SPECTRAL PROJECT IONS

Robin Hante

1. 1f T is a bounded linear operator on a complex Banach
space X, and if 0 € € is not an accumulation point of the

spectrum sp(T), then the formula’

_ 1 =1
I -P = =7 * (zI - T) "dz, (1.1)
0

in which integration is conducted around a contour which winds
once positively around the point 0 and winds zero times around
every point of sp(T) \ {0}, defines a projection P = P% which
is bounded and linear on X, and satisfies three conditions:

TP = PT (1.2)
there are bounded linear U and U on X for which UT=P=TV; (1.3)

IITn(I - P)||1/n > 0 as N » o, (1.4)

This note is in response to a feeling that while it may be
tolerable to use heavy industry like the Cauchy integrals of
(1.1) to construct a projection like P, it ought to be poss-
ible to define one in a much more elementary context. We
claim in fact that the three conditions (1.2) - (1.4) deter-

mine P uniquely, and then force
T'T = TT' = PT! = T'P (1.9)

which we can use to show that operators T for which P exists

are stable under certain multiplications and additions.

2. Formally,

DEFINITION 1: The bounded linear operator T on X 1is called

quasi-polar if there exists a projection P satisfying the

conditions (1.2), (1.3) and (1.4).

As a first elementary observation, if U and V satisfy
(1.3) then

PUP = PVDPR, (2.1)
and then, with S =P U P,

ST = Ts = Pp. (2.2)
and

SP = PS = S. (2'3)

Thus if the projection P is given then the conditions (2.2)
and (2.3) uniquely determine an operator S; of course U and V
need not themselves be unique. From (2.2) and the usual proj-

ection property we have
p = s"T" - 175" for each ne (2.4)
We are now ready to prove

THEOREM 1: TIf T is quasi-polar then P is unique and satisfies
(1.5).

Proof: Suppose P' is another idempotent satisfying conditions
(1.2) - (1.4): we demonstrate that

P = PP', (2.5)
which gives P = P' by interchanging the roles of P and P!
Indeed

P - PP' = P(I-P') = P™(I-P') = S"T(I-P')+0 as n+w,

using the condition (1.4) for P', Thus P is uniques; to get

(1.5) we demonstrate

T'T = TT' = PT' = PT'P, (2.6)

and similarly T'P = PT'P, Indeed if T'T = TT' then

n
PT' - PT'P = P71 (1-p) s"TNT(1-pP) s"TITM(1-P) > O as

n + o,

The same arguments show that the uniquely determined S
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. i _
satisfying (2.2) and (2.3) also commutes with every T!' comm
uting with T. We shall urite

g - Tx. (2.7)
If in particular (1.4) can be sharpened to
™1 -p) = 0 for some ne N (2.8)
X
5 to 5 =T
then we shall call the operator T polar, and refer to

as the Drazin Inverse of T ([2]s 5.1).

. s 5 rt._
3. Without any contour integrals it is clear that inve

i the cond-
ibles, quasinilpotents and idempotents all satisfy

i i i i I, 0 or
itions of Definition 1: the projectlon p is either 1,

ili i BI~
the operator T itself. another familiar example is an op

i nse that
ator T "of finite ascent and descent®, in the se

k T_k_10 for some k€ IN: (3.1)

c1(T"%) = T*x = TR¥x 17%0 =

here T*X is the range and T'kU the null space of the projection

i of T
P. If 0 is not an accumulation point of the spectrum

i i s that
then the usual contour integration theory still tells u

e also knouw something new: the

T is almost invertible, but v
1.1) is the only one around.

projection P given by the formula (

i i dition
Conversely, and without contourl integration, the con

i i sary.
that 0 is at worst an isolated point of spectrum is necessarly

i s wi T then:
THEOREM 2: If T is quasi-polar and if T' commutes with en

% i tibles (3.2)
T+T' is invertible if T' and I+T T' are inverti

ini : 3.3)
T+T' is quasi-polar if T' 1S quasinilpotent; (
i (3.4)
T'T is quasi-polar if T' is quasi-polar.
comm-

PROOF: If T' commutes with T then by Theorem 1 it also
aves the range and the null space

we observe that the restr-
=11, uhile the

utes with P and therefore le

of P invariant. To derive (3.2) .
1

iction of T+T' to P(X) is inverted by (1+777Y)
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restriction of T+T' to P_1D is the sum of an invertible oper-
ator and a quasinilpotent which commute with one another,
therefore again invertible. To derive (3.3) we observe that
the restriction of T+T' to P(X) is the commuting sum of an
invertible and a quasinilpotent, therefore invertible, while
the restriction of T+T' to P_1D is the sum of two commuting
quasinilpotents, therefore quasinilpotent. To derive (3.4)
we consider the product of the projections P and P' associated
with T and T', which by Theorem 1 commute with T, T' and one
another: the restriction of T'T to the range of PP' is the
product of two invertibles and therefore invertible, while

the restriction of T'T to the null space of PP' is the sum

of three commuting quasinilpotents and therefore quasinilpotent.

4. Sufficient for (3.2) is that T' is invertible with
e Tl <o, (a.1)
Specialising to the case in which
T = AL, (4.2)

for sufficiently small X # 0 in €, shouws that 0O cannot be an
accumulation point of the spectrum of a quasi-polar: thus the
contour integral (1.1) can always be used to give I-P ([4],
Prop. 50.1). The converse of (3.4) is liable to fail: for

example

T =0 = T'T = T'T = TT' quasi-polar (4.3)

without restriction on T'. For Fredholm operators houwever

the converse of (3.4) does hold:

THEOREM 3: If T and T' are arbitrary then

T Browder = T quasi-polar Fredholm

T'T = TT' quasi-polar Fredholm = T, T' Browder (4.5)




PROOF: If we write
®sA = BL(X,X) +» BL(X,X)/KL(X,X) = B (4.6)

for the "Calkin map" which quotients out the ideal KL(X,X)
of compact operators then it is Atkinson's theorem ([2], Thm
3.2.8) that

T Fredholm & &(T) € 8-1 invertible. (4.7)

If in particular

1

T = S+K with Se€ A™', &(K) = 0 and SK=KS (4.8)

we shall call T a Browder operator. One more preliminary:

if K€ KL(X,Y) is compact then I+K has closed range and finite
ascent and descent in the sense of (3.1) ([2], Thm 1.4.5; [a],
Thm 40.1): thus

®(K) = 0 = 1I+K quasi-polar. (4.9)

Now if T = S+K is Browder than 5—1T s I + S—1K is quasi-polar,

and hence by. (3.4) so is T = S(S'1T). Conversely, without
using (4.9), suppose TT" = T'T = TT' is quasi-polar, with

p" = (P")2 the projection of definition 1. Then also (in an
obvious sense) ®(T") € B is guasi-polar, with projection
o(P")e 8. If also T" is Fredholm, so that &(T") € B7' is
invertible, then by the uniqueness component (2.5) of Theorem

1 we have

o(pm) = ¢(I)€ B. (4.10)

Now
st o= TUTP" 4+ (I-P"), K" = (T'T-1)(I-P") (4.11)
gives a Browder decomposition for ™. By the doubly comm-

uting component (2.6) of Theorem 1 both T and T!' commute with
P": now
(TP" + I-P")(T'P" + I-P") = S" = (T'P" + I-P")(TP" + I-p"),

(4.12)

so that § = TP" + I-P" and S' = T'P" + I-P" are also invertible.
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1

plso K (T-1)(1-P") and K' = (T'-1)(I-P") are both compact:
thus T = 5+K and T' = S'+K' are both Browder.

Theorem 3 was very nearly proved in [3] (Theorem 1, The-
orem 2), using the contour integral (1.1); (4.5) is however
slightly stronger than (2.8) of [3]. As in [3] the whole the-
ory is valid for arbitrary Banach algebras A and B, or indeed
general rings, provided we are content with "polar" rather than
"quasi-polar" elements. It seems to be quite a delicate prob-
lem to decide what the "quasinilpotent" elements of a general

ring should be.
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