(iii) g is continuously differentiable up to order 2m-2.

It can be shown that given ay0855 -e.n A, there exists one and

only one function s e Sm such that

S(xi) = ay i =1,2, «.., N 2.2

Let o, denote the only element of Sm satisfying
T oi= 3]
it

It is easy to see that {01,02, e eey on} is a basis for Sm and

using this basis the element s-of 2.2 is given by

n
s(x) = ) aioi(x).
21

See Rice (1969) Chapter 10 for details.

Using this basis we can rewrite the minimisation problem

2.1 as: choose a,, a,5 ..., a_ to minimise
1 2 n
n n
.- o )02
i§1(yl r£1ar r(xl)) + clla a_u_ 2.3
1
where wog = &(E(m)(x)os(m)(x)dx. This is now a finite prob-
lem and the optimal values for 3,y 85y ..., @, are precisely
the values f(x1), s ﬁ(xn). tle can write 2.3 as
AT -~ AT A
(y - )1y - ) + cfTaf
where
y = (y s v y )T
»I, 2’ ° e o 3 n 9
Fo= (Fl)s Flx), waey Flx )]
— 1 277 0 n '
@ = (w )y 1,8 =1,2, ..., n.
The minimising value for f is f = Ay, where A = (I + CQ)_1.




The value of ¢ must be chosen by the user and is of vital
importance. For ¢ ==we must have g F(m)(x)zdx = 0 which,
together with the absolute continuity requirements, implies
that F must be a polynomial of degree m-1, indeed the usual
least squares polynomial of degree m-1. For ¢ = 0 we can

make 2.1 equal to zero by choosing ? € Sm satisfying

Intermediate values for c involve a trade-off between the
1
smoothness of the estimate as measured by L F(m)(x)zdx and the

fidelity to the data as measured by Z(yi - F(xi))Z.

Figure 1 shows some data generated by adding normal errors

to the function

F(x) = K1X10(1 - x)® o+ K2x3(1 - x)te

where K1, K2 are positive constants. The 50 x-values are
equally spaced in [0,t]}. - Figure 2 shows the fitted curve
obtained using the m = 1 roughness penalty and a value for c
chosen by cross validation (see Section 5). The true curve
is shown in Figure 3 and indicates that the estimate in this

case behaves very well.

Figures 4-7 refer to some real data concerning computer
repair times. Here X is the number of units to be repaired
and Y is the length of the call in minutes. The figures show
the fitted curve obtained using m = 2 as the value for c inc-
reases from 0 to «. It can clearly be seen how increasing c
causes the estimate to become smoother and to follow the data

less closely.
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3. THE BAYESIAN CONNECTION

wahba (1978) proved the following theorem:

Theoren

Assume that y, = F(xi) +'ei, i = 1,2, ..., N where {ei} are
independent and identically distributed as N{D,v). Let the

prior distribution of F(x), x & [D,1) be that of the stochastic
process
m -1 n
- 2
§1ﬁjx ( + v1Z(x)
where 8 = (0., 8., ..., 8 ) v n(0,v I], v, >0 is fixed and
- 1 2 il s} 1
7(x) is an m-fold integrated Wiener process
1
(x~u)m_1

7(x) = A2l du(u)

o (m-1)t

where W is a Brownian motion (see Shepp, 1966). Then F(x ; c)

the minimiser of 2.1 has the property that

~ lim
F(x H C) = v _)_OOE{F(X) l Y‘I) y2: cees Y }
[a}

with vy o= v/c where E is expectation over the posterior dist-

ribution of F(x) generated by the above probability model.

Thus the choices of m and c are closely related to the

choice of Bayesian prior.

4. ASYMPTOTIC PROPERTIES

Let ?(x ; c) be the estimator corresponding to a partic-

ular choice of c. Define

n ~
glc) = L (Flxy 5 e) - Flx;))?

i.e. the sum of squared errors if c is used as a smoothing
constant. R{c) is a random variable since different y-values

produce a different function f(x ; ¢) and hence a different

o3y -

value for R(c). The following theorem sho@s that if we allow
c to increase with n, but not too quickly then ER(c) » 0 at
s fast rate, where expectation is with respect to the normal

distribution on the errors.

Theorem 1

1 .
CJ F(m)(x)zdx + K(n/c)zm

0

ER(c)

A

where
©

dx

1
K = v[in.max(x [ )]Zm
: 1+1 i Zm)z
0

(14x

and v is the error variance.

Proof

See Wahba (1978).

Corollary
1 1

For c = 0(n°™") we have ER(c) = o(n?™ "y,

This is to be compared with ER(D) = 0(n) (since E(yi—F(xi))Z:v),

and shows clearly the benefit of smoothing.

5. THE CHOICE OF c

Many attempts have been made to use the data to quide the
choice of c. We shall describe one such attempt known as
cross-validation. The idea underlying cross-validation is
that a value of c good for the whole data set should also be
good if a single point is removed and that performance can be
judged by seeing how well the dropped point is estimated using

c as smoothing parameter on the remaining n-1 points. Leaving

w




out each point in turn we would choose c to minimise
n
_ 2Kkl . 2
v, (e) = k;Uk - P x5 oe))

where f[k](x ; ¢c) is the estimate of F based on all the data
except the kth point. Craven and Wahba (1979) propose that

instead of minimising VG(c) a weighted sum of the form

n k]
vic) = kZ1(yk - F (%, 3 c))zuk(c)

should be used. They suggest

1 - akk(c)

w (e) =

%Trace (I-a(c))
where A(c) is the matrix such that
E o= ale)y

and akk(c) is the kN diagonal element of A(c). akk(c) is
the weight given y  when estimating F(xk). If it is close

to one, the point Xy

in estimating F(xk) is unavoidably large and should be down-

weighted in measuring the worth of a particular choice for c.

In their 1979 paper Craven and Wahba support their advocacy

of cross-validation both by theoretical arguments and by means

of a simulation study.
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