- 24 -

THE CONNECTION BETWEEN NETS AND FILTERS

Maunice Kennedy

1. Introduction

The fundamental theorem linking nets and filters can be

stated as follows:

Theorem. Let S be a net in a non-void set @
and £ = Z(S) be its associated filter.

inement of £, then there exists a net T in Q such that:

. If g is a ref-

(i) T is a subnet of S,

(ii) £(7) = 9.

A theorem to this effect was stated by Bartle 1855 [1].
However, the first correct proof was given by M.F. Smiley 1857
[6]. It was again proved by Bartle 1963 [3]. The proofs

of both Smiley and Bartle involve the use of the axiom of choice.

The object of this article is to prove this theorem with-
out appeal to the axiom of choice. Moreover, instead of the
usual concept of subnet, cf. [5], a simpler concept turns out
It will then

follow that this restricted concept of subnet is adequate for

to be adequate for the purposes of the theorem.
topological purposes in a sense that will be made precise later.

2. Recall that a directed set [5] is a nonvoid set D = (D, =)
carrying a reflexive transitive relation = for which every
two-point subset has an upper bound: we do not assume that

1 ]
a S0 s o= 0 =0,

If Q@ is a non-void set then a net in
is a mapping S = {xylqy¢ D from a directed set D into Q. If
S = {XG)&EIJ and T = {yB}Be g are nets in Q, then to say that
T is a subnet of S means [5] that there is N : E » D for which
YB = XN(B)? such that if o € D is arbitrary then there is BE E

for which B sB':=¢ a = N(B'). If in particular N is monotonic
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1 .
in the sense that B = g'== N(B) s N(B ), then T is called a

special subnet of S.

p filter base £ on a non-void set Q is a non-void coll-
ection of sets in 2, not containing the void set, and directed
py inverse inclusion, i.e. if B,,B, € &, there exists Be &
such that Bc B, N Ba. 1f £ = (FiBe 4, B F}, then £ is
the filter generated by 4.

Let &,, £, be filter bases for the filters Z1s £2 Tesp-
We define &1 < &, to mean that Z1 C Z2. It is

easy to check that 61 2 6, if and only if 4, is cofinal in £,

ectively.

(with respect to inverse inclusion) i.e. for each Bi1 C b1,
The two filter bases 41,6,

are said to be equivalent if 0, s 8, and £, = &y i.e. if £i1=£s.

there exists B, e £,, B2C B, .

1f €,,0, are filter bases for the filters Zi1s/42s let
4 = {B] ﬂ leBle 41, B, & ﬁz}.

if it does not contain the void set.

4 is a filter base if and only
If 4, is a filter base
we say that &, is compositive with f,, and it is clear that £

is a base for the smallest filter refining both Z1 and £,.

B Every net S = {xy) gives rise to a filter base as follows:

Definition: 2(s) = {Ey) where Eg = {xuv|u' z a}

¢(5) is a filter base and we denote the generated filter by
£2(S). /(s5)(e(s)) will be called the filter (filter-base)
associated with S.
of 5.

We call the nets {Ey} the residual nets

Conversely (cf. Bartle [1], Bruns and Schmidt [4]) every

filter is associated with a net. We see this as follows:

Let D(2) = (¢ = (x,B)|xe= B, B 4}
D(¢) is a directed set where (x,B) £ (x',B") is taken to mean

that B'c B.

Let £ be a filter-base.

We now define a net denoted by S(4&), viz:
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Definition:  S(&) = {xy|e = D(4)}

where xu = x if a = (x,B)
It is easy to check

Lemma 3.1. £(S(4)) = £ i.e. the net S(4) has £ as its assoc-

iated filter base.

4, The proof of the main theorem depends on the following

preliminary lemma concerning nets: -

- = 1 ) ‘ =
Lemma 4.1. Let § = {XQ}GGED’ St = {XB}BGED" be two nets in
Q such that Eg n EB' £ P, a=D, BED' uhere Eq » EB' are the
residual sets of S, S' corresponding to a,B respectively.
Then there exists a net T which is a special subnet of both S

and S'.

Proof. Let A = {(0,B)|]o =D, BED' and Xy = xé}

It is clear from the hypothesis that A is a co-final subset of

the directed set DxD' (with the natural ordering).
Let T = (w,}, <, where w) = x4 = xé if A= (o,B)EN
Now we show that T is a special subnet of S.

We define N: A—D by N(a,B) = a.

Clearly N is monotone. It remains to show N(A) is co-final

in D.

Let a9 C D, Let By be arbitrary in D'. By the co-finality
of A in DxD', there exists (a,B) € A, (a,B) 2 (ag,Bq). Thus
(a,B) & N and N(a,B) = a 2 ag. Hence N(A) is co-final in D.
Let A= (o,B) €A wy = wiy ) = Xa = *y(q,8) = *n(1) M0
therefore T is a special subnet of S.

Similarly, T is a special subnet of S', and the theorem is

proved.
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Corollary 4.1. If {FA}AEEA are the residual sets of the net
T constructed in lemma 4.1, then if A = (0,B) € A, Fy = Eaﬂ Eé,

The proof is obvious.

We now prove the main theorem.

Theorem 4.1, Let S be a net in a non-void set Q and Z = Z(S)
be its associated filter. If g is a refinement of /£, i.e.

/ < g, then there exists a net T in Q such that:

(i) T is a special subnet of S and

(ii) A7) = g.

proof. Let S = {xa}aezD and 4(S) be its associated filter-
base. By lemma 3.1, there exists a net S' = {xémGID' such
that 6¢(S') = g. By hypothesis 4(S) s ¢ = €(S') or

£(s) < g = &(s'). Thus 4(S) and 4(S') are trivially compos-
itive and generate 9. A base for g is 4' = {Eur]EéIu = D,
BeD'}. But by lemma 4.1 and corollary 4.1 there exists a
net T which is a special subnet of both S and S' and whose ass-
ociated filter base 4(T) = {Ea N Eél(a,B) e A}, where N is def-
ined as in lemma 4.1, Since N is co-final in DxD', 4(T) ~ &',

Since 4' generates g so does £(T). Hence Z(T) = g.

5% Let S be net in Q. Let T be a subnet in the usual sense
(cf. J.L. Kelley [5]). Since £(S) € Z(T) we may use theorem 4.1
to construct a special subnet T' of S such that £(T') = £(T).

Thus, in any topology on 9, the cluster points of the special

subnet T' coincide with the cluster points of the subnet T.

The author wishes to express his thanks to M.F. Smiley
for this observation, which would suggest that in general top-
ology it is more natural and as adequate to confine the notion

of subnet to the simpler notion of special subnet.
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THE MERKURYEV-SUSL IN THEOREM

David W, Lewis

This article reports on one of the most important, and
to many people, astonishing results in algebra so far this
decade. In 1981, a Russian mathematician Merkuryev, virtually
unknown in the west, proved a theorem concerning the algebraic
K-theory and the Brauer group of a field. This result is now
known as Merkuryev's theorem and not long afterwards Merkuryev,
together with Suslin, a famous Russian mathematician, general-
ized the result to what is commonly called the Merkuryev-Suslin
theorem. These theorems at once provide answers to some Very
hard problems in the theory of simple algebras, in the theory
of quadratic forms and in algebraic geometry. Thus it seems
worthwhile to try and explain, in as elementary a way as poss-
ible, what the Merkuryev-Suslin theorem is all about. A good

source of background information for this article is [5].

We start with that well-known Dublin product, the real
quaternions, discovered in 1843 by Hamilton and usually denoted
H. A quaternion is an expression of the form a+bi+cj+dij
where a,b,c,d € R, the real numbers, and quaternions can be
added in the obvious way and multiplied together using the
famous equations i?=j2=-1, ij=-ji. Hamilton's construction
may be generalized to give quaternion algebras over any field
E We simply choose non-zero elements a,b in F, (a=b is
allowed), and do exactly as in M except that we require i?=a,
9%=b, For F=IR, a=b=-1, we have H of course. A guaternion
algebra defined as above is usually denoted (E%E) as it depends
on the choice of a,b and on the base field F. It is always
four-dimensional as an F-vector space and it turns out always
to be either a skewfield as H is (i.e. a field except that
multiplication lacks commutativity) or else is isomorphic to
the ring of all 2x2 matrices with entries in F. (In fact it
fails to be a skewfield precisely when there exist Xy in F

such that ax2+by? = 1.) For F=R, H is the only skeufield




