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IRISH MATHEMAT ICAL SOCIETY

Ordinary Meeting, 18th April, 1984, 12.15 pm, DIAS

There were 11 members present. The President. sent his
The Chair was taken by P. Boland. The
minutes of the ordinary meeting of 22nd December, 1984,

were signed.

apologies.

On the question of Department of Education postgraduate
awards for those with a B.A. degree in Mathematical
Sciences, it was reported that the President had written
again to the Minister. The reply was again negative.
The only course open to the Society was to try and have
a Mathematician selected by his College as the College's

representative on the advisory committee for these awards.

With regard to the Aer Lingus Young Scientists Exhibition,
it was reported that various members of the Society were
working to encourage Mathematical projects. These inc-
luded P. Boland, N. Buttimore, R. Timoney and also M,
Brennan, although the latter had conveyed his regret that

he could only devote a limited amount of time to the
matter.

The Secretary reported that Professor J.L. Massera of
Uruguay has been released from detention. The Society
has established a policy of supporting the campaign for
Massera's release (and also to support V. Kipnis of the
USSR) . The news of Massera's release came from the
United Nations' Centre for Human Rights, from the Irish
Minister for Foreign Affairs, Mr Peter Barry T.D., and

from the International Campaign - Massera).

The latter Campaign has asked the Society to support a
new campaign to support Yuri Orlov (Dhysicist)'and
Anatoly’ Scharansky (Computer Scientist) both imprisoned

in the USSR. The next ordinary meeting will determine




the Society's response to this request.

A proposal from the Committee to change the Constitution

was tabled.

for admission to membership and to allow committee mem-

The effects are to simplify the procedures

bers (other than the officers) to serve for three two-
year terms consecutively instead of three sessions as at
present. This is to be voted on at the next Ordinary

Meeting.

The Committee also tabled a proposal to amend the rules
about when a member is deemed to have resigned, and to
delete a redundant sentence in another rule. Details

of the changes to the Constitution and rules are attached.

M. Clancy reported that negotiations on reciprocity with
the IMTA were continuing. Also he had been asked by

5. Close of the IMTA to seek the assistance of members
of the Society for a Seminar for gifted pupils. The
Secretary agreed to circulate details to the local rep-

resentatives.

The proposal to elect N.N. Yanenko to ordinary membership

lapsed due to the death of Professor Yanenko.

In response to a proposal from S. Dineen, D. McQuillan

and T. Laffey, the Committee nominated Professor M. Kenn-

edy (an ordinary member and formerly of University College

Dublin) for honorary membership of the Society.

The following were formally nominated for ordinary memb-

ership: N. Shehan, L. Leyden, B. Goldsmith, V. Ryan,

F. Harary, R. Geoghegan, R. Critchley, M. Ryan, N. O'hEig-

eartaigh, A. Brady, T. McGrane, W. Ruckle, A. Raftery,
P. Perry.
These nominations will be voted upon at the next ordinary

meeting.

9. It was reported that the Committee had agreed to the

Society co-sponsoring (in name only) a conference called
Protext I, organised by J. Miller, among other confer-

ences. The meeting approved of this decision.

10. The Secretary reported on correspondence he had had with

the London Mathematical Society with a view to establish-

ing co-operation between the LMS and IMS,. This resulted

in a proposal that there be a joint LMS/IMS two-day meet-

ing in Ireland in 1986. The Secretary agreed to solicit

suggestions about this meeting from members.

Proposed Changes to the Constitution

Change paragraph 2 to read:

"Any person may apply to the Treasurer for membership
by paying one year's membership fee. His admission
to membership must then be confirmed by the Committee

of the Society. Candidates for honorary membership
may be nominated by the Committee only, following a
proposal of at least three members of the Society.
Nominations for honorary membership must be made at one
Ordinary Meeting of the Society and voted upon at the
next, a simple majority of the members present being

necessary for election."

Change paragraph 5, 2nd sentence to read:

"No perso iti
p n may serve as‘an additional member for more

than three terms consecutively."

Rules

Paragraph 2, change to:

"D 3
rdinary members whose subscriptions are more than

eighteen months in arrears shall be deemed to have




resigned from the Society."

Paragraph 5, delete first sentence.

Dr
Dr

MEMBERSHIP LIST SUPPLEMENT 84-2

12th June 1984

W.G. Tuohey, CAPTEC, Malahide, Co. Dublin
Des Fanning, Maynooth College, Co. Kildare
A.E. Raftery, Trinity College, Dublin
Pat Perry, University College Dublin

J.G. Kelleher, Regional Technical College, Cork

A. Dunne, University College, Dublin

prof. W. Ruckle, Clemson University, U.S.A.

Ms

Mr

Mr

P, Dolan, Imperial College, London
R. Friel, Trinity College, Dublin

A.R. Pears, Queen Elizabeth College, London

P. 0O'Murchu, Regional Technical College, Carlouw
p.J. 0O'Kane, Student, Maynooth College

5, MacDonald, Student, Maynooth College

p. Deeney, Student, Maynooth College

M. Prendergast, Student, Maynooth College

NEWS AND ANNOUNCEMENTS

SUMMARY OF RESULTS OF IRISH NATIONAL MATHEMATICS CONTEST 1984

The Sixth Irish National Mathematics Contest was held on
Tuesday, February 28, 1984, and attracted 1,634 entries from 84

schools as against 1,797 entries from 116 schools last year.

To judge by the results received so far, this year's
contest was harder than last year's. Only 21 contestants
managed to score 80 or more marks; nobody scored in excess of
89. Two of the 21 are girls.

The winner is:
Ronan Waldron,
Gonzaga College,
Sandford Road,
Ranelagh,
Dublin 6.

Ronan scored 98 marks. To note his achievement, he will be

presented with an Award Pin by the Mathematical Association
of America.

The highest team score - the sum of the highest three
scores by individual contestants from the same school - was

returned by

Presentation Brothers College,
Western Road,
Cork.

The winning team, composed of David J. Barry, Gerard

Daly and Michael K. Tyrell, scored a total of 263 marks.

The ranking of the top 10 contestants is shown in the

Roll of Honour overleaf:




< B =

Roll of Honour

Dublin 2.

¥ Did not participate in IIMC 1984.

SUMMARY OF RESULTS OF TIMC 1984

Candidate School Score

Ronan Waldron Gonzaga College, Sandford Rd, 98
Ranelagh, Dublin 6.

Mark A. Gibbon Coleraine Academical Institution, 94
Coleraine, Co. Londonderry.

Conor Kiely* 0'Connell School, Dublin 1. 90

David J. Barry Presentation Brothers College, 88
Western Road, Cork.

Stephen Brady* 0'Connell School, Ddblin 1. 88

Gerard Daly Presentation Brothers College, 88
Western Road, Cork.

Gillian E. Kennedy Ballymena Academy. 87

Michael E. Tyrrell Presentation Brothers College 87
Western Road, Cork.

David J. Ambrose Presentation Brothers College, 84
Western Road, Cork.

Moira E. Hoban Loreto College, St Stephen's Green, 83

The Second Irish Invitational Mathematics Contest was

held on Tuesday,

March 20, 1984.

in the INMC 1984 were invited to take the IIMC;

only 16 sat the examination.

Twenty of the 21

top scorers
in the event,

The material for this was also

supplied by the Mathematical Association of America Committee

on High School Contests.

Contestants had 23 hours in which

to answer 15 questions which had integer solutions. The top
two contestants were Frank Roden and Ronan Waldron who both

got eight correct answers.

Some of the questions were the following.

()

(7)

(11)

(14)

SAMPLE QUESTIONS

Determine the value of ab if logaa + logab2 = 5 and
loggb + logaaZ = Te

The function f is defined on the set of integers and sat-
isfies
n-3 if n 2 1000,

f(n) =
f(f(n+5)) if n < 1000

Find f(84).

A gardener plants three maple trees, four oak trees and

five birch trees in a rouw. He plants them in random

Let m/n
in lowest terms be the probability that no two birch trees
are next to each other.

order, each arrangement being equally likely.

Find m+n.
Find the value of

10cot(cot™3 + cot™ 7 + cot™'13 + cot™ 21)

What is the largest even integer which cannot be written

as the sum of two odd composite numbers? (Recall that

a positive integer is said to be composite if it is divis-
ible by at least one positive integer other than 1 and
itself.)

Fo Holland




SPECTRAL PROJECT IONS

Robin Hante

1. 1f T is a bounded linear operator on a complex Banach
space X, and if 0 € € is not an accumulation point of the

spectrum sp(T), then the formula’

_ 1 =1
I -P = =7 * (zI - T) "dz, (1.1)
0

in which integration is conducted around a contour which winds
once positively around the point 0 and winds zero times around
every point of sp(T) \ {0}, defines a projection P = P% which
is bounded and linear on X, and satisfies three conditions:

TP = PT (1.2)
there are bounded linear U and U on X for which UT=P=TV; (1.3)

IITn(I - P)||1/n > 0 as N » o, (1.4)

This note is in response to a feeling that while it may be
tolerable to use heavy industry like the Cauchy integrals of
(1.1) to construct a projection like P, it ought to be poss-
ible to define one in a much more elementary context. We
claim in fact that the three conditions (1.2) - (1.4) deter-

mine P uniquely, and then force
T'T = TT' = PT! = T'P (1.9)

which we can use to show that operators T for which P exists

are stable under certain multiplications and additions.

2. Formally,

DEFINITION 1: The bounded linear operator T on X 1is called

quasi-polar if there exists a projection P satisfying the

conditions (1.2), (1.3) and (1.4).

As a first elementary observation, if U and V satisfy
(1.3) then

PUP = PVDPR, (2.1)
and then, with S =P U P,

ST = Ts = Pp. (2.2)
and

SP = PS = S. (2'3)

Thus if the projection P is given then the conditions (2.2)
and (2.3) uniquely determine an operator S; of course U and V
need not themselves be unique. From (2.2) and the usual proj-

ection property we have
p = s"T" - 175" for each ne (2.4)
We are now ready to prove

THEOREM 1: TIf T is quasi-polar then P is unique and satisfies
(1.5).

Proof: Suppose P' is another idempotent satisfying conditions
(1.2) - (1.4): we demonstrate that

P = PP', (2.5)
which gives P = P' by interchanging the roles of P and P!
Indeed

P - PP' = P(I-P') = P™(I-P') = S"T(I-P')+0 as n+w,

using the condition (1.4) for P', Thus P is uniques; to get

(1.5) we demonstrate

T'T = TT' = PT' = PT'P, (2.6)

and similarly T'P = PT'P, Indeed if T'T = TT' then

n
PT' - PT'P = P71 (1-p) s"TNT(1-pP) s"TITM(1-P) > O as

n + o,

The same arguments show that the uniquely determined S
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. i _
satisfying (2.2) and (2.3) also commutes with every T!' comm
uting with T. We shall urite

g - Tx. (2.7)
If in particular (1.4) can be sharpened to
™1 -p) = 0 for some ne N (2.8)
X
5 to 5 =T
then we shall call the operator T polar, and refer to

as the Drazin Inverse of T ([2]s 5.1).

. s 5 rt._
3. Without any contour integrals it is clear that inve

i the cond-
ibles, quasinilpotents and idempotents all satisfy

i i i i I, 0 or
itions of Definition 1: the projectlon p is either 1,

ili i BI~
the operator T itself. another familiar example is an op

i nse that
ator T "of finite ascent and descent®, in the se

k T_k_10 for some k€ IN: (3.1)

c1(T"%) = T*x = TR¥x 17%0 =

here T*X is the range and T'kU the null space of the projection

i of T
P. If 0 is not an accumulation point of the spectrum

i i s that
then the usual contour integration theory still tells u

e also knouw something new: the

T is almost invertible, but v
1.1) is the only one around.

projection P given by the formula (

i i dition
Conversely, and without contourl integration, the con

i i sary.
that 0 is at worst an isolated point of spectrum is necessarly

i s wi T then:
THEOREM 2: If T is quasi-polar and if T' commutes with en

% i tibles (3.2)
T+T' is invertible if T' and I+T T' are inverti

ini : 3.3)
T+T' is quasi-polar if T' 1S quasinilpotent; (
i (3.4)
T'T is quasi-polar if T' is quasi-polar.
comm-

PROOF: If T' commutes with T then by Theorem 1 it also
aves the range and the null space

we observe that the restr-
=11, uhile the

utes with P and therefore le

of P invariant. To derive (3.2) .
1

iction of T+T' to P(X) is inverted by (1+777Y)

- 13 -

restriction of T+T' to P_1D is the sum of an invertible oper-
ator and a quasinilpotent which commute with one another,
therefore again invertible. To derive (3.3) we observe that
the restriction of T+T' to P(X) is the commuting sum of an
invertible and a quasinilpotent, therefore invertible, while
the restriction of T+T' to P_1D is the sum of two commuting
quasinilpotents, therefore quasinilpotent. To derive (3.4)
we consider the product of the projections P and P' associated
with T and T', which by Theorem 1 commute with T, T' and one
another: the restriction of T'T to the range of PP' is the
product of two invertibles and therefore invertible, while

the restriction of T'T to the null space of PP' is the sum

of three commuting quasinilpotents and therefore quasinilpotent.

4. Sufficient for (3.2) is that T' is invertible with
e Tl <o, (a.1)
Specialising to the case in which
T = AL, (4.2)

for sufficiently small X # 0 in €, shouws that 0O cannot be an
accumulation point of the spectrum of a quasi-polar: thus the
contour integral (1.1) can always be used to give I-P ([4],
Prop. 50.1). The converse of (3.4) is liable to fail: for

example

T =0 = T'T = T'T = TT' quasi-polar (4.3)

without restriction on T'. For Fredholm operators houwever

the converse of (3.4) does hold:

THEOREM 3: If T and T' are arbitrary then

T Browder = T quasi-polar Fredholm

T'T = TT' quasi-polar Fredholm = T, T' Browder (4.5)




PROOF: If we write
®sA = BL(X,X) +» BL(X,X)/KL(X,X) = B (4.6)

for the "Calkin map" which quotients out the ideal KL(X,X)
of compact operators then it is Atkinson's theorem ([2], Thm
3.2.8) that

T Fredholm & &(T) € 8-1 invertible. (4.7)

If in particular

1

T = S+K with Se€ A™', &(K) = 0 and SK=KS (4.8)

we shall call T a Browder operator. One more preliminary:

if K€ KL(X,Y) is compact then I+K has closed range and finite
ascent and descent in the sense of (3.1) ([2], Thm 1.4.5; [a],
Thm 40.1): thus

®(K) = 0 = 1I+K quasi-polar. (4.9)

Now if T = S+K is Browder than 5—1T s I + S—1K is quasi-polar,

and hence by. (3.4) so is T = S(S'1T). Conversely, without
using (4.9), suppose TT" = T'T = TT' is quasi-polar, with

p" = (P")2 the projection of definition 1. Then also (in an
obvious sense) ®(T") € B is guasi-polar, with projection
o(P")e 8. If also T" is Fredholm, so that &(T") € B7' is
invertible, then by the uniqueness component (2.5) of Theorem

1 we have

o(pm) = ¢(I)€ B. (4.10)

Now
st o= TUTP" 4+ (I-P"), K" = (T'T-1)(I-P") (4.11)
gives a Browder decomposition for ™. By the doubly comm-

uting component (2.6) of Theorem 1 both T and T!' commute with
P": now
(TP" + I-P")(T'P" + I-P") = S" = (T'P" + I-P")(TP" + I-p"),

(4.12)

so that § = TP" + I-P" and S' = T'P" + I-P" are also invertible.

- 15 -

1

plso K (T-1)(1-P") and K' = (T'-1)(I-P") are both compact:
thus T = 5+K and T' = S'+K' are both Browder.

Theorem 3 was very nearly proved in [3] (Theorem 1, The-
orem 2), using the contour integral (1.1); (4.5) is however
slightly stronger than (2.8) of [3]. As in [3] the whole the-
ory is valid for arbitrary Banach algebras A and B, or indeed
general rings, provided we are content with "polar" rather than
"quasi-polar" elements. It seems to be quite a delicate prob-
lem to decide what the "quasinilpotent" elements of a general

ring should be.
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1. S.R. Caradus, Operator Theory of the Pseudo-Inverse,

Queen's University Papers No. 38, Kingston-Ontario 1974,

2. S.R. Caradus, W.E. Pfaffenberger and B. Yood, Calkin Alg-

ebras and Algebras of Operators on Banach Spaces, Debhar
1974,

3. R.E. Harte, Fredholm Theory Relative to a Banach Algebra
Homomorphism, Mathematische Zeitschrift, 179 (1982) 431-436.

4. H.G. Heuser, Functional Analysis, Wiley 1982.

Mathematlics Depaniment,
Univensity College,
Conk,




- 16 -

SHIPLEY'S ALGOR|THM FOR INVERTING MATRICES

Finlaan Holland

1. Introduction

This is a brief outline of a method for inverting matrices
that was developed in the late fifties at the Tennessee Valley
Authority.

erting matrices that describe

It was found to be particularly suitable for inu-

power system impedances or admitt-
i d Cole-
ances. The method was first reported on by Shipley an

f the method can also be found

man in [4]. The essentials o

i i it in
in the texts [1] and [3]; but I could find no mention of 1

the mathematical literature.
i lect-
I have been teaching it to 2@ class of Third Year Ele
t two years
rical Engineering students at Cork for the las WLAY - ;
B2 Limeric
some readers may recall a talk I gave at the 19

ideas behind
Algebra Conference in which I presented the key 1
as it turned out -

and

the method and attempted - unsuccessfully,
to demonstrate it gn a personal computer.

i i ther
The method in question is simple to apply, direct ra

dvantage of
than iterative, easily programmable and takes full a s]

any symmetry present in the matrix under examination. : ?lnC?
otherwise it closely resembles the well-known Gauss E%lmlnatlon
method, the latter is a significant feature of the Shipley
method, which is based on modifying successively the elements

of the matrix according to a simple rule.

2. The Shipley Modification of a Square Matfix

i e define
Given an nxn matrix A = [aij], with akk # 0, w

= rules:
the kth Shipley modification Ok(ﬂ) = B by the ru

b = -1/akkv

kk

B = "5k 3k = bk 1 # K
bij = -3k /%K = 3Pk T F K
Bij = @i 7 25k Pk T 335 * by 1hd Ak
Example For instance, if
1 1 3
m= |1 0o 2,
3 4
then -1 -1 -3 0 -1 -2
o, (M) = |-1 -1 -1|= N, 02(N) = |1 1 1= L,
-3 -1 -5 -2 -1 -4
and
1 -5 - =.5
gy(L) =|-.5 1.25 -.25].
-.5 -.25 .25
3« Shipley's Algorithm

It is a simple matter to check that the last displayed

matrix is the negative of the inverse of M, i.e.

-1

05(0,(0,(M)) = -m

This example illustrates the essence of Shipley's algorithm.

THEOREM 1. Let A be an nxn matrix. If for some permutation

m of the integers 1,2,........,n the n-fold composition

9 (n) % (n-1)° .....0"(2)..00n(1)(A)

is defined, then it is equal to the negative of the inverse
of A.
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= 18 =
4. Criterion for the Algorithm to Work
Perhaps the easiest way to be convinced of this is to Since the method is not completely general - for example
consider the correspondence Ax = y, between the nx1 vectors x it will not invert the simple 2x2 matrix
and y, as a system of n equations:
0 1
Xa..x._:y., i=1,2,...n 1 0
=1 ij%j i ’
_ it is important to know when it works. To find out, uwe
On the assumption that Ak # 0 we can use the kth equat- analyse the formation of the diagonal elements under different
ion to express x. in terms of Yo and x.; j = 1525¢c25N5 ] £ ko, shipley modifications.
and then substitute this value of X into the other equations.
After some rearrangement of terms, this leads to an equivalent Given A = [aij]’ we can form B = o,(A) if a,, # O. We
system, viz., ) can then form C = 0,(B) = 0,(01(R)) if by, # 0, i.e. if
jzk(aij-aikakj/akk)xj + (8 /8407, *J.Zk(aij'aikakj/akk)xj = Yy a,, a,,
0.
i # ok #
321 322
.Zk(-akj/akk)xj + (1/akk)yk + -2 (-akj/akk)xj = X
J J>K If ¢,y # 0, i.e. if
Allowing for an adjustment of sign, this can be formul-
. . 211 32 313
ated as the matrix equation Lo
PR 322 933 ’
ok(A)x‘ =vy', 831 332 Q33

where x' is obtained from x by replacing x by -y, and y' 1is we can compute o,(C) = 03(02(01(A))), etc. This leads to the

obtained from y by replacing Vi by X 4 following theorem, whose proof we can omit.

Under the conditions of the theorem we can carry out the THEOREM 2. If for some permutation m of the integers 1,2,..5N,
manoevure just described n times, in the order determined by the principal minors of the matrix [an(i)n(j)] are all non-zero,
the permutation w, and in this way replace successively each then
component of the vector x by the negative of the corresponding -
component of the vector y; we end up with the equation ~B = On(n)(on(n—1)("""(On(1)(A))""'))‘

on(n)(on(n-1)("" (0"(2)(0n(1)(A)))....))(-y) = Xs Thus, for example, if A is strictly positive-definite

or strictly dominant diagonal, that is to say if
This is clearly sufficient to demonstrate the truth of the

theorem. xtAx > 0 for all x # O,




or n
-21Iaijl<2laii|’ i = 1525c00efly
j=

then we can apply the Shipley algorithm to evaluate the inv-
erse of A, it being clear in both cases that the property of
positive-definiteness or diagonal dominance is inherited by

the principal minors of [an(i)n(j)] for every permutation m.

S. A Noteworthy Feature of the Shipley Algorithm

An important property of the Shipley algorithm is that

it preserves symmetry.

THEOREM 3. If A = [aij] is symmetric and a_ # 0, then ok(A)

is symmetric.

PROOF. Obvious.

The fact that symmetry is retained during the implementat-
ion of the algorithm reduces the arithmetic of computing the
inverse of a symmetric matrix by approximately one half and the

memory requirements of a computer by about the same amount.

6. The Complexity of the Shipley Algorithm

To perform one modification of a given matrix we must
carry out one division, (2(n-1) + (n-1)?) multiplications
and (n-1)2% additions. Therefore to invert an nxn matrix we
must perform about n?® multiplications and the same number of
additions. The order of complexity of the method is there-
fore 0(n?).
between it and the standard elimination procedure.

In this respect, then, there is no difference

T Computer Implementation of the Method

The method is a little unpleasant to operate by hand,

but it can be easily programmed for a computer and can there-

-7 &

fore be readily demonstrated in a classroom. The program
below was designed by my son Ian for the Newbrain personal
computer (on which a draft of this article was prepared).

1t is structured to take advantage of the saﬁings involved in
applying the algorithm to symmetric matrices. Also, for a
given matrix A = [aij]’ the program selects the sequence of
operations 0"(1),0"(2),.....,0"(n), according to the following
rule: m(1) is chosen to be the index k corresponding to the
]Jargest non-vanishing lakk'; if B = 0"(1)(A), m(2) is chosen
to be the index k # (1) corresponding to the largest non-
vanishing lbkk|; and so on. By this means it is hoped to keep

computational errors to a minimum.

B. Acknowledgements

It is a pleasure to record my thanks to my son Ian for
the assistance he has given me with this project, to Tom Laffey
who drew my attention to Schwein's theorem and its relatives
[2] (which one needs to prove Theorem 2) and to Michael 0'Call-
aghan, with whom I first discussed the Shipley Algorithm, for
many useful observations.
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REM ** Program to invert a nxp matrix using the Shipley Algorithm **
CLOSE£1 :OPENE1,5:CLEAR
REM Open relevant screens
OPENED,4 ,"125"
dg=n
PUT 31: REM Clear screen
REM Read in dimension of matrix
PUT 22,10,10:2?"WHAT IS THE DIMENSION OF THE MATRIX ";
INPUT n
pUT 22,10,10:?"IS THE MATRIX SYMMETRIC? Y/N
IF INSTR("YyNn",a$)=0 THEN GOTO 62
DIM b(n,n),aln,n)
REM Read in the elements of the matrix A
PUT 31
PUT 22,20,1:?"Enter the elements of the matrix"
IF INSTR("nN",a$)>0 THEN GOTO 125
FOR x=1 T0 n
FOR y=x TO n
PUT 22,y*9,x¥2+2: INPUT("")a(x,y):aly,x)=a(x,y)
NEXT y
NEXT x
GOTO 150
FOR x=1 TO n
FOR y=1 T0 n
PUT 22,y*g,x*2+2: INPUT("") a(x,y)
NEXT y
NEXT x .
REM *¥X THE SHIPLEY ALGORITHM XXX
FOR t=1 TO n:REM t counts no of modifications
REM Find the largest unused diagonal element
k1=0
FOR x=1 TO n
IF INSTR(d$,STR$(x))>0 THEN GOTO 210
IF ABS(a(x,x)) > k1 THEN k=x:k1=ABS(a(x,x))
NEXT x
IF k1=0 THEN END:REM Singular MATRIX if k1=0
D$=D$+STR(K) g
REM *X¥ THE ALGORITHM PROPER **X
REM kth column
FOR j=1 TO n
IF j=k THEN GOTO 340
b(krj) = -a(klj) / a(k:k)
NEXT J
REM kth row
FOR i=1 TO n
IF i=k THEN COTO 430
b(i:k) = 'a(i’k) / a(k:k)
NEXT i
b(k,k) = -1/a(k,k)
REM The modification of the remainder of the matrix
FOR i=1 70 n
IF i=k GOTO 620
FOR j=1 T0O n
IF j=k GOTO 610
b(i’j) = a(isj) - a(ipk)*a(k’j) / a(k:k)
NEXT j

"s:GETET,AS

1990

This

NEXT i

REM COPY B INTO A
FOR i=1 70 n
FOR j=1 70 n
a(i,j) = b(i,j)
NEXT j
NEXT i
REM END OF ONE COMPLETE MODIFICATION
GOSUB 1910:REM Call routine to print out modified matrix
pUT 22,20,23:?"THE MATRIX AFTER ";T;" MODIFICATIONS"
pUT 22,20,24:?"press any key to continue";
GETE1 ,ky$
NEXT t
REM PRINT OUT THE INVERSE
PUT 31:PUT 22,20,1:?"The INVERSE is"
GOSUB 1910
END
REM THE END OF THE PROGRAM
REM A routine to print out the contents matrix A
REM
FOR x=1 TO n
FOR y=1 70 n
ab+STRE(a(x,y))
IF LEN(a$)=15 THEN a$=LEFT$(ab,4)+RIGHTS(a$,5)
ab=LEFTH(a%+" ",9)
PUT 22,y*9,x¥2+2:%a%
NEXT y
NEXT x
RETURN

program is in Newbrain BASIC.
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THE CONNECTION BETWEEN NETS AND FILTERS

Maunice Kennedy

1. Introduction

The fundamental theorem linking nets and filters can be

stated as follows:

Theorem. Let S be a net in a non-void set @
and £ = Z(S) be its associated filter.

inement of £, then there exists a net T in Q such that:

. If g is a ref-

(i) T is a subnet of S,

(ii) £(7) = 9.

A theorem to this effect was stated by Bartle 1855 [1].
However, the first correct proof was given by M.F. Smiley 1857
[6]. It was again proved by Bartle 1963 [3]. The proofs

of both Smiley and Bartle involve the use of the axiom of choice.

The object of this article is to prove this theorem with-
out appeal to the axiom of choice. Moreover, instead of the
usual concept of subnet, cf. [5], a simpler concept turns out
It will then

follow that this restricted concept of subnet is adequate for

to be adequate for the purposes of the theorem.
topological purposes in a sense that will be made precise later.

2. Recall that a directed set [5] is a nonvoid set D = (D, =)
carrying a reflexive transitive relation = for which every
two-point subset has an upper bound: we do not assume that

1 ]
a S0 s o= 0 =0,

If Q@ is a non-void set then a net in
is a mapping S = {xylqy¢ D from a directed set D into Q. If
S = {XG)&EIJ and T = {yB}Be g are nets in Q, then to say that
T is a subnet of S means [5] that there is N : E » D for which
YB = XN(B)? such that if o € D is arbitrary then there is BE E

for which B sB':=¢ a = N(B'). If in particular N is monotonic
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1 .
in the sense that B = g'== N(B) s N(B ), then T is called a

special subnet of S.

p filter base £ on a non-void set Q is a non-void coll-
ection of sets in 2, not containing the void set, and directed
py inverse inclusion, i.e. if B,,B, € &, there exists Be &
such that Bc B, N Ba. 1f £ = (FiBe 4, B F}, then £ is
the filter generated by 4.

Let &,, £, be filter bases for the filters Z1s £2 Tesp-
We define &1 < &, to mean that Z1 C Z2. It is

easy to check that 61 2 6, if and only if 4, is cofinal in £,

ectively.

(with respect to inverse inclusion) i.e. for each Bi1 C b1,
The two filter bases 41,6,

are said to be equivalent if 0, s 8, and £, = &y i.e. if £i1=£s.

there exists B, e £,, B2C B, .

1f €,,0, are filter bases for the filters Zi1s/42s let
4 = {B] ﬂ leBle 41, B, & ﬁz}.

if it does not contain the void set.

4 is a filter base if and only
If 4, is a filter base
we say that &, is compositive with f,, and it is clear that £

is a base for the smallest filter refining both Z1 and £,.

B Every net S = {xy) gives rise to a filter base as follows:

Definition: 2(s) = {Ey) where Eg = {xuv|u' z a}

¢(5) is a filter base and we denote the generated filter by
£2(S). /(s5)(e(s)) will be called the filter (filter-base)
associated with S.
of 5.

We call the nets {Ey} the residual nets

Conversely (cf. Bartle [1], Bruns and Schmidt [4]) every

filter is associated with a net. We see this as follows:

Let D(2) = (¢ = (x,B)|xe= B, B 4}
D(¢) is a directed set where (x,B) £ (x',B") is taken to mean

that B'c B.

Let £ be a filter-base.

We now define a net denoted by S(4&), viz:
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Definition:  S(&) = {xy|e = D(4)}

where xu = x if a = (x,B)
It is easy to check

Lemma 3.1. £(S(4)) = £ i.e. the net S(4) has £ as its assoc-

iated filter base.

4, The proof of the main theorem depends on the following

preliminary lemma concerning nets: -

- = 1 ) ‘ =
Lemma 4.1. Let § = {XQ}GGED’ St = {XB}BGED" be two nets in
Q such that Eg n EB' £ P, a=D, BED' uhere Eq » EB' are the
residual sets of S, S' corresponding to a,B respectively.
Then there exists a net T which is a special subnet of both S

and S'.

Proof. Let A = {(0,B)|]o =D, BED' and Xy = xé}

It is clear from the hypothesis that A is a co-final subset of

the directed set DxD' (with the natural ordering).
Let T = (w,}, <, where w) = x4 = xé if A= (o,B)EN
Now we show that T is a special subnet of S.

We define N: A—D by N(a,B) = a.

Clearly N is monotone. It remains to show N(A) is co-final

in D.

Let a9 C D, Let By be arbitrary in D'. By the co-finality
of A in DxD', there exists (a,B) € A, (a,B) 2 (ag,Bq). Thus
(a,B) & N and N(a,B) = a 2 ag. Hence N(A) is co-final in D.
Let A= (o,B) €A wy = wiy ) = Xa = *y(q,8) = *n(1) M0
therefore T is a special subnet of S.

Similarly, T is a special subnet of S', and the theorem is

proved.
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Corollary 4.1. If {FA}AEEA are the residual sets of the net
T constructed in lemma 4.1, then if A = (0,B) € A, Fy = Eaﬂ Eé,

The proof is obvious.

We now prove the main theorem.

Theorem 4.1, Let S be a net in a non-void set Q and Z = Z(S)
be its associated filter. If g is a refinement of /£, i.e.

/ < g, then there exists a net T in Q such that:

(i) T is a special subnet of S and

(ii) A7) = g.

proof. Let S = {xa}aezD and 4(S) be its associated filter-
base. By lemma 3.1, there exists a net S' = {xémGID' such
that 6¢(S') = g. By hypothesis 4(S) s ¢ = €(S') or

£(s) < g = &(s'). Thus 4(S) and 4(S') are trivially compos-
itive and generate 9. A base for g is 4' = {Eur]EéIu = D,
BeD'}. But by lemma 4.1 and corollary 4.1 there exists a
net T which is a special subnet of both S and S' and whose ass-
ociated filter base 4(T) = {Ea N Eél(a,B) e A}, where N is def-
ined as in lemma 4.1, Since N is co-final in DxD', 4(T) ~ &',

Since 4' generates g so does £(T). Hence Z(T) = g.

5% Let S be net in Q. Let T be a subnet in the usual sense
(cf. J.L. Kelley [5]). Since £(S) € Z(T) we may use theorem 4.1
to construct a special subnet T' of S such that £(T') = £(T).

Thus, in any topology on 9, the cluster points of the special

subnet T' coincide with the cluster points of the subnet T.

The author wishes to express his thanks to M.F. Smiley
for this observation, which would suggest that in general top-
ology it is more natural and as adequate to confine the notion

of subnet to the simpler notion of special subnet.




- 28 -

References

1.

P "
R.G. Bartle, "Nets and Filters 1N Topology

Monthly, 62 (1955), 551-557.
tNets and Filters in Top-

R.G. Bartle, "A Correction foT
70 (1963), 52-53,

ology'", American Math. Monthlys

R.G. Bartle, "Relations between Nets and Indexed Filter

-215,
Bases", Colloq. Math.. 10(1963), 211

G. Bruns and J. Schmidt, "Zur Aquivalence von Moore-Smith
Folgen und Filtern", Math. Nachr.s 13(1955), 169-186.

J.L. Kelley, "General Topology", Van Nostrand (1855).

M.F. Smiley, "Filters and fquivalent Nets", American Math.

Monthly, 64 (1957), 336-338.

Univensity College,
Dublin,

s American Math.

THE MERKURYEV-SUSL IN THEOREM

David W, Lewis

This article reports on one of the most important, and
to many people, astonishing results in algebra so far this
decade. In 1981, a Russian mathematician Merkuryev, virtually
unknown in the west, proved a theorem concerning the algebraic
K-theory and the Brauer group of a field. This result is now
known as Merkuryev's theorem and not long afterwards Merkuryev,
together with Suslin, a famous Russian mathematician, general-
ized the result to what is commonly called the Merkuryev-Suslin
theorem. These theorems at once provide answers to some Very
hard problems in the theory of simple algebras, in the theory
of quadratic forms and in algebraic geometry. Thus it seems
worthwhile to try and explain, in as elementary a way as poss-
ible, what the Merkuryev-Suslin theorem is all about. A good

source of background information for this article is [5].

We start with that well-known Dublin product, the real
quaternions, discovered in 1843 by Hamilton and usually denoted
H. A quaternion is an expression of the form a+bi+cj+dij
where a,b,c,d € R, the real numbers, and quaternions can be
added in the obvious way and multiplied together using the
famous equations i?=j2=-1, ij=-ji. Hamilton's construction
may be generalized to give quaternion algebras over any field
E We simply choose non-zero elements a,b in F, (a=b is
allowed), and do exactly as in M except that we require i?=a,
9%=b, For F=IR, a=b=-1, we have H of course. A guaternion
algebra defined as above is usually denoted (E%E) as it depends
on the choice of a,b and on the base field F. It is always
four-dimensional as an F-vector space and it turns out always
to be either a skewfield as H is (i.e. a field except that
multiplication lacks commutativity) or else is isomorphic to
the ring of all 2x2 matrices with entries in F. (In fact it
fails to be a skewfield precisely when there exist Xy in F

such that ax2+by? = 1.) For F=R, H is the only skeufield
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that occurs as a qguaternion algebra but for other fields things

can be quite different. For example, if F=0Q, the rationals,

there exist indefinitely many non-isomorphic quaternion algebras

which are skewfields.

Any quaternion algebra has a natural involution - on it
induced by 1 = -i, ? = -j. (By an involution on an algebra A
we mean a map A + A, x > x such that ;:7 = ;+7, ;7 = 7; and
On H this

This kind of

X = X, i.e. an anti-automorphism of period two.)

involution is the usual conjugation operation.

“involution is called an involution of the first kind because

elements of F are fixed by it. We view F as being contained

in (éég) in the same way as IR lies inside H. An involution

of the second kind is one which is non-trivial on F.

We must now say a few words about tensor products of
algebras. An F-algebra is a ring which also is an F-vector
space, the ring and vector space operations being compatible.
Given two F-algebras A,,A;, there exists a unique F-algebra T

and a map i ¢ A;xA, » T with the following property:

Given any bilinear map f ¢ A,xA, + W into any F-vector
space W there exists a unique algebra homomorphism g : W » T
such that gf = i.
oted A;BA,.

T is called the tensor product and is den-

For example if A, and A, are each quaternion algebras
then there are three possibilities for A, 8BA,. Firstly A, BA;
may be a division algebra (i.e. an F-algebra which is a skew-
field). Secondly A,;BA, may be the ring of all 2x2 matrices
with entries in a quaternion division algebra and thirdly,
A,BA, could be the ring of all 4x4 matrices with entries in F.
Generally the dimension of A;#A, over F is the product of the

dimensions of A, and A,.

Quaternion algebras are special cases of central simple
algebras. A central simple algebra A over F is a finite dim-

ensional F-algebra whose centre is F, i.e. {x&€ A : xy=yx for

all y € A} = F, and which has no proper two sided ideals when
viewed as a ring. For short, we will write c.s. algebra from
now ONe The tensor product of two c.s. algebra over F is a
c.s. algebra. A celebrated theorem of Wedderburn says that
any c.s. algebra over F is isomorphic to M,D, the ring of nxn
matrices with entries in a skewfield D. Moreover n is unique
and D is unique up to isomorphism. D is a division algebra
over F. We say that two c.s. algebras are similar if their
skewfield parts from Wedderburn's theorem are isomorphic.
gimilarity is an equivalence relation on the set of c.s. alg-
ebras over F. In 1929, Brauer discovered that the set of
similarity classes of c.s. algebras over F has a group struct-
ure, tensor product being the group operation. The class of
F itself is the identity element of the group and the inverse
of A is the opposite algebra, denoted APP, wyhich is identical
with A as a set but with multiplication reversed, i.e. APP=p
as a set with multiplication x defined by axb = ba, ba being
the usual multiplication in A. Then ARACP is isomorphic to
the ring of all F-homomorphisms from A to A and this ring is
isomorphic to a full matrix ring M F, n = dimension of A over
F, and thus ARA®P is similar to F. This group is usually
called the Brauer group of the field F and is denoted B(F).
For F finite B(F) is trivial since finite sSkew-fields are
B(R) is

For a local field

commutative (by another theorem of Wedderburn).
cyclic of order 2, ™ being the generator.
B(F) = Q/z, the rationals modulo one and for an algebraic

number field, i.e. a finite algebraic extension of Q, B(F) is
extremely large, its calculation being the culmination of work
involving Brauer, Hasse, Noether and Albert. See [1] for

details.

It should be mentioned that in general, quaternion divis-
ion algebras are by no means the only kind of division algebras
appearing as c.s. algebras. For example a division algebra

may be a cyclic algebra defined as follouws:

Let L be a cyclic extension of F, i.e. a Galois extension

field of F such that the group of all automorphisms of L that
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fix elements of F is a cyclic group of order n. Let o be a
generator of this group. Choose some element be F. Intro-
duce a symbol u such that u" = b. A typical element of the

cyclic algebra determined by L and b is an L-linear combination

n-1

Y xiui,
i 28

1

each x;€ L, with addition defined in the natural way and
multiplication by u™ = b and ux = o(x)u for all x&€ L. The
resulting algebra is c.s. and if b is suitably chosen it can
be a division algebra for certain kinds of field F. (Note
that for F = IR if we choose L = C, b = -1 we obtain H, o on
C then being complex conjugation.) All division algebras

over Q are cyclic. However there exist fields with central

division algebras that are not cyclic algebras. See [1],
also [2].
For a positive integer n we write B (F) = {x &€ B(F):x"=1}.

Merkuryev's theorem implies that, for any field F of char # 2,
the subgroup B,(F) is generated by the quaternion algebras

and the Merkuryev-Suslin theorem implies that, provided F

th

contains a primitive n root of unity, BL(F) is generated

by cyclic algebras. B,(F) in fact consists exactly of those

classes of algebra which admit an involution of the first kind.

(An involution of the first kind gives an isomorphism A = AOP
and hence {A} has order two in B(F), and conversely (A} has
order two means there exists an isomorphism A = APP uhich
yields an involution of the first kind on A.) The degree
of a c.s. algebra is defined to be the square root of the F-
dimension of the skewfield part of A. A theorem in [1] shows
that the order of {A} in B(F) divides the degree of A and also
that order and degree have the same prime factors apart from
multiplicity. It follouws that c.s. algebras admitting an

involution of the first kind must have degree a power of tuwo.

Tensor products of quaternion algebras give elements of

B,F and fundamental conjectures studied by some algebraists
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were those as to whether an algebra with involution of the
first kind is isomorphic to or else is similar to a tensor
product of guaternion algebras. In 1978, Amitsur, Rowen and
Tignol [3] produced an example of a division algebra over Q(t),
a transcendental extension of Q, which bhas an involution of

the first kind but is not isomorphic to a tensor produﬁt of
quaternion algebras. Merkuryev's theorem however gives an
affirmative answer to the above conjecture for similarity.

50 any division algebra D with an involution of the first kind
must be such that, for some n, M D is isomorphic to a tensor
product of guaternion algebras. For the example of [3] n = 2
will do, but in general it is not known what the least value

of n be.

So far we have only given part of Merkuryev's theorem.
To describe it fully we must first define the group K,F occurr-
K,F is defined as the additive

abelian group generated by all symbols {a,b}, a,b non-zero

ing in algebraic K-theory.

elements of F, with relations

{ab,c} = {asc} + {b,c}, f{a,bc} = {a,b} + {a,c}

and
{a,1-a} = 0 for all a,b,c in F.

Group theorists may be more familiar with an equivalent def-
inition of K,F as the Schur multiplier of the group E(F) gener-
ated by the elementary matrices in F, [11]. An elementary
matrix is one which coincides with the identity matrix except
for a single off-diagonal entry. Assume char F # 2. There

is a natural map K,F » B(F) sending {a,b} to the quaternion

algebra This map is easily seen to be trivial on the

a,b
(220),
subgroup 2K,F = {2x : x € K,F} and Merkuryev's theorem says
that the induced map a : 5%?; + B(F) is injective and its imaqe

is precisely B,F. The surjectivity of a proves the conjecture

stated above.
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The injectivity of o also ansuwers a long-standing question
in quadratic form theory dating back to work of Pfister [12]
in 1966. We describe this briefly. The set of isometry
classes of non-singular quadratic forms over a field F can
be given a ring structure, the addition (resp. multiplication)
being induced by the direct sum (resp. tensor product) of the
underlying vector spaces. The quotient, on factoring out
by the so-called hyperbolic forms, is known as the witt ring
W(F) of F. See [6] for details. Let I denote the ideal
of forms defined on even dimensional spaces. Then powers of
this ideal exist, i.e. 1%, I%, etc. and clearly 1"lc 17 for
all n. The significant connection between algebraic K-theory
and quadratic forms was shouwn by Milnor [10] in 1970 when he
proved t?at 12/1% is isomorphic to §§%%. There is a natural
map B : %7 + B(F) gotten by taking the class in B(F) of the
Clifford algebra of a guadratic form representing an element
of 12, (For anything in I® the Clifford algebra class can
be shown to be trivial.) The map B corresponds, under the
Milnor isomorphism, to the map mentioned above which Merkuryev
showed to be injective. pfister [12] in 1966 had studied
8 and had shown that in some cases it was injective but since
then nobody had come near to a proof in general until Merkur-
yev's breakthrough. Thus Merkuryev solved a problem which
had been regarded by guadratic form theorists as extremely
difficult.

We finish by describing the Merkuryev-Suslin theorem.
Let W, be the group of all nth roots of unity. We assume
for simplicity that up lies in F. There exists a unique
homomorphism, for each n, E%f; + By(F)Buy induced by sending
{a,b} to ABw where w is a chosen primitive nth root of unity
and A is an algebra, called a norm residue algebra, defined
as follows: A is generated by elements u and v with the prop-
erties u? = a, v = b and vu = wuv. The tensor product is
of abelian groups, defined in a similar fashion to our earlier
one, and tensoring on by upn is necessary in order to obtain
a homomorphism which is independent of the choice of w. The

name 'norm residue algebra' occurs because A will be isomorphic
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to M,F precisely when b is a norm from F("va). A will indeed
always be similar to a cyclic algebra. Merkuryev and Suslin
prgved that the above map is in fact an isomorphism. The

Surjectivity implies that, provided F contains U, each element
of BpF is represented by a tensor product of cyclic algebras, a
result that was somewhat surprising to some algebraists.
Another consequence of the Merkuryev-Suslin theorem is in the
realm of algebraic geometry where it leads to new finiteness

results about the Chow groups of a rational surface.

We have so far not mentioned the proof of these theorems
and to do so would be beyond the scope of this article. The
original announcements and proofs are in [7], [8], [9]. The
proofrequires the Galois cohomological interpretation of B(F).
1t uses some difficult techniques from Quillen's version of
algebraic K-theory and from algebraic geometry, in particulér
an analysis of the Severi-Brauer varieties corresponding to
division algebras [13]. There is also now a more elementary
proof of the general Merkuryev-Suslin theorem which has been
presented in some notes by Merkuryev [7a]. This proof reg-
uires much less higher algebraic K-theory. In fact, Merkur-
yeuv's theorem (i.e. for n = 2) can now be more easily done
in a couple of ways. Merkuryev himself found an easier proof
using Milnor K-theory instead of Quillen K-theory. (wWe should
explain that algebraic K-theory for a field F defines groups
K,F for all non-negative integers n, Milnor and Quillen K-theory
are the same for K, although it is non-trivial to prove this
fact. However, for higher n the two K-theories are not always
the same.) The Milnor K,F is much easier to handle and this
simpler proof has been very well written up by Wadsworth [14].
Also the quadratic form version of Merkuryev's theorem has
been proved by Arason [4] avoiding K-theory altogether but

using some technical results from Galois cohomology.




References

1.

Ta.

10.

1.

A. Albert, 'Structure of Algebras', A.M.S. Colloquium

publications, revised edition 1961.

S.,A. Amitsur, 'On Central Division Algebras', Israel J.
Math., 12 (1972), 408-420.

S.A., Amitsur, L.H. Rowen and J.P. Tignol, 'Division Algeb-
ras of Degree 4 and Degree 8 with Involution', Israel J.
Math., 33 (1979), 133-148.

J.K. Arason, 'A Proof of Merkuryeu's Theorem', to appear
in Proc. of Conference on Quadratic Forms and Hermitian

K-Theory, McMaster University, July 1983.

P.K. Draxl, 'Skew Fields', London Math., Soc. Lecture Note

Series, No. é1, Camb. Univ. Press, 1982.

T.Y. Lam, 'Algebraic Theory of Quadratic Forms', Benjamin
1873.

A.S. Merkuryev, 'On the Norm Residue Symbol of Degree 2',
Doklady Akad. Nauk. SSR, 261 (1981), 542-547, English
translation, Soviet Math. Doklady, 24 (13881) 546-551.

A.S. Merkuryev, 'K, of Fields and the Brauer Group', to

appear in Proc. of K-Theory Conference at Boulder, Colorado,

Summer 1983. A.M.S. Contemporary Math. Series (Editor

K. Dennis).

A.S. Merkuryev and A.A. Suslin, 'K-Cohomology of Severi-
Brauer Varieties and Norm Residue Homomorphism', Doklady
Akad. Nauk. SSR, 264(1982), 555-559, English translation,
Soviet Math. Doklady, 25 (1982), 690-693.

A.S. Merkuryev and A.A. Suslin, 'K-Cohomology of Severi-
Brauer Varieties and Norm Residue Homomorphism', Izv.
Akad. Nauk. SSR, 46 (1982), 1011-1046.

J. Milnor, 'Algebraic K-Theory and Quadratic Forms',
Inventiones Math., 9 (1970), 318-344.

J. Milnor, 'Introduction to Algebraic K-Theory', Annals
of Maths. Studies, No. 72, Princeton 1971.

- 37

p. Pfister, 'Quadratische Formen in Beliebiegen Korpern',

Inventiones Math. 1, (1966),
j.p. Serre, 'Local Fields',

pn. Wadsworth, 'Merkuryev's E

Theorem', to appear in Proc.

116-132.
Springer, New York, 19789.

lementary Proof of Merkuryev's

of K-Theory Conference at

Boulder, Colorado, Summer 1983, A.M.S. Contemporary Math.

series (Editor K. Dennis).

Depantment of Mathematics,
Univensity College Dublin,
Belfield,
Dublin 4.



ONE ASPECT OF THE WORK OF ALAIN CONNES

Anthony Karel Seda

Introduction

As we all surely know by now, the recipients of the most
recently awarded Fields Medals are William P. Thurston of Prin-
ceton University, Shing-Tung Yau of the Institute for Advanced
Study, Princeton and Alain Connes of Institut des Hautes Etudes
Scientifiques, France. Fields Medals are awarded by the Inter-
national Mathematical Union on the occasion of an International
Congress of Mathematicians, and are the equivalent for mathemat-
icians of the Nobel prize. The last such Congress was origin-
ally scheduled to take place in Warsaw in August, 1982, but in
fact took place there one year later due to political unrest in

Poland.

Thurston's work is in foliations and topology of low dim-
ensional manifolds, Yau's is in differential geometry and part-
ial differential equations and Connes' is in operator algebras.
An appraisal of the work of each recipient was published in the
Notices of the American Mathematical Society in October, 1982.
In particular, Calvin Moore undertook to describe some of the
fundamental achievements of Alain Connes.

Much of Connes' earlier work was concerned with the clas-
sification by "types" of factors of von Neumann algebras, and
three of the five papers of Connes cited by Moore concern this
area. However, the fourth (sur la théorie non-commutative de
1'intégration, which is reference [2] here) and fifth concern
(amongst other things) the interplay between operator algebras
and foliations. This subject, which has been called "non-
commutative differential geometry" is "(a) fusion of geometry
and functional analysis ... likely to have a significant infl-
uence on future developments" in the words of Atiyah in his

review of [2] for Mathematical Revieuws.
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Some of my own work has been in this area, and my purpose
here is to shed a little light on the sort of constructions made
and the results obtained in this new and interesting area of

mathematics.

1 Topological Groupoids and C*-Algebras

A groupoid G with object set X is a small category with

. =1
object set X such that each element o of G has an inverse a .

Exanples
(1)

Let X be a topological space and let G(x,y) = (homotopy
Then G =

Xy YE
groupoid (the fundamental groupoid) over X &{th composition

classes of) paths from x to y. u XG(x,y) is a
just the composition of (homotopy classes of) paths, identity
I, at x the trivial path and inverse "traverse the path back-

wards."

(2) A group is a groupoid with one object, i.e. X is a
singleton set consisting of the identity of G. In fact, a
groupoid is a group if and only if X is a singleton set.

(3) Suppose that a group H acts on the right of a set X.
Then G = XxH has a natural groupoid structure over X in which
the product (x',h')o(x,h) is defined if and only if x' = x.h,
and is then defined to be (x,hh'). The inverse of (x,h) is
(x.h,h™ 1) and the identity at x is (x,e), where e is the iden-

tity of H.
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Many other examples of groupoids can be given, but these

three should serve to convey their nature.

A topological groupoid is a groupoid in which both G and
X are topological spaces and all the structure maps of G are
continuous, i.e. the composition, inverse map and the map

x+— 1, are all continuous.

Suppose from now on that G is a topological groupoid over
X and G and X are both locally compact Hausdorff spaces.
Given a € G, there exists unique x,y € X such that a € G(x,y)s
let m(a) = x, the initial point of @, and let m'(a) = y, the
final point of Q. Let 6* = {B e G; m'(B) = x}. Then an ele-
ment o € G(x,y) induces a homeomorphism La:[;x + Y defined by

LQ(B) = 0oB.

x ¢ —3° Y Ly is called left multiplic-
7
s ation by Q.
g <o
27 %°B

v
-

Guided by certain analogies between group theory and
ergodic theory, G.W. Mackey introduced, in 1966, the notions
of measure groupoid and ergodic groupoid. In the topological
context these ideas lead one naturally to formulate a concept
of left invariant (or Haar) measure on a groupoid G, and to
consider function spaces associated with G. In practice, the
most convenient form of an invariant measure is contained in

the following:
Definition: A Haar measure on G is a family of non-trivial
Radon measures {ux; x € X} on G such that:

(1) supp(ux) c G* for each x € X.

(2) The u, are 1eft invariant in the sense that

[ fdux = l foLa_‘duy
G
for all x,y € X, a € G(x,y) and T € CC(G).

(3) The map X U is vaguely continuous, i.e. the map

xr—J fou, is continuous for each f € EC(G).

In this definition, and elsewhere, CC(G) denotes the space

of all continuous scalar functions on G with compact support.

The relationship between two Haar measures on G- 1is,
unlike the group case, quite complicated, see [6]. However,
any Haar measure on G induces a *-algebra structure on CC(G),

as follous. Given f,g € CC(G), we define fxg on G by

(Frad@) = | F(B)als™ a)du () (8):
G

We define also an involution f — £X by fX(a) = fla” ).

Haar measures and the convolution product above were
studied by the author in [6], [7] and by Renault in [5], and

one of the main basic results is as follouws.

Theorem. CC(B) is an associative ¥-algebra with these operat-
ions and is, moreover, & topological *-algebra in the inductive

limit topology.

The remainder of this section is concerned with associat-
ing a C*-algebra with G, and the development is similar to the
Effros-Hahn construction of transformation group CX¥-algebras,
see [5].

A representation of CC(G) on a Hilbert space H is a
X_-homomorphism L ¢ CC(G)——’B(H) which is continuous when CC(G)
has the inductive limit topology and g(H) the weak operator
topology, and is such that the linear span of {L(f)g; f € CC(G),

£ € H} is dense in H.

For f € EC(G), define

"

sup J |F|dpx,
x €X

LIl

fll"™ = su fld( )-l
Fll = svp [ 17190,
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and finally put [[f|[y = max(|[|F]]", [[F]]").

Proposition ([5])
(L) [ 1

than the inductive limit topology.

(ii) || |,
FIFITallal [y and [[FX]], = [|f]|, for all f,ge c.(6).

is a norm on CC(G) defining a topology coarser

is a *-algebra norm on EC(G), iceo ||fx9||, s

Definition ([5]): A representation L of CC(G) is bounded if
[ILCE)Y]] = ||F]], for all f e c.(G).

Now define, for all f e C_(GC), [1f]] = sup ||L(F)]|| where

L ranges over all bounded representations of CC(G).

It is easy to see that || || is a C*-semi norm, and it
is shown by exhibiting enough bounded representations (the reg-
ular representations in, fact) that it is a norm. Finally, we

denote by C*(G) the completion of CC(G) with respect to || |

Then C*(G) is a C*-algebra, i.e. a Banach algebra with conjug-
ate linear involution f+ f* such that []F**Fll = ]|f|'2 for

all f, and is called the C*-algebra of the groupoid G.

2 Foliations and the Holonomy Groupoid

Foliations have a long history even though the definition
and subject matter were not formalised until the 1940s by

Ehresmann and Reeb. One encounters foliations in:

(a) Submersions of manifolds (here the leaves are the comp-

onents of the fibres).

(b) Bundles with discrete structure group.

(c) Actions of Lie groups (here the leaves are the orbits).

(d) Differential equations (here the solutions are the
leaves).
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Jefinition ([1], [4]): Let M be an n-dimensional manifold and
let p»q be natural numbers such that p+g = n. A p-dimensional
. Jass Cr foliation of M is a decomposition of M into a union

,f disjoint connected subsets {1,] called the leaves of

oae A’
the foliation, with the following property: every point m of

Y has a neighbourhood U and a system of local class ¢t coord-
inates x = (x*,x2, ..., x"): U > R" such that for each a € A
the components of UNl, are described by the equations

n
constant.

X = constant, ...., X

x(Unla)

We denote such a foliation by 7 = (la} p is called

o e A°
:he dimension and q = n-p the codimension of 7.

Note that every leaf of 7 is a p-dimensional embedded
submanifold of M but this embedding need not be proper as the
leaves can be dense in M.

. &

Local coordinates with the property mentioned in the def-
inition above are said to be distinguished by the foliation.
‘f x,y are two such coordinate systems defined on an open set
] M, then yx_1 is a local CT diffeomorphism: R™— R" giving

:he "change of coordinates" and is expressed by the equations

i n 5
vyl oy ke, X)), 1= 1,2,..0,0

Ind these must satisfy the differential equations




yi

- = 0
axJ

in U, This means that yx'1 maps leaves into leaves. Thus,
whilst an n-dimensional manifold looks locally like Rn, an
n-dimensional manifold with p-dimensional foliation looks locs
ally like R" - Rn-pxRp trivially foliated by p-dimensional
hyperplanes parallel to RrP.

Examples

trajectories of a

differential equation

The Holonomy Groupoid

Let (M,7) be a foliated manifold as above, and let (U,x
be a distinguished local coordinate. Then the plaques of
U are given by the equation (p2x){(m) = constant, where
P2 ° RPxRY + RY is the projection. Give M the "topology of
leaves", i.e. the topology on M which has the plaques of dist-
inguished open sets as a basis, and call the resulting space
A continuous function U » RY is called distinguished if it i
locally of the form hop,ox, where h is a local homeomorphism

of RY. Let D be the sheaf of germs of distinguished functi

and 0: D + F the map sending a germ to its source; 0 is a col

ering map. [f n~ g if there exists m € M and a neighbourhood
of m such that fly = g|y, then ~ is an equivalence relation

and an equivalence class of v is called a germ at m.] It can
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pe shown that the fundamental groupoid of F acts on D and uwe
glaborate a little on this belou. finally, on identifying
clements of the fundamental groupoid which give the same action
we get the holonomy groupoid G of (M,7). G is a topological
groupoid in a natural way, in fact a locally trivial topological
groupoid. It is this construction together with the results

of §1 which bring about the sort of applicatian of functional

analysis to differential geometry that we have in mind.

Before considering such applications we will look a little

more closely at the notion of holonomy.

Consider a curve C lying in the plane R? as shouwn:

Suppose C; has coordinates (0,(0,a,)) and C, has coordinates
(0,(0,¢,)), and that T, and T, are perpendicular, and hence

transverse, to R? and passing through Ci and C2 respectively.

Any neighbourhood U of C in R?® intersects T, and T, in
neighbourhoods of C; and C, in Ti and T2 respectively, and hence
induces a C -diffeamorphism (x,(0,a1))— (x,{0,a2)) of a neigh-
bourhood of C, in T, onto a neighbourhood of C2 in T2. Clearly
the same statement is true for general transversals Ti1 and Tz,
though the required ci-diffeomorphism is then more complicated

to write doun.
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Now suppose, generally, that C:[0,1] - M is a path
lying in a leaf 1 of a foliation 7 of M, and that To and T, are

two submanifolds of M transverse to 7 and containing z, = C(0)
and z; = C(1) (a submanifold W is transverse to 7 if for each

zZe

M, we have T,M = T,W8T,L, where L is the leaf passing

through z and "T," denotes the tangent space at z). Then to

each neighbourhood U of C in M there corresponds a c'-diffeo-
morphism @C of a neighbourhood of z, in T, onto a neighbourhood
of z, in T, such that:

(i) If ¢C is defined at z € To, then ¢C(z) belongs to T.)
leaf containing z.

(ii) The germ of ¢C at z, does not depend on U nor on the
choice of C up to homotopy.

To construct ¢C we proceed as follous. Consider a seq-

vence of distinguished functions fis i = 0,1,2,...,r defined

on open sets V; and an ordered set of points t; of [0,1] such
that t, = 0, t. =1 and'C([ty,t, 1)) < VU for k = O,...,r-1.
Let Ti, for each i, be a submanifold transverse to 7 containing

the points C(t;), i = 0,1,2,...,1r, and such that T° = T

R4
T = 7

L. We can suppose that Fi(C(t;j)) = 0 and that f; is of

the form h; opa2o Xjs where x; is a distinquished local coord-

inate, for all i. For each i < r, xj carries the portion of

the curve C between E(ti) and E(ti+1), together with U, onto
a curve in R" lying in the hyperplane RP essentially as depicted
above, together with a neighbourhood of this curve in R".

-1

Hence, applying xi  to the diffeomorphism described there, we

see that for each i < r there is a Er—diffeomorphism ¢. of a

neighbourhood of C(t;) in T' onto a neighbourhood of C(tjpq) in
™% qieh that ¢i(z) belongs to the leaf of UJWU passing through

z for each z where @i(z) is defined. Then ¢_ is simply the

composite ¢r_1o¢r_20...0®10¢0, and it is clear from statements
(i) and (ii) that the fundamental groupoid of F does act on D,
as required.

By means of general results of [6]

s Haar measures exist
on the holonomy groupoid G,

even though G is not Hausdorff in
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general- A natural, geometric construction of a Haar measure

on G can be found in [3].

To date, most of the results obtained have concerned the
ideal structure of C*¥(G) or rather the ideal structure of
the reduced C*-algebra C*(G)/k, where k denotes the kernel of
the regular representations of Cx(G). It is important to knouw
whether any/all leaves of 7 are dense in M, and we have the

following criteria.

Theorem (Fack and Skandalis [3]). C*(G)/k is simple (i.e. has
no non-trivial closed two sided ideals) if and only if every

1eaf of 7 is dense in M.

A C*-algebra A is callec p.imitive if it has a faithful
irreducible representation on a C*-algebra B(H) (i.e. a *-homo-
morphism A - R(H) = bounded linear operators on Hilbert space
i)

Theorem (Fack and Skandalis [3]). C*¥(G)/k is primitive if and

only if at least one leaf of 7 is dense in M.

I have only touched on one small part here of the circle
of ideas involved in this subject, a subject which embraces
transverse measures on foliations, Connes' generalisation of
the Atiyah-Singer index theorem, non-commutative integration
in general, to name only a feuw topics. There is as yet, as
far as I know, no general account of this material, and the
interested reader will have to consult [2] and subsequent pap-
ers/preprints. There is, however, a detailed account of some
of the measure theory of [2] to be found in Daniel Kastler's
paper "On A. Connes' Non-Commutative Integration Theory",

Commun. Math. Phys., 85 (1982) 99-120.
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NON-L INEAR DIFFERENTIAL EQUATIONS IN BIOLOGY*

Alaustain D. Wood

Introduction

In recent years there has been considerable growth in the
range of mathematical sciences applied to biology and medicine.
For many years the statistics of experimental design had been
regarded as the main application in the life sciences, but with
the advent of mathematical modelling, both deterministic and
stochastic models (see Raymond flood's lecture to the Easter
1983 Symposium [4]) are gaining widespread acceptance. The
introduction of biotechnology courses in Ireland has led to
interest in the partial differential equations which arise in
biological process engineering, such as the reaction-diffusion
equation. Workers in fluid dynamics have linked with medical
doctors to cansider the equations governing the flow of blood
through the heart. Stochastic differential equations arise
in population dynamics and interesting problems in branching
of solutions of nan-linear differential equations have come from
transmission in nerve axons and from the study of reversible

reactions.

The mathematics involved in biological problems can range
from the very recent and sophisticated, such as the sledge-
hammer of topological degree theory applied to branching prob-
lems, to the ingenious application of the maost elementary ad
hoc methods of classical analysis and geometry, as we shall see
in.Section 2. But whatever mathematics is used, the final res-

Ults are only as good as the modelling process employed.

A typical modelling scheme is shouwn in Figure 1 overleaf.
It is rare for this process to flow smoothly from one end to
Often the mathematical problem cannot be seclved

in its original form. A solution may be possible by adding

% Survey Lecture given at the D.I.A.S. Christmas Symposium, 1983.




Real world Idealised

Mathematical Mathematical
assumptions problem

Biological

situation assumptions situation

Solution to

Verification | jidealised Interpretation
real world problem

Validate inb Mathematical

solution

Applciation

Predict, Decide

Design, Explain

FIGURE 1: The Modelling Process

to the mathematical assumptions, but such assumptions may no
longer be in line with the biological reality, with the conseg-
uence that the mathematical solution does not make sense when
interpreted in the real world. There is an obvious "play-off"
between mathematical tractability and biological reality in the

model.

There is an enormous temptation for the academic mathemat-
ician to pursue only those problems of current, pure mathemat-
ical interest, but this should be subordinated to truly inter-
disciplinary studies, pursued in co-operation with clinical,
laboratory and field research workers to provide fresh insight
into problems whose solution has important practical consequen-
ces., At this time increasing numbers of applied mathematicians
throughout the world are finding themselves employed on nuclear,
military or defence-related projects. While there is no doubt
that an active defence industry is good news for the employment
and remuneration of mathematics graduates, many mathematicians
in a neutral country would have moral reservations about work-
ing on such projects. In biological and medical problems,
there exists the opportunity to deploy one's skills, not to add
to human suffering, but to alleviate and prevent human misery

through the eradication of want and disease.
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The Predator-Prey Interaction

To give the flavour of biological applications, we pres-
ent some classical mork’carried out fifty years ago by the
Jtalian mathematician, Vito Volterra, best known for his work
on integral equations. This has also been used profitably
as a case study for advanced undergraduates or master's degree

students and appears in Braun's text on differential equations

(1.

We consider an environment where a population of prey,
numbering x(t) at time t, interacts with a population of pred-
ators which numbers y(t). We assume that there are ample
fesources of food for the prey, but that the prey are the sole
source of food for the predators. In the absence of predators
the prey population grows at a constant, positive rate a.

The number of predator-prey contacts will be proportional to
the numbers in each population: let b be the "success" rate,
from the predator's viewpoint, of each contact, where b is a
positive constant. Using dot for differentiation with respect

to time, the rate of change in the prey population is thus
- bxy (2.1)

For the predators, let ¢ > 0 be their natural constant rate
of decrease in the absence of prey. But they will increase

at 'a rate proportional to their present number and food supply.

Thus

y = -cy + dxy (2.2)

uhere d is a positive constant.

Heuristic reasoning leads us to expect that, when prey

_are plentiful, the predators will multiply to a point at which

nbtey are in short supply and starvation leads toc a drop in pred-

When these have reached a sustainable number,

Is this substantiated

tor numbers.,
ﬁe cyclic process will start again.

' the mathematics?




The equilibrium states of the system comprising (2.1)
and (2.2) are clearly at (0,0) and (c/d,a/b). The state at
the origin corresponds to no populations present. We restrict
attention to the latter state (c/d, a/b), moving this state
to the origin by the transformation X = dx-c, Y = by-a to
cbtain

= -(X + ¢)y
= (Y + a)x.

The torresponding linearised system is

X = -cY
(2.4

= aX )
which has a pair of purely imaginary characteristic roots
tivac. Hence (0,0) is a centre of the linearised system (2.4),
and, by the asymptotic perturbation theorem [6, p. 87], will
be either a centre or spiral point of the non-linear system
(2.3). Fortunately we can find explicit solutions which ena-

ble us to distinguish these cases,

An explicit solution of (2.4) is X(t) = Kcos Vac t,
Y(t) = K/ac sin Jac t, for any constant K, which describes a
system of confocal ellipses in the (X,Y)-plane as shown in

Figure 2 below v

Y

a
!
[
|
I
I
!

FIGURE 2 Phase-plane of the linear

_a'single maximum of height m = (c/d)Ce”
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There is one for each value of K and the arrouws denote the

direction of increasing time.

Turning to the non-linear system (2.3), multiplying the

equations by X(Y+a) and Y(X+c) respectively and adding yields

X(Y + a)X + Y(X + c)Y = 0.

Because both populations are required to be present, both Y + a

and X + c are positive and we obtain

X

X + c X+

which may be rearranged as

and integrated directly to give

= eMx o+ (Y + a)?, (2.8)

where again k is an arbitrary constant to be determined by the
initial conditions. We shall show that this defines a family
of closed curves, not spirals, the aother possibility, in the

positive quadrant.

Lemma 1. Equation (2.5) defines a family of closed curves in

X > -c, Y > -a (that is, x > 0, y > 0)

Proof: In original coordinates (2.5) may be written as
yaxc = Kebyedx (2.86)

for some constant K. Define the functions f(y) = ya/eby,
g{x) = xc/edx. Then f vanishes at 0 and +w, is positive in
between and has a single maximum at a/b with maximum value

= (a/b)%e™?, The function g has similar properties with

© at c/d.
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It follows at once that (2.6) has no solution with
X,y > 0 if K > mM and the unique solution x = ¢/d, y = a/b if
K =

FIGURE 3: The functions f and g

Now let K = AM, where O < A < m. We see from Figure 3 that

the eguation g(x) = X has exactly two solutions x1 and x, lying

on opposite sides of c/d. Rewriting the equation f(y)g(x) =

as

fy)

we see that this has: no solution y when x < X1 OT X > X,3
exactly one solution y = a/b when x = X3 Or xz3 and two sol-
utions y;(x), y,(x) when x; < x < Xp . The smaller solution
Both

We note also that y,(x) is inc-

y1(x) is always less than a/b and y2(x) always greater.
tend to a/b as x > x, or x,.

reasing for x; < x < c¢/d and decreasing for c/d < x < x,.

We now conclude that the curves defined by (2.6) are
closed in x > 0, y < 0 and have the form shown overleaf in

Figure 4.

AM

Corollary:

_ial conditions are periodic functions of time.

Lemma 2.

FIGURE 4: A trajectory of the non-linear system
Hence the solution curves of (2.5) are claosed for X > -c,

Y > -a as required.

All solutions of (2.1), (2.2) with positive init-

Let x(t), y(t) be a solution of (2.1), (2.2) with

pericd T > 0. Define the mean values by

T
Jx(t)dt, Y =

0
a/b, that is, the mean and equilibrium values

X =

1
T

Then x = c/d, y

coincide.

roof: Dividing both sides of {(2.2) by y > 0 and integrating

ields
T T

1 i . -c + dx)dt.
TJydt - TJ( :

0 0
nce the left-hand side is zero by periodicity of y, the

esult x = ¢/d follows on evaluating the right-hand side.
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The other result follouws similarly by dividing (2.1) by «x.

Thus the interpretation of the mathematical model is that
the growth of each population can be described as regular inc-
rease and decrease around a mean level. From (2.1), if «x ever
vanishes, then it is zero for all future time. Since we know
that for given initial conditions there is exactly one solution
of (2.1), (2.2), we conclude that if x is ever positive then
it will always remain positive. This means, under the assum-
ptions preceding (2.1), that the prey population can never be

wiped out by the predators.

Our next stage is to validate this model against sets of
field observations. It may be that we have to modify the model
to include more realistic interaction terms plx,y), g({x,y) where

P>q are polynomial functions, giving

= ax + p(x,y)
y = -cy + alx,y)

The explicit phase-plane analysis given above holds only for
the particularly simple forms of ps g in (2.1), (2.2). In
general, it is possible to obtain spiral points, where the sizes

of both populations oscillat. bout longterm equilibrium values,

The Effect of Harvesting

Volterra's contribution was to explain the effect of a
reduction in fishing levels on fish stocks in the Adriatic,
observed by the Italian biologist D'Ancopa. He studied the
interaction between the predatory selachians (sharks, skates
and rays) and the food fish which formed their prey.
below shouws the percentage of selachians in the total

recorded at the port of Fiume in the years 1814-1923,

1914 1815 1918 1917 1918 1919 1920 1927 1822

1.9 21.4 22,1 21.2 36.4 27.3 8.0 15.9 14.8

. and multiplied,
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las the rise in percentage of selachians due to the decreased
level of fishing during the First World War or simply part of
the predator-prey cycle observed in Section 27. As the sel-
achians were not in demand for human consumption, there were

important implications for the fishing industry.

D'Ancona's theory was that, when fishing was reduced,
there were more prey available to the selachians, who flourished
Unfortunately, it was found that the absolute

numbers of food fish also increased in this period. The theory

did not explain why a reduced level of fishing was more benefic-

ial to the predators than their prey.

In [7], Volterra formulated predator-prey equations like
(2.1), (2.2) with an extra term to describe the effects of fish-
ing. Assume that fishing decreases the food fish population
at rate ex(t) and the selachian population at rate ey(t), where
€ describes the intensity of harvesting. This can be measured
by the number of boats at sea or nets in the water: see Clark

[2]. We then have

(a - €)x - bxy (3.1)

-(c + E)y + dxy

Provided a > €, the system (3.1) is identical to that of Section

2, with a replaced by a-¢ and ¢ by c+e. The mean values of

x and y are given by Lemma 2 as
X =
The ratio of selachians to food fish is seen to be

a -
C >

d
b

ihich increases as ¢ is reduced, accounting for the observed

effect.
@ shift in the equilibrium values and not to cyclical variations.

The increase in percentage of selachians is due to

We observe also from (3.2) that a moderate amount of harvesting
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(e < a) actually increased the number of food fish and reduces
the number of selachians. An excessive amount of fishing
(e > a) leads to the eradication of both populations, with oby-

ious implications for EEC fishing policies in Irish waters.

This result is known in biology as Volterra's principle.
It is interesting to note that another distinguished analyst
of the same period, G.H. Hardy, also better known to mathemat -
icians in other fields, has his name enshrined in biology thr-

ough the Hardy-Weinberg ratio in genetics.

4, Other Applications of the Model

The use of insecticides, which destroy both the insect
predators and their prey, may have the undesired effect of inc-
reasing the population of iﬁsect pests kept under control by
natural insect predators. The cottony cushion scale insect
was accidently carried from Australia to the U.S.A. in 1868 and
spread to such proportions that it threatened the Californian
citrus industry. To combat this, the ladybird beetle, a nat-
ural predator, was introduced from Australia and succeeded in
keeping the scale insect in check. When the insecticide, DDT,
was discovered, farmers épplied it in an attempt to eradicate
the scale insects. Instead they found that, as predicted by

Volterra's principle, the scale insect population increased.

Similar effects have been observed in the spraying of
lakes to kill off mosquito larvae, which also had the effect
of reducing the population of natural predators on the larvae,
Spraying of DOT had damaging longterm effects on the environment,
while spraying with 0il; to reduce the surface tension, causing
the eggs to sink, led to pollution of water suppplies. Mathem-
atical work on alternative methods for mosquito control has been
carried out by a former student, F.M. Dube [3], in 1982. Let
x(t), z(t) and p(t) denote the populations of adult female mos-
quitoes, immature mosquitoes (water—borne larvae) and aquatic

predators respectively. The interaction of the two mosquito
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opulations, in the absence of predators, is shown in Figure 5
P

below.

Vector

Population x

death rate y

1\

gQross reprod-
B e ouie Death uctive rate G
uctive rate R

density dependent
death rate
d = dgo+&z

Immature

population z

FIGURE 5: Interaction of mosquitb population

This is described by the system of equations

- ‘¥ R
x = Yx + Rz (4.1)

z = Gx - (do+&z)z.
i = ich
A key parameter is the reproductive threshold R, = GR/Yd0 whic

is interpreted as the average reproductive contribution of one

female mosquito to the next generation, roughly the number of

viable progeny.

We now introduce an aguatic predator population with
(maximum sustainable population) k, intrinsic

carrying capacity . .
The system (4.1) is modif-

growth rate o and rate of kill B.

ied to:




= -yx + Rz

= Ox - (doe+Bplz - £2?

>

ap(1-p/k) + Bpz.

This system has four equilibrium states

no populations present
eradication of mosquitoes
predator fails to thrive

control of mosquito population

Let 8% = dg(R -1)/k. It can be shown that, for Ry > 1, the
equilibrium states £, and £, are always unstable. If, in
addition, B > B*, then the equilibrium state E; is asymptotic-
ally stable, while E; (which is of no biological significance
in this case) is unstable, Canversely, if B < B*, then E3 is
asymptotically stable and £y is unstable. As B - B*, the
states E, and E, coalesce. We conclude that, for a model with
a density dependent death rate, B* represents the threshold

between control and eradication of the mosquito population.

This result has practical implications for the choice of
natural predator introduced. For habitats with a louw carrying
capacity k, the predatory worm of the genus Mesostama has been
found to reduce mosquito emergence by 70 to 90% [5]. In hab-
itats with large k, the introduction of predatory species of

fish, with higher rate of kill B, millvprove more effective.
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"CALCULU
S AND ANALYTIC GEOMETRY" (Sixth Edition)
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Maxima and minima now precede related rates. The chapter
concludes with a section that extends the Mean Value Theorem
and develops error estimates for the standard linear and quad-

ratic approximations of functions.

"Chapter 4, on indefinite and definite integrals, begins
as it has in the past with differential équations of the form
y! = f(x), solved by separation of variables. The chapter
contains a neu development of the two fundamental theorems of

integral calculus, however, and devotes a separate section to

the technigue of integration by substitution (for both definite
and indefinite integrals). It is in this section that differ-

entials are first introduced.

"Chapter 5, on applications of definite integrals, has

more art, problems, and worked examples than pbefore, and freq-

vent formula summaries.

"Chapter 6, which introduces the logarithmic, exponential,

and inverse trigonometric fucntions, also discusses relative
rates of grouwth of functions. It concludes with a section
on applications of exponential and logarithmic functions to
cooling, exponential growth, radioactive decay, and electric

circuits, and a section on compound interest and Benjamin Fran-

klin's will.

"In Chapter 7, on techniques of integration, the section
on improper integrals has been expanded to include comparison
tests for convergence. There is also a neu section on using

integral tables, and the treatment of integration by parts has

been moved to the beginning of the chapter.

wChapters 8 (plane analytic geometry) and 9 (hyperbolic

functions) have been shortened somewhat and contain additional

art and problems.

"Chapter 10, on polar coordinates, is shorter than before

polar equations of

and contains a neu technique for graphing




the form r = f(0).

"The presentation of infinite sequences and series has

been moved forward in the book and divided into Chapters 11

and 12. Chapter 11 is devoted to sequences and infinite ser-

ies of constants, Chapter 12 to Taylor's theorem (as an extended

mean value theorem) and power series. Series of complex num-

bers are mentioned briefly. (An introduction to complex num-

ber arithmetic and Argand diagrams appears in Appendix 8.)

"Chapter 13, on vectors, begins with motion in the plane

and moves from there to the study of vector algebra and geometry
in space.

"Chapter 14, on vector functions and their derivatives,
has a new treatment of tangent vectors, velocity and acceler-

ation, and concludes with a section on Kepler's laws of planet-
ary motion.

"Chapter 15, on partial derivatives, has new treatments

of limits of functions of two variables, continuity, surfaces,

partial derivatives, chain rules, directional derivatives,

linear approximation and increment estimation, maxima and min-

ima (both constrained and free), Lagrange multipliers, exact

differentials, and least squares,

Computer graphics have made
it possible to visualize and discuss a number of surfaces that

could not have been shown in earlier editions of this book.
The chapter also looks briefly at solutions of some of the

important partial differential equations of physics (in conn-

ection with higher order derivatives) and has a short section
on how to apply chain rules when a function's variables are
not independent.

"Chapter 16, on multiple integrals, contains a new intro-

duction to the subject, along with more examples, problems,
and frequent formula summaries. It concludes with a present-

ation of surface area based on the notion of gradient.

. e B e
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"Chapter 17, on vector analysis, begins with vector il:;s
1ds, surface integrals, line integrals, and work, and coTc ihe—
with Green's theorem, the divergence theorem, and Stokes's
oreme. In addition to many neuw examples and probleTs,‘ihe o
chapter now contains a brief derivation of the continuity eq

tion of hydrodynamics.

"In Chapter 18, on ordinary differential equations, thif
treatment of linear second order equations with constant Ciined
icients has been expanded to include the meth?d ?f undeter )
coefficients in addition to the method of VarlétIOﬂ of param
eters. The chapter concludes with short sections on pomerd
series solutions, direction fields and Picard's theorem, an

fuler and Runge-Kutta methods.

e s 1include e a e ections o eterminants
e app dixe lud Xp ded sect1 1 det
an rame e a a e a ear equations as

d mer's rule, d o rices d 1li q 9

y
w 1 e ica du L a u er sys
well as e sections C at a tic

tems.

i i te volume ... or
"The text is available in one comple

t eparate parts ... Both parts contain ansuwers to odd-
as two s

numbered problems."

- —




- B7 -
PROBLEM PAGE

The more general inequality, of which (1) is a very spe-

First p
rst of all, here's a proof of the inequality cial case, arises in the following way. For any polynomial
(1 + x2)P 2p

)P s x + (2P - 2)xP 4 1, > 0, P(z) = ap + @z + «oo * az",

which was posed last time. let us urite
For x > 0 we write 1Pl = lao|P + |ar|P + «oo + lanlP.

(x2D + (2P = 2)xP + 1) - (1 + x2)P = xP(xP + (2P If P,Q0 are both polynomials of degree n with non-negative
coefficients is it then true that

lpalz < |21, |Q%] < p s 27 (2)

say. By symmetry, it is enough to prove that d(x) 2 0 for

0 <
X 3 For p = 1 both sides are equal to (p(1)a(1))? and, for p = 2,

1, and since ¢(1) = 0, we need only show that ¢ is
de i i
sressing in (0.1). Bt (2) is a form of the Schwarz inequality. All computer calc-

ulations (now done by several people) point to the truth of

1yp-
- plx + _)D 1(1 - J?) (2) but there are only a few positive results.
X

«xP+1 X

so that
For example, if P(z) = 1 + az, Q(z) = a + z, where a z 0,

xz)p-1). then (2) reduces to (1). From (1) we can also deduce the

general linear case, pP(z) = 1 + az, g(z) = 1 + bz, where a,bz0.

However the next case to consider

p s 2. 2 2
P(z) = 1 + az + bz", Q(z) = b + az + z°,

since the left-hand side is convex as a function of p
’

is equality at p = 1,2. Thus ¢'(x) £ 0 for 0 < x

and there where a,b 2 0, has only been verified (using Shapiro's method)

< ) . .
£ 1, and in certain special cases.

the proof is complete.

I hope to survey knouwn results and the computer evidence

The idea of keepi .
ping x fixed and varyi
ying p has been used in a future article in the Newsletter. For now, here are two

b . .
Yy arold S apiro to 9lve a proo 1) ( ) based o Descarte!
H h f f S

' more problems.
Another proof of (1) depends on the expansion

rule of signs!

e R A P AT .

s (Suggested by Finbarr Holland) Prove

where 0 < o < 1, ; Kk _ m(2m-1)

and deduce that

[ e
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2% (Posed by the topologist Morton Brown)

Suppose that
a1, a8, are real and not both zero, and

a

n+2 'an+1l - 8ns W = 192guis

Prove that the sequence {an} always has period 9

Phil Rippon,

Facully of Nathematics,
The Open Univensity,
Milton Keynes,

CONFERENCE REPORTS

FOURTH CONFERENCE ON APPLIED STATISTICS IN IRELAND

The Fourth Conference on Applied Statistics in Ireland was
held in the Kilkea Castle Hotel, Castledermot, Co. Kildare, on
29-30 March 1984. This conference was the fourth in a series
which brings together individuals of diverse statistical inter-
ests from industry, government and education. Fifty-three
participants (including two from overseas) attended the confer-
ence and helped create an atmosphere conducive to the exchange
of statistical ideas. An added bonus to this year's conference
was the book displays provided by both Chapman and Hall Ltd and
John Wiley and Sons Ltd. C.0.P.S. Ltd displayed IBM personal

computers and some relevant statistical softuware.

The conference programme was divided into five sessions
of contributed papers as well as two principal invited addresses.
The first invited address was given by Mr Thomas P. Lenihan,
Director of the Central Statistics Office. Mr Lenihan gave an
overview of the C.S5.0. and its activities, and one could not
but be impressed by the diversity and scope of this important
information collecting agency. Mr Charles Smith, chief stat-
istician at Guinness Ireland Ltd, gave the second principal
address in which he described the role of statistics at Guinness.
It was quite interesting to note how diversely talented a large
company like Guinness expects its statisticians to be. Although
the role of the statistician in industry seems to be well app-
reciated (for historical and other reasons) at Guinness, it was
perhaps a bit discouraging to learn that the number of statist-
icians employed at Guinness has decreased markedly in recent

years.

The first session of contributed papers was led off by
Adrian Dunne (UCD) who demonstrated the potential of an object-
ive design strategy for pharmacokinetic model discrimination.
Graham Horgan (TCD) then described some of the practical prob-

lems in the statistics of image processing, particularly with
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regard to the case of satellite photography for environmental
purposes. John Haslett (TCD) discussed the utilization of
spatial information in performing discriminant analysis on
multivariate data (e.g. with LANDSAT). Arnold Horner (UCD)
and James Walsh (Carysfort) completed the initial session when
they described a project they have undertaken to make inform-
ation on the geography of Irish agricultural statistics more
readily intelligible and more widely and rapidly diffused.
Their recently published Agriculture in Ireland - A Census
Atlas is the result of this project in which the mapping done

is computer assisted.

Ridan Moran (UCC) began the second session by discussing
some of the problems which arise in ranking students on the
basis of an entrance scholarship examination at UCC which invol-
ves the selection of several different subjects. He demonstr-
ated that as certain subjects seem to dominate the scholarship
awards, some form of standardization is needed. Owen Egan
(Educational Research Centre) discussed in the context of a
regression model the performance of primary teachers' assess-
ments of their pupils' abilities versus assessments based on
test scores, and concluded that the teachers! assessments are
as defensible as any that might be made under the prevailing
error factors. Eamonn McEntee (Ulster Polytechnic) concluded
the session by presenting some useful ideas on how the micro-

computer might be used in the teaching of statistics.

Stephen Gardiner (Department of Agriculture for Northern
Ireland) initiated the third (early morning) session in dis-
cussing recent research at the Plant Testing Station, Depart-
ment of Agriculture (NT) involving the use of electrophoresis
in studying competitive ability of perennial ryegrass cultivars
in conventional swards. David McSherry (QUB) described 1515
(Interactive Statistical Information System), a programme he
has developed designed for patient record management and stat-
istical analysis in a study of femoral neck fracture in the
elderly. Peter Whalley (Open University) presented a paper

on the applicability of psychological data to multivariate

analysis. Eddie Gillespie (Ulster Dolytechni?) concluded Fhe
session with a paper showing how in multiple linear regr%5§1gzes
the assumption of measurement error in the explanat?ry uailaards
does not always cause regression parameters to be blaéed t?u
sero (as in simple linear regression), and that the direction
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Dr E.P. 0'Reill i
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REPORT OF THE NASECODE IIT CONFERENCE

(Communicated by J.J.H. Miller of the Numerical Analysis Group,
Dublin)

The third international conference on the Numerical Anal-
ysis of Semiconductor Devices and Integrated Circuits, NASECODE
111, was held in Galway, Ireland, from June 15th to 17th, 1983,
under the auspices of the Numerical Analysis Group. It was
attended by over 120 delegates from 18 countries. The aim of
this series of conferences is the fostering of a fruitful exc-
hange of ideas betuween electronic engineers and numerical anal-
ysts, who are using existing and developing new computer codes
for semiconductor process, device and integrated circuit model-

ling.

As on previous occasions the industrial sector was str-
ongly represented and it is our policy to ensure that the topics
discussed at these conferences are relevant to the needs of
industry. This ensures that the scientific and technical mat-
erial presented at the conference is not only intellectually

challenging, but also of great practical importance.

The application of numerical methods to semiconductor
device modelling began about 17 years ago, and since then it
has developed and broadened in scope very rapidly. To date
relatively feuw professional numerical analysts have worked in
this area, and conseguently it is still a fertile source of
stimulating unsolved problems of widely varying degrees of

difficulty.

The models of technological importance are mainly in two
space dimensions and they may also be time dependent. Typic-
ally, two or three nonlinear differential equations have to
be solved on complicated domains with a variety of boundary

conditions. Computational experience indicates that the sys-

tems are often very stiff.

T T

m——
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For the numerical analyst there is a wealth of problems.
Frequently, underflow and overflow occur and special tricks
have to be used to allow the computation to proceed. Converg-
ence of the iterative method for solving the discrete nonlinear
system is usually a problem. The very fine meshes generally
used in certain parts of the domain give rise to large discrete
systems, and consequently the systems to be solved after lin-
earisation are large. Many standard linear equation solvers,
both direct and iterative, are impractical or simply fail for
these problems. The development of practical and efficient

techniques for solving extensions of these problems to three

space dimensions and to the non-stationary case are also needed.

For a representative collection of papers on the subject
the reader may consult the five publications (1], [2], [4],
[9] and [10] associated with the NASECODE conferences. The
first two monographs on the subject are Kurata [3] and Mock
[5]. The main journals covering engineering aspects are [6]
and [7], while the more computational and mathematical aspects
are discussed in journal [B8]. The fourth conference in the
series, NASECODE IV, will be held in Dublin, Ireland, from June
9th to 21st, 1985.
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IRISH MECHANICS GROUP

(Conference of the Irish Mechanics Group held at the Dublin
Institute for Advanced Studies on 17th April, 1984)

The opening lecture was given by Dr R.K. Li of Trinity

College, Dublin, who spoke on "Scalar polynomial linear flouw

potentials", He was followed by Dr D.W. Reynolds of N.I.H.E.

whose topic was "The buckling of viscoelastic rods" and a lect-
ure by Prof. J.N. Flavin of U.C.G. on "Some asymptotic bounds

for end-bonded elastic cylinders" brought the first session

to a close.
The second session consisted of three lectures. The

first one on "Slow perturbations of fast plane shear flow of a
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simple fluid" was by Dr J.N. Dunwoody of Queen's University
Belfast, and the second on "Inhomogeneous plane waves" by D;of
M.A. Hayes of U.C.D. Prof. P.M. Quinlan of U.C.C. deputised .
for Prof. M.M. Carroll of the University of California, who
was unable to attend. Prof. Quinlan spoke on "The complex

displacement method in elasticity",.

The conference was attended by Prof. J. Ericksen of the
Unlversity of Minnesota who was recently the recipient of an

honorary degree from N.U.I.

Go Keliy

GROUPS IN GALWAY 11-12 MAY 1984

.A conference on Group Theory sponsored by the Irish Math-
ematical Society, Royal Irish Academy and University College
Galway, was again held at University College Galway on Frjda’-
Saturday 11-12 May 1984, The main speakers were David Lé@iz
(U.Cc.D.), Charles Leedham-Greene (Q.M.C. London), Pat Fitzpat-
rick (U.C.C.), Marty Isaacs (Wisconsin), Ted Hurley (U.C GD)
with further contributions from Rex Dark (U.C.G.), Mark éa;t—
wright (Christ Church, Oxford) and Martin Newell (U.C.G.).

A very successful addition to the Conference this year was a
Problem Session in which many of the participants contributed

a number of unsolved problems for discussiaon

David Lewis spoke on the Merkuryev-Suslin Theorem (see

article in this issue). This Theorem, concerning the algeb

raic K-
e theory and the Brauer group of a field, has only recently

(1982) appeared, but has already answered many hard problems

in si s i
simple algebras, quadratic forms and in algebraic geometry

It i i
1s destined to become a classic which people in many areas

will find useful, David very eloquently set the scene and

led us through an outline of this famous result

Charles Leedham-Greene spoke on "Space groups and p-groups"
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and reported on work by S. McKay, W. Plesken, M.F. Newman and
himself. The idea is to classify p-groups according to co-
class (if |G| = p? and G has nilpotency class c then co-class
G = n-c). There are 5 co-class conjectures and one of these
involuving a tremendous amount of hard mathematics has recently

been settled by Charles and others.

Pat Fitzpatrick gave an excellent survey of problems,
questions and some answers concerning boundedness of conjugacy
classes of a finite group in his talk "Some questions on con-
jugacy". 1f my = |C(g;)| and [G] = my 2z myz ...zm, then
the idea is to look at k and the mj and determine properties

of G from these (e.g. m; >m, > ...>m  and G supersoluble =

G = S3).

Marty Isaacs spoke on "Characters of soluble groups".
If I is a set of primes, G* = set of Nl-elements in G, the idea
is to find a good basis for the vector space of "class funct-
ions" of G¥*. His results can be applied to Ill-separable groups.
This is a unique approach to this vast area and is certain to

lead to new developments.

It is a pleasure to be able to state that the reporter

understood every little detail of Ted Hurley's talk "What can

you do with a set of variables?"! This surveyed the connect-

ions between various objects, grobps, Lie Algebras, Polynomial
Rings, Power Series Rings, group algebras, varieties and some
e.g. Burnside's, Dimension Sub-

Modesty forbids

of the associated problems,
group problem, isomorphic group rings problem.

further comment!

Further contributions included Rex Dark "Isotropic tensors
and symmetric group algebras" (see I.M.S. Neuwsletter, December
1983, No. 9); Mark Cartwright "Bounded conjugacy conditions";

and Martin Newell "2-generator groups of exponent = p3n.

We would like to thank all our speakers, contributors and

participants for their continued support and we hope to continue
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with "If it's May, it must be Galway (Groups)™",

We are also happy to report that the famous group theory
program CAYLEY has now been implemented at U.C.G. This is
a tremendously powerful program (about 4500 blocks - 2 million
lines of FORTRAN) which has taken over 10 years to develop.
It can deal with computations in, e.g. finite presented groups
permutation groups, matrix groups, low index subgroups, éhar- ’
ac?er tables and has over 200 algorithms. It is used in some
universities for undergraduate teaching of group theory - it '
has %ts own mathematical language and no knowledge of programm-
ing is required. We also hope to implement MATRIX soon on
a trial basis. This is an undergraduate teaching aid developed
by John Cannon and a group at Sydney (who are also responsible
for CAYLEY). It is best described as a laboratory tool (and
S0 1s not a "package" as such) for mathematics and I understand
that this particular program will include among others, Gauss-
ian Elimination, eigenvalues-vectors, linear (in)dependence
simplex algorithm. Others being developed are NEWTON (cal;-
ulus!), KOENIC (graph theory).

Ted Huntey

CONFERENCE ANNOUNCEMENTS

PROTEXT I

The First International Conference, Exhibition and

Workshop on Text Processing Systems

Gresham Hotel, Dublin, Ireland
22 - 26 October, 1984

Organised by Professor John Miller, Trinity College, University of Dublin

Aims and Scope

These events aim to bring together a cross-section of

people from business, industry and academia who share an inter-

est in computer-aided text processing systems. Particular

emphasis will be placed on the following areas:

X computer-aided generation of generalised copy (e.qg.
graphics, mathematical, non-English language)
computer generated book-quality masters for print
production
interactive editing systems
computer-aided typography

human factors (e.g. the handicapped, the unions).

Both software and hardware aspects are included.

Conference (24 - 26 October 1984)

This will consider future developments and current res-

earch in both the hardware and software areas. Keynote speak-

ers at the conference include:
Brian Kernighan (Bell Laboratories)
Pierre MacKay (University of Washington)
Brian Reid (Stanford University)




- 80 -

Vincent Quint (University of Grenoble and INRIA)
A.N. Other (Hewlett-Packard)

Several formal discussions may be held on controversial topics
of current interest by protagonists of international repute

(e.g. Whither typesetting?).

Workshop (22- 23 October 1984)

This will be concerned with state-of-the-art computer-~
aided text processing systems. Live demonstrations of actual
text processing systems (including SCRIBE, TEX, TROFF and
EDIMATH) will be presented and tutorials given on their use.

Exhibition (22 - 26 October 1984)

Companies marketing software and harduware related to
computer-aided text processing systems will exhibit their prod-
ucts during the Workshop and Conference. It is expected that

several new products will be announced at this exhibition.

Registration Fees

These cover entry to all technical sessions, a copy of
the Workshop Lecture Notes/Conference Proceedings (as applic-
able), morning coffee, lunch and afternoon tea. There is no
charge for associates of delegates, and they are welcome at
all events in the Social Programme. They may not, however,
a''and any of the technical sessions or appear as joint authors
on papers.

Early Late
Uss uss$

Workshop only 250 2395
Conference only 250 295
Workshop and Conference 350 3395

The early rate applies to all fees received by 1st June 1984,
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All full-time bona fide research students with a letter
of introduction from their supervisor may claim a US$100

discount.

All correspondence should be addressed to:

PROTEXT I Organising Committee/Boole Press Ltd,
P.0. Box 5, 51 Sandycove Road,
Dun Laoghaire, Co. Dublin,

Ireland.

Announcing NASECODE IV

The Fourth International Conference
on the Numerical Analysis of Semiconductor Devices

and Integrated Circuits

19th to 21st June, 1985, in Dublin, Ireland
under the auspices of
the Numerical Analysis Group

and co-sponsored by the

Commission of the European Communities
Electron Devices Society of the IEEE
Institute for Numerical Computation and Analysis
*Technical Group on Semiconductor and Semiconductor Devices of the IECE
Irish Mathematical Society

¥ applied for

Contributed papers are solicited from engineers, physic-
ists and mathematicians on any topic relevant to the numerical
analysis, modelling and optimisation of electronic, opto-elect-
ronic and quantum electronic semiconductor devices and integ-

rated circuits.

A special feature of the conference will be a number of

public debates led by distinguished personalities holding diff-

erent views on key technical issues.




Contributed Papers

THE DEADLINE FOR THE RECEIPT OF ABSTRACTS AND PRELIMINARY
VERSIONS OF 20-MINUTE CONTRIBUTED PAPERS IS 1ST FEBRUARY, 1985,

Short Course

A Short Course of relevance to the Conference will be
held in association with NASECODE IV on 17th and 18th June,
1985,

All publications associated with NASECODE I, NASECODE II
and NASECODE TIII Conferences held in 1979, 1981 and 1983 resp-
ectively and the Lecture Notes of the NASECODE II and NASECODE

IIT Short Courses are available from Boole Press Limited.

All correspondence concerning the Conference and/or Short

Course should be addressed to:

NASECODE DOrganising Committee, c/o Boole Press Limited,
P.0. Box 5, 51 Sandycove Road, Dun Laoghaire, Co. Dublin.

Ireland.

WORDS

TRILLION, On 7 June the Standard, reporting on 'America's
ballconing budget deficit,' wrote that Federal government spen-
ding last year uwas 'running at $1.5 trillion a year... (A tri-
llion has 12 noughts)'., Tuwelve? Surely a trillion is a mil-
lion times a million: 18 noughts. Then I remembered how in
1974 Mr Callaghan, then Prime Minister, had given his blessing
in a parliamentary answer to the American billion (nine noughts)

against ours (12 noughts).

The struggle has been going on for some time. According
to the OED, two Frenchmen of the late 1400s and early 1500s,
N. Chuquet and Etienne de la Roche, explained billion, trillion
etc as 'successive powers of a million [i.e. six noughts for
each jump], the trillion being the third power of a million ...
as always used in England.’ Then, in the mid-1600s, the 'err-
oneous custom' was established in France of 'calling a thousand
millions a billion and a million millions a trillion, an entire
perversion of the namenclature of Chuquet and de la Roche, an

error unfortunately followed by some in the US.!

Unfortunately or not, the Americans seem to be winning,
Trillion with 12 noughts, says the forthcoming Vol. IV of A
Supplement to the OED, 'is increasingly common in British us-
age, ' (Incidentally, a centillion, a million to the power
of 100, has - English style - 600 noughts, which would fill

at least 12 of these lines.)

From The Observer, Sunday 17 June, 1984. (Compare with "Word Conser-
vation", I.M.S. Newsletter, No. 7 {March 1983), page 88.







