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NON-L INEAR DIFFERENTIAL EQUATIONS IN BIOLOGY*

Alaustain D. Wood

Introduction

In recent years there has been considerable growth in the
range of mathematical sciences applied to biology and medicine.
For many years the statistics of experimental design had been
regarded as the main application in the life sciences, but with
the advent of mathematical modelling, both deterministic and
stochastic models (see Raymond flood's lecture to the Easter
1983 Symposium [4]) are gaining widespread acceptance. The
introduction of biotechnology courses in Ireland has led to
interest in the partial differential equations which arise in
biological process engineering, such as the reaction-diffusion
equation. Workers in fluid dynamics have linked with medical
doctors to cansider the equations governing the flow of blood
through the heart. Stochastic differential equations arise
in population dynamics and interesting problems in branching
of solutions of nan-linear differential equations have come from
transmission in nerve axons and from the study of reversible

reactions.

The mathematics involved in biological problems can range
from the very recent and sophisticated, such as the sledge-
hammer of topological degree theory applied to branching prob-
lems, to the ingenious application of the maost elementary ad
hoc methods of classical analysis and geometry, as we shall see
in.Section 2. But whatever mathematics is used, the final res-

Ults are only as good as the modelling process employed.

A typical modelling scheme is shouwn in Figure 1 overleaf.
It is rare for this process to flow smoothly from one end to
Often the mathematical problem cannot be seclved

in its original form. A solution may be possible by adding

% Survey Lecture given at the D.I.A.S. Christmas Symposium, 1983.
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FIGURE 1: The Modelling Process

to the mathematical assumptions, but such assumptions may no
longer be in line with the biological reality, with the conseg-
uence that the mathematical solution does not make sense when
interpreted in the real world. There is an obvious "play-off"
between mathematical tractability and biological reality in the

model.

There is an enormous temptation for the academic mathemat-
ician to pursue only those problems of current, pure mathemat-
ical interest, but this should be subordinated to truly inter-
disciplinary studies, pursued in co-operation with clinical,
laboratory and field research workers to provide fresh insight
into problems whose solution has important practical consequen-
ces., At this time increasing numbers of applied mathematicians
throughout the world are finding themselves employed on nuclear,
military or defence-related projects. While there is no doubt
that an active defence industry is good news for the employment
and remuneration of mathematics graduates, many mathematicians
in a neutral country would have moral reservations about work-
ing on such projects. In biological and medical problems,
there exists the opportunity to deploy one's skills, not to add
to human suffering, but to alleviate and prevent human misery

through the eradication of want and disease.
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The Predator-Prey Interaction

To give the flavour of biological applications, we pres-
ent some classical mork’carried out fifty years ago by the
Jtalian mathematician, Vito Volterra, best known for his work
on integral equations. This has also been used profitably
as a case study for advanced undergraduates or master's degree

students and appears in Braun's text on differential equations

(1.

We consider an environment where a population of prey,
numbering x(t) at time t, interacts with a population of pred-
ators which numbers y(t). We assume that there are ample
fesources of food for the prey, but that the prey are the sole
source of food for the predators. In the absence of predators
the prey population grows at a constant, positive rate a.

The number of predator-prey contacts will be proportional to
the numbers in each population: let b be the "success" rate,
from the predator's viewpoint, of each contact, where b is a
positive constant. Using dot for differentiation with respect

to time, the rate of change in the prey population is thus
- bxy (2.1)

For the predators, let ¢ > 0 be their natural constant rate
of decrease in the absence of prey. But they will increase

at 'a rate proportional to their present number and food supply.

Thus

y = -cy + dxy (2.2)

uhere d is a positive constant.

Heuristic reasoning leads us to expect that, when prey

_are plentiful, the predators will multiply to a point at which

nbtey are in short supply and starvation leads toc a drop in pred-

When these have reached a sustainable number,

Is this substantiated

tor numbers.,
ﬁe cyclic process will start again.

' the mathematics?




The equilibrium states of the system comprising (2.1)
and (2.2) are clearly at (0,0) and (c/d,a/b). The state at
the origin corresponds to no populations present. We restrict
attention to the latter state (c/d, a/b), moving this state
to the origin by the transformation X = dx-c, Y = by-a to
cbtain

= -(X + ¢)y
= (Y + a)x.

The torresponding linearised system is

X = -cY
(2.4

= aX )
which has a pair of purely imaginary characteristic roots
tivac. Hence (0,0) is a centre of the linearised system (2.4),
and, by the asymptotic perturbation theorem [6, p. 87], will
be either a centre or spiral point of the non-linear system
(2.3). Fortunately we can find explicit solutions which ena-

ble us to distinguish these cases,

An explicit solution of (2.4) is X(t) = Kcos Vac t,
Y(t) = K/ac sin Jac t, for any constant K, which describes a
system of confocal ellipses in the (X,Y)-plane as shown in

Figure 2 below v

Y

a
!
[
|
I
I
!

FIGURE 2 Phase-plane of the linear

_a'single maximum of height m = (c/d)Ce”
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There is one for each value of K and the arrouws denote the

direction of increasing time.

Turning to the non-linear system (2.3), multiplying the

equations by X(Y+a) and Y(X+c) respectively and adding yields

X(Y + a)X + Y(X + c)Y = 0.

Because both populations are required to be present, both Y + a

and X + c are positive and we obtain

X

X + c X+

which may be rearranged as

and integrated directly to give

= eMx o+ (Y + a)?, (2.8)

where again k is an arbitrary constant to be determined by the
initial conditions. We shall show that this defines a family
of closed curves, not spirals, the aother possibility, in the

positive quadrant.

Lemma 1. Equation (2.5) defines a family of closed curves in

X > -c, Y > -a (that is, x > 0, y > 0)

Proof: In original coordinates (2.5) may be written as
yaxc = Kebyedx (2.86)

for some constant K. Define the functions f(y) = ya/eby,
g{x) = xc/edx. Then f vanishes at 0 and +w, is positive in
between and has a single maximum at a/b with maximum value

= (a/b)%e™?, The function g has similar properties with

© at c/d.
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It follows at once that (2.6) has no solution with
X,y > 0 if K > mM and the unique solution x = ¢/d, y = a/b if
K =

FIGURE 3: The functions f and g

Now let K = AM, where O < A < m. We see from Figure 3 that

the eguation g(x) = X has exactly two solutions x1 and x, lying

on opposite sides of c/d. Rewriting the equation f(y)g(x) =

as

fy)

we see that this has: no solution y when x < X1 OT X > X,3
exactly one solution y = a/b when x = X3 Or xz3 and two sol-
utions y;(x), y,(x) when x; < x < Xp . The smaller solution
Both

We note also that y,(x) is inc-

y1(x) is always less than a/b and y2(x) always greater.
tend to a/b as x > x, or x,.

reasing for x; < x < c¢/d and decreasing for c/d < x < x,.

We now conclude that the curves defined by (2.6) are
closed in x > 0, y < 0 and have the form shown overleaf in

Figure 4.

AM

Corollary:

_ial conditions are periodic functions of time.

Lemma 2.

FIGURE 4: A trajectory of the non-linear system
Hence the solution curves of (2.5) are claosed for X > -c,

Y > -a as required.

All solutions of (2.1), (2.2) with positive init-

Let x(t), y(t) be a solution of (2.1), (2.2) with

pericd T > 0. Define the mean values by

T
Jx(t)dt, Y =

0
a/b, that is, the mean and equilibrium values

X =

1
T

Then x = c/d, y

coincide.

roof: Dividing both sides of {(2.2) by y > 0 and integrating

ields
T T

1 i . -c + dx)dt.
TJydt - TJ( :

0 0
nce the left-hand side is zero by periodicity of y, the

esult x = ¢/d follows on evaluating the right-hand side.
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The other result follouws similarly by dividing (2.1) by «x.

Thus the interpretation of the mathematical model is that
the growth of each population can be described as regular inc-
rease and decrease around a mean level. From (2.1), if «x ever
vanishes, then it is zero for all future time. Since we know
that for given initial conditions there is exactly one solution
of (2.1), (2.2), we conclude that if x is ever positive then
it will always remain positive. This means, under the assum-
ptions preceding (2.1), that the prey population can never be

wiped out by the predators.

Our next stage is to validate this model against sets of
field observations. It may be that we have to modify the model
to include more realistic interaction terms plx,y), g({x,y) where

P>q are polynomial functions, giving

= ax + p(x,y)
y = -cy + alx,y)

The explicit phase-plane analysis given above holds only for
the particularly simple forms of ps g in (2.1), (2.2). In
general, it is possible to obtain spiral points, where the sizes

of both populations oscillat. bout longterm equilibrium values,

The Effect of Harvesting

Volterra's contribution was to explain the effect of a
reduction in fishing levels on fish stocks in the Adriatic,
observed by the Italian biologist D'Ancopa. He studied the
interaction between the predatory selachians (sharks, skates
and rays) and the food fish which formed their prey.
below shouws the percentage of selachians in the total

recorded at the port of Fiume in the years 1814-1923,

1914 1815 1918 1917 1918 1919 1920 1927 1822

1.9 21.4 22,1 21.2 36.4 27.3 8.0 15.9 14.8

. and multiplied,
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las the rise in percentage of selachians due to the decreased
level of fishing during the First World War or simply part of
the predator-prey cycle observed in Section 27. As the sel-
achians were not in demand for human consumption, there were

important implications for the fishing industry.

D'Ancona's theory was that, when fishing was reduced,
there were more prey available to the selachians, who flourished
Unfortunately, it was found that the absolute

numbers of food fish also increased in this period. The theory

did not explain why a reduced level of fishing was more benefic-

ial to the predators than their prey.

In [7], Volterra formulated predator-prey equations like
(2.1), (2.2) with an extra term to describe the effects of fish-
ing. Assume that fishing decreases the food fish population
at rate ex(t) and the selachian population at rate ey(t), where
€ describes the intensity of harvesting. This can be measured
by the number of boats at sea or nets in the water: see Clark

[2]. We then have

(a - €)x - bxy (3.1)

-(c + E)y + dxy

Provided a > €, the system (3.1) is identical to that of Section

2, with a replaced by a-¢ and ¢ by c+e. The mean values of

x and y are given by Lemma 2 as
X =
The ratio of selachians to food fish is seen to be

a -
C >

d
b

ihich increases as ¢ is reduced, accounting for the observed

effect.
@ shift in the equilibrium values and not to cyclical variations.

The increase in percentage of selachians is due to

We observe also from (3.2) that a moderate amount of harvesting
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(e < a) actually increased the number of food fish and reduces
the number of selachians. An excessive amount of fishing
(e > a) leads to the eradication of both populations, with oby-

ious implications for EEC fishing policies in Irish waters.

This result is known in biology as Volterra's principle.
It is interesting to note that another distinguished analyst
of the same period, G.H. Hardy, also better known to mathemat -
icians in other fields, has his name enshrined in biology thr-

ough the Hardy-Weinberg ratio in genetics.

4, Other Applications of the Model

The use of insecticides, which destroy both the insect
predators and their prey, may have the undesired effect of inc-
reasing the population of iﬁsect pests kept under control by
natural insect predators. The cottony cushion scale insect
was accidently carried from Australia to the U.S.A. in 1868 and
spread to such proportions that it threatened the Californian
citrus industry. To combat this, the ladybird beetle, a nat-
ural predator, was introduced from Australia and succeeded in
keeping the scale insect in check. When the insecticide, DDT,
was discovered, farmers épplied it in an attempt to eradicate
the scale insects. Instead they found that, as predicted by

Volterra's principle, the scale insect population increased.

Similar effects have been observed in the spraying of
lakes to kill off mosquito larvae, which also had the effect
of reducing the population of natural predators on the larvae,
Spraying of DOT had damaging longterm effects on the environment,
while spraying with 0il; to reduce the surface tension, causing
the eggs to sink, led to pollution of water suppplies. Mathem-
atical work on alternative methods for mosquito control has been
carried out by a former student, F.M. Dube [3], in 1982. Let
x(t), z(t) and p(t) denote the populations of adult female mos-
quitoes, immature mosquitoes (water—borne larvae) and aquatic

predators respectively. The interaction of the two mosquito
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opulations, in the absence of predators, is shown in Figure 5
P

below.

Vector

Population x

death rate y

1\

gQross reprod-
B e ouie Death uctive rate G
uctive rate R

density dependent
death rate
d = dgo+&z

Immature

population z

FIGURE 5: Interaction of mosquitb population

This is described by the system of equations

- ‘¥ R
x = Yx + Rz (4.1)

z = Gx - (do+&z)z.
i = ich
A key parameter is the reproductive threshold R, = GR/Yd0 whic

is interpreted as the average reproductive contribution of one

female mosquito to the next generation, roughly the number of

viable progeny.

We now introduce an aguatic predator population with
(maximum sustainable population) k, intrinsic

carrying capacity . .
The system (4.1) is modif-

growth rate o and rate of kill B.

ied to:




= -yx + Rz

= Ox - (doe+Bplz - £2?

>

ap(1-p/k) + Bpz.

This system has four equilibrium states

no populations present
eradication of mosquitoes
predator fails to thrive

control of mosquito population

Let 8% = dg(R -1)/k. It can be shown that, for Ry > 1, the
equilibrium states £, and £, are always unstable. If, in
addition, B > B*, then the equilibrium state E; is asymptotic-
ally stable, while E; (which is of no biological significance
in this case) is unstable, Canversely, if B < B*, then E3 is
asymptotically stable and £y is unstable. As B - B*, the
states E, and E, coalesce. We conclude that, for a model with
a density dependent death rate, B* represents the threshold

between control and eradication of the mosquito population.

This result has practical implications for the choice of
natural predator introduced. For habitats with a louw carrying
capacity k, the predatory worm of the genus Mesostama has been
found to reduce mosquito emergence by 70 to 90% [5]. In hab-
itats with large k, the introduction of predatory species of

fish, with higher rate of kill B, millvprove more effective.

References
hererences

1. Braun, M,, Differential Eguations and their Applications,
Springer-Verlag, 1975.

Clark, C.W., The Optimal Management of Renewable Resources,
wiley—Interscience, 1976.

- B1 -

Some Theoretical Models for Mosquito Populat-

be, .M.,
e Cranfield Institute of Technology, 1982.

ions, Ph.D. Thesis,

A "
Flood, R.G., "Population Biology of Infectious Diseases",
, R.G.

Irish Mathematical Society Newsletter, 9, 1983,

1 3 n
Mead, A.P., "A Dreadful Way to Die - A New Mosguito Killer",
, A.P.

Overseas Universities, 27, 1980.

Sanchez, D.A., Ordinary Differential Equations and Stab-
a , D.A.

ility Theory, Freeman, San Francisco, 1968.

Volterra, V., Lecons sur la Theorie Mathematique de la
o s Vo

Lutte pour la Vie, Gauthier-Villiers, Paris, 1931.

School of Muthemaiicud Sciences,

Nutionul Institute for Highern Education,
Dublin 9.




