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THE MERKURYEV-SUSL IN THEOREM

David W, Lewis

This article reports on one of the most important, and
to many people, astonishing results in algebra so far this
decade. In 1981, a Russian mathematician Merkuryev, virtually
unknown in the west, proved a theorem concerning the algebraic
K-theory and the Brauer group of a field. This result is now
known as Merkuryev's theorem and not long afterwards Merkuryev,
together with Suslin, a famous Russian mathematician, general-
ized the result to what is commonly called the Merkuryev-Suslin
theorem. These theorems at once provide answers to some Very
hard problems in the theory of simple algebras, in the theory
of quadratic forms and in algebraic geometry. Thus it seems
worthwhile to try and explain, in as elementary a way as poss-
ible, what the Merkuryev-Suslin theorem is all about. A good

source of background information for this article is [5].

We start with that well-known Dublin product, the real
quaternions, discovered in 1843 by Hamilton and usually denoted
H. A quaternion is an expression of the form a+bi+cj+dij
where a,b,c,d € R, the real numbers, and quaternions can be
added in the obvious way and multiplied together using the
famous equations i?=j2=-1, ij=-ji. Hamilton's construction
may be generalized to give quaternion algebras over any field
E We simply choose non-zero elements a,b in F, (a=b is
allowed), and do exactly as in M except that we require i?=a,
9%=b, For F=IR, a=b=-1, we have H of course. A guaternion
algebra defined as above is usually denoted (E%E) as it depends
on the choice of a,b and on the base field F. It is always
four-dimensional as an F-vector space and it turns out always
to be either a skewfield as H is (i.e. a field except that
multiplication lacks commutativity) or else is isomorphic to
the ring of all 2x2 matrices with entries in F. (In fact it
fails to be a skewfield precisely when there exist Xy in F

such that ax2+by? = 1.) For F=R, H is the only skeufield




= A -

that occurs as a qguaternion algebra but for other fields things

can be quite different. For example, if F=0Q, the rationals,

there exist indefinitely many non-isomorphic quaternion algebras

which are skewfields.

Any quaternion algebra has a natural involution - on it
induced by 1 = -i, ? = -j. (By an involution on an algebra A
we mean a map A + A, x > x such that ;:7 = ;+7, ;7 = 7; and
On H this

This kind of

X = X, i.e. an anti-automorphism of period two.)

involution is the usual conjugation operation.

“involution is called an involution of the first kind because

elements of F are fixed by it. We view F as being contained

in (éég) in the same way as IR lies inside H. An involution

of the second kind is one which is non-trivial on F.

We must now say a few words about tensor products of
algebras. An F-algebra is a ring which also is an F-vector
space, the ring and vector space operations being compatible.
Given two F-algebras A,,A;, there exists a unique F-algebra T

and a map i ¢ A;xA, » T with the following property:

Given any bilinear map f ¢ A,xA, + W into any F-vector
space W there exists a unique algebra homomorphism g : W » T
such that gf = i.
oted A;BA,.

T is called the tensor product and is den-

For example if A, and A, are each quaternion algebras
then there are three possibilities for A, 8BA,. Firstly A, BA;
may be a division algebra (i.e. an F-algebra which is a skew-
field). Secondly A,;BA, may be the ring of all 2x2 matrices
with entries in a quaternion division algebra and thirdly,
A,BA, could be the ring of all 4x4 matrices with entries in F.
Generally the dimension of A;#A, over F is the product of the

dimensions of A, and A,.

Quaternion algebras are special cases of central simple
algebras. A central simple algebra A over F is a finite dim-

ensional F-algebra whose centre is F, i.e. {x&€ A : xy=yx for

all y € A} = F, and which has no proper two sided ideals when
viewed as a ring. For short, we will write c.s. algebra from
now ONe The tensor product of two c.s. algebra over F is a
c.s. algebra. A celebrated theorem of Wedderburn says that
any c.s. algebra over F is isomorphic to M,D, the ring of nxn
matrices with entries in a skewfield D. Moreover n is unique
and D is unique up to isomorphism. D is a division algebra
over F. We say that two c.s. algebras are similar if their
skewfield parts from Wedderburn's theorem are isomorphic.
gimilarity is an equivalence relation on the set of c.s. alg-
ebras over F. In 1929, Brauer discovered that the set of
similarity classes of c.s. algebras over F has a group struct-
ure, tensor product being the group operation. The class of
F itself is the identity element of the group and the inverse
of A is the opposite algebra, denoted APP, wyhich is identical
with A as a set but with multiplication reversed, i.e. APP=p
as a set with multiplication x defined by axb = ba, ba being
the usual multiplication in A. Then ARACP is isomorphic to
the ring of all F-homomorphisms from A to A and this ring is
isomorphic to a full matrix ring M F, n = dimension of A over
F, and thus ARA®P is similar to F. This group is usually
called the Brauer group of the field F and is denoted B(F).
For F finite B(F) is trivial since finite sSkew-fields are
B(R) is

For a local field

commutative (by another theorem of Wedderburn).
cyclic of order 2, ™ being the generator.
B(F) = Q/z, the rationals modulo one and for an algebraic

number field, i.e. a finite algebraic extension of Q, B(F) is
extremely large, its calculation being the culmination of work
involving Brauer, Hasse, Noether and Albert. See [1] for

details.

It should be mentioned that in general, quaternion divis-
ion algebras are by no means the only kind of division algebras
appearing as c.s. algebras. For example a division algebra

may be a cyclic algebra defined as follouws:

Let L be a cyclic extension of F, i.e. a Galois extension

field of F such that the group of all automorphisms of L that
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fix elements of F is a cyclic group of order n. Let o be a
generator of this group. Choose some element be F. Intro-
duce a symbol u such that u" = b. A typical element of the

cyclic algebra determined by L and b is an L-linear combination

n-1

Y xiui,
i 28

1

each x;€ L, with addition defined in the natural way and
multiplication by u™ = b and ux = o(x)u for all x&€ L. The
resulting algebra is c.s. and if b is suitably chosen it can
be a division algebra for certain kinds of field F. (Note
that for F = IR if we choose L = C, b = -1 we obtain H, o on
C then being complex conjugation.) All division algebras

over Q are cyclic. However there exist fields with central

division algebras that are not cyclic algebras. See [1],
also [2].
For a positive integer n we write B (F) = {x &€ B(F):x"=1}.

Merkuryev's theorem implies that, for any field F of char # 2,
the subgroup B,(F) is generated by the quaternion algebras

and the Merkuryev-Suslin theorem implies that, provided F

th

contains a primitive n root of unity, BL(F) is generated

by cyclic algebras. B,(F) in fact consists exactly of those

classes of algebra which admit an involution of the first kind.

(An involution of the first kind gives an isomorphism A = AOP
and hence {A} has order two in B(F), and conversely (A} has
order two means there exists an isomorphism A = APP uhich
yields an involution of the first kind on A.) The degree
of a c.s. algebra is defined to be the square root of the F-
dimension of the skewfield part of A. A theorem in [1] shows
that the order of {A} in B(F) divides the degree of A and also
that order and degree have the same prime factors apart from
multiplicity. It follouws that c.s. algebras admitting an

involution of the first kind must have degree a power of tuwo.

Tensor products of quaternion algebras give elements of

B,F and fundamental conjectures studied by some algebraists
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were those as to whether an algebra with involution of the
first kind is isomorphic to or else is similar to a tensor
product of guaternion algebras. In 1978, Amitsur, Rowen and
Tignol [3] produced an example of a division algebra over Q(t),
a transcendental extension of Q, which bhas an involution of

the first kind but is not isomorphic to a tensor produﬁt of
quaternion algebras. Merkuryev's theorem however gives an
affirmative answer to the above conjecture for similarity.

50 any division algebra D with an involution of the first kind
must be such that, for some n, M D is isomorphic to a tensor
product of guaternion algebras. For the example of [3] n = 2
will do, but in general it is not known what the least value

of n be.

So far we have only given part of Merkuryev's theorem.
To describe it fully we must first define the group K,F occurr-
K,F is defined as the additive

abelian group generated by all symbols {a,b}, a,b non-zero

ing in algebraic K-theory.

elements of F, with relations

{ab,c} = {asc} + {b,c}, f{a,bc} = {a,b} + {a,c}

and
{a,1-a} = 0 for all a,b,c in F.

Group theorists may be more familiar with an equivalent def-
inition of K,F as the Schur multiplier of the group E(F) gener-
ated by the elementary matrices in F, [11]. An elementary
matrix is one which coincides with the identity matrix except
for a single off-diagonal entry. Assume char F # 2. There

is a natural map K,F » B(F) sending {a,b} to the quaternion

algebra This map is easily seen to be trivial on the

a,b
(220),
subgroup 2K,F = {2x : x € K,F} and Merkuryev's theorem says
that the induced map a : 5%?; + B(F) is injective and its imaqe

is precisely B,F. The surjectivity of a proves the conjecture

stated above.
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The injectivity of o also ansuwers a long-standing question
in quadratic form theory dating back to work of Pfister [12]
in 1966. We describe this briefly. The set of isometry
classes of non-singular quadratic forms over a field F can
be given a ring structure, the addition (resp. multiplication)
being induced by the direct sum (resp. tensor product) of the
underlying vector spaces. The quotient, on factoring out
by the so-called hyperbolic forms, is known as the witt ring
W(F) of F. See [6] for details. Let I denote the ideal
of forms defined on even dimensional spaces. Then powers of
this ideal exist, i.e. 1%, I%, etc. and clearly 1"lc 17 for
all n. The significant connection between algebraic K-theory
and quadratic forms was shouwn by Milnor [10] in 1970 when he
proved t?at 12/1% is isomorphic to §§%%. There is a natural
map B : %7 + B(F) gotten by taking the class in B(F) of the
Clifford algebra of a guadratic form representing an element
of 12, (For anything in I® the Clifford algebra class can
be shown to be trivial.) The map B corresponds, under the
Milnor isomorphism, to the map mentioned above which Merkuryev
showed to be injective. pfister [12] in 1966 had studied
8 and had shown that in some cases it was injective but since
then nobody had come near to a proof in general until Merkur-
yev's breakthrough. Thus Merkuryev solved a problem which
had been regarded by guadratic form theorists as extremely
difficult.

We finish by describing the Merkuryev-Suslin theorem.
Let W, be the group of all nth roots of unity. We assume
for simplicity that up lies in F. There exists a unique
homomorphism, for each n, E%f; + By(F)Buy induced by sending
{a,b} to ABw where w is a chosen primitive nth root of unity
and A is an algebra, called a norm residue algebra, defined
as follows: A is generated by elements u and v with the prop-
erties u? = a, v = b and vu = wuv. The tensor product is
of abelian groups, defined in a similar fashion to our earlier
one, and tensoring on by upn is necessary in order to obtain
a homomorphism which is independent of the choice of w. The

name 'norm residue algebra' occurs because A will be isomorphic
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to M,F precisely when b is a norm from F("va). A will indeed
always be similar to a cyclic algebra. Merkuryev and Suslin
prgved that the above map is in fact an isomorphism. The

Surjectivity implies that, provided F contains U, each element
of BpF is represented by a tensor product of cyclic algebras, a
result that was somewhat surprising to some algebraists.
Another consequence of the Merkuryev-Suslin theorem is in the
realm of algebraic geometry where it leads to new finiteness

results about the Chow groups of a rational surface.

We have so far not mentioned the proof of these theorems
and to do so would be beyond the scope of this article. The
original announcements and proofs are in [7], [8], [9]. The
proofrequires the Galois cohomological interpretation of B(F).
1t uses some difficult techniques from Quillen's version of
algebraic K-theory and from algebraic geometry, in particulér
an analysis of the Severi-Brauer varieties corresponding to
division algebras [13]. There is also now a more elementary
proof of the general Merkuryev-Suslin theorem which has been
presented in some notes by Merkuryev [7a]. This proof reg-
uires much less higher algebraic K-theory. In fact, Merkur-
yeuv's theorem (i.e. for n = 2) can now be more easily done
in a couple of ways. Merkuryev himself found an easier proof
using Milnor K-theory instead of Quillen K-theory. (wWe should
explain that algebraic K-theory for a field F defines groups
K,F for all non-negative integers n, Milnor and Quillen K-theory
are the same for K, although it is non-trivial to prove this
fact. However, for higher n the two K-theories are not always
the same.) The Milnor K,F is much easier to handle and this
simpler proof has been very well written up by Wadsworth [14].
Also the quadratic form version of Merkuryev's theorem has
been proved by Arason [4] avoiding K-theory altogether but

using some technical results from Galois cohomology.
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