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SHIPLEY'S ALGOR|THM FOR INVERTING MATRICES

Finlaan Holland

1. Introduction

This is a brief outline of a method for inverting matrices
that was developed in the late fifties at the Tennessee Valley
Authority.

erting matrices that describe

It was found to be particularly suitable for inu-

power system impedances or admitt-
i d Cole-
ances. The method was first reported on by Shipley an

f the method can also be found

man in [4]. The essentials o

i i it in
in the texts [1] and [3]; but I could find no mention of 1

the mathematical literature.
i lect-
I have been teaching it to 2@ class of Third Year Ele
t two years
rical Engineering students at Cork for the las WLAY - ;
B2 Limeric
some readers may recall a talk I gave at the 19

ideas behind
Algebra Conference in which I presented the key 1
as it turned out -

and

the method and attempted - unsuccessfully,
to demonstrate it gn a personal computer.

i i ther
The method in question is simple to apply, direct ra

dvantage of
than iterative, easily programmable and takes full a s]

any symmetry present in the matrix under examination. : ?lnC?
otherwise it closely resembles the well-known Gauss E%lmlnatlon
method, the latter is a significant feature of the Shipley
method, which is based on modifying successively the elements

of the matrix according to a simple rule.

2. The Shipley Modification of a Square Matfix

i e define
Given an nxn matrix A = [aij], with akk # 0, w

= rules:
the kth Shipley modification Ok(ﬂ) = B by the ru

b = -1/akkv

kk

B = "5k 3k = bk 1 # K
bij = -3k /%K = 3Pk T F K
Bij = @i 7 25k Pk T 335 * by 1hd Ak
Example For instance, if
1 1 3
m= |1 0o 2,
3 4
then -1 -1 -3 0 -1 -2
o, (M) = |-1 -1 -1|= N, 02(N) = |1 1 1= L,
-3 -1 -5 -2 -1 -4
and
1 -5 - =.5
gy(L) =|-.5 1.25 -.25].
-.5 -.25 .25
3« Shipley's Algorithm

It is a simple matter to check that the last displayed

matrix is the negative of the inverse of M, i.e.

-1

05(0,(0,(M)) = -m

This example illustrates the essence of Shipley's algorithm.

THEOREM 1. Let A be an nxn matrix. If for some permutation

m of the integers 1,2,........,n the n-fold composition

9 (n) % (n-1)° .....0"(2)..00n(1)(A)

is defined, then it is equal to the negative of the inverse
of A.
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4. Criterion for the Algorithm to Work
Perhaps the easiest way to be convinced of this is to Since the method is not completely general - for example
consider the correspondence Ax = y, between the nx1 vectors x it will not invert the simple 2x2 matrix
and y, as a system of n equations:
0 1
Xa..x._:y., i=1,2,...n 1 0
=1 ij%j i ’
_ it is important to know when it works. To find out, uwe
On the assumption that Ak # 0 we can use the kth equat- analyse the formation of the diagonal elements under different
ion to express x. in terms of Yo and x.; j = 1525¢c25N5 ] £ ko, shipley modifications.
and then substitute this value of X into the other equations.
After some rearrangement of terms, this leads to an equivalent Given A = [aij]’ we can form B = o,(A) if a,, # O. We
system, viz., ) can then form C = 0,(B) = 0,(01(R)) if by, # 0, i.e. if
jzk(aij-aikakj/akk)xj + (8 /8407, *J.Zk(aij'aikakj/akk)xj = Yy a,, a,,
0.
i # ok #
321 322
.Zk(-akj/akk)xj + (1/akk)yk + -2 (-akj/akk)xj = X
J J>K If ¢,y # 0, i.e. if
Allowing for an adjustment of sign, this can be formul-
. . 211 32 313
ated as the matrix equation Lo
PR 322 933 ’
ok(A)x‘ =vy', 831 332 Q33

where x' is obtained from x by replacing x by -y, and y' 1is we can compute o,(C) = 03(02(01(A))), etc. This leads to the

obtained from y by replacing Vi by X 4 following theorem, whose proof we can omit.

Under the conditions of the theorem we can carry out the THEOREM 2. If for some permutation m of the integers 1,2,..5N,
manoevure just described n times, in the order determined by the principal minors of the matrix [an(i)n(j)] are all non-zero,
the permutation w, and in this way replace successively each then
component of the vector x by the negative of the corresponding -
component of the vector y; we end up with the equation ~B = On(n)(on(n—1)("""(On(1)(A))""'))‘

on(n)(on(n-1)("" (0"(2)(0n(1)(A)))....))(-y) = Xs Thus, for example, if A is strictly positive-definite

or strictly dominant diagonal, that is to say if
This is clearly sufficient to demonstrate the truth of the

theorem. xtAx > 0 for all x # O,




or n
-21Iaijl<2laii|’ i = 1525c00efly
j=

then we can apply the Shipley algorithm to evaluate the inv-
erse of A, it being clear in both cases that the property of
positive-definiteness or diagonal dominance is inherited by

the principal minors of [an(i)n(j)] for every permutation m.

S. A Noteworthy Feature of the Shipley Algorithm

An important property of the Shipley algorithm is that

it preserves symmetry.

THEOREM 3. If A = [aij] is symmetric and a_ # 0, then ok(A)

is symmetric.

PROOF. Obvious.

The fact that symmetry is retained during the implementat-
ion of the algorithm reduces the arithmetic of computing the
inverse of a symmetric matrix by approximately one half and the

memory requirements of a computer by about the same amount.

6. The Complexity of the Shipley Algorithm

To perform one modification of a given matrix we must
carry out one division, (2(n-1) + (n-1)?) multiplications
and (n-1)2% additions. Therefore to invert an nxn matrix we
must perform about n?® multiplications and the same number of
additions. The order of complexity of the method is there-
fore 0(n?).
between it and the standard elimination procedure.

In this respect, then, there is no difference

T Computer Implementation of the Method

The method is a little unpleasant to operate by hand,

but it can be easily programmed for a computer and can there-

-7 &

fore be readily demonstrated in a classroom. The program
below was designed by my son Ian for the Newbrain personal
computer (on which a draft of this article was prepared).

1t is structured to take advantage of the saﬁings involved in
applying the algorithm to symmetric matrices. Also, for a
given matrix A = [aij]’ the program selects the sequence of
operations 0"(1),0"(2),.....,0"(n), according to the following
rule: m(1) is chosen to be the index k corresponding to the
]Jargest non-vanishing lakk'; if B = 0"(1)(A), m(2) is chosen
to be the index k # (1) corresponding to the largest non-
vanishing lbkk|; and so on. By this means it is hoped to keep

computational errors to a minimum.
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REM ** Program to invert a nxp matrix using the Shipley Algorithm **
CLOSE£1 :OPENE1,5:CLEAR
REM Open relevant screens
OPENED,4 ,"125"
dg=n
PUT 31: REM Clear screen
REM Read in dimension of matrix
PUT 22,10,10:2?"WHAT IS THE DIMENSION OF THE MATRIX ";
INPUT n
pUT 22,10,10:?"IS THE MATRIX SYMMETRIC? Y/N
IF INSTR("YyNn",a$)=0 THEN GOTO 62
DIM b(n,n),aln,n)
REM Read in the elements of the matrix A
PUT 31
PUT 22,20,1:?"Enter the elements of the matrix"
IF INSTR("nN",a$)>0 THEN GOTO 125
FOR x=1 T0 n
FOR y=x TO n
PUT 22,y*9,x¥2+2: INPUT("")a(x,y):aly,x)=a(x,y)
NEXT y
NEXT x
GOTO 150
FOR x=1 TO n
FOR y=1 T0 n
PUT 22,y*g,x*2+2: INPUT("") a(x,y)
NEXT y
NEXT x .
REM *¥X THE SHIPLEY ALGORITHM XXX
FOR t=1 TO n:REM t counts no of modifications
REM Find the largest unused diagonal element
k1=0
FOR x=1 TO n
IF INSTR(d$,STR$(x))>0 THEN GOTO 210
IF ABS(a(x,x)) > k1 THEN k=x:k1=ABS(a(x,x))
NEXT x
IF k1=0 THEN END:REM Singular MATRIX if k1=0
D$=D$+STR(K) g
REM *X¥ THE ALGORITHM PROPER **X
REM kth column
FOR j=1 TO n
IF j=k THEN GOTO 340
b(krj) = -a(klj) / a(k:k)
NEXT J
REM kth row
FOR i=1 TO n
IF i=k THEN COTO 430
b(i:k) = 'a(i’k) / a(k:k)
NEXT i
b(k,k) = -1/a(k,k)
REM The modification of the remainder of the matrix
FOR i=1 70 n
IF i=k GOTO 620
FOR j=1 T0O n
IF j=k GOTO 610
b(i’j) = a(isj) - a(ipk)*a(k’j) / a(k:k)
NEXT j

"s:GETET,AS
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NEXT i

REM COPY B INTO A
FOR i=1 70 n
FOR j=1 70 n
a(i,j) = b(i,j)
NEXT j
NEXT i
REM END OF ONE COMPLETE MODIFICATION
GOSUB 1910:REM Call routine to print out modified matrix
pUT 22,20,23:?"THE MATRIX AFTER ";T;" MODIFICATIONS"
pUT 22,20,24:?"press any key to continue";
GETE1 ,ky$
NEXT t
REM PRINT OUT THE INVERSE
PUT 31:PUT 22,20,1:?"The INVERSE is"
GOSUB 1910
END
REM THE END OF THE PROGRAM
REM A routine to print out the contents matrix A
REM
FOR x=1 TO n
FOR y=1 70 n
ab+STRE(a(x,y))
IF LEN(a$)=15 THEN a$=LEFT$(ab,4)+RIGHTS(a$,5)
ab=LEFTH(a%+" ",9)
PUT 22,y*9,x¥2+2:%a%
NEXT y
NEXT x
RETURN

program is in Newbrain BASIC.
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