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1 feel that students should meet the various constr-

uctions separately in a first treatment; the general

theorem can follow if there is time - and a desire -
for it.
(b) It may be worth mentioning the somewhat surpris-

ing fact that the theory of groups acting on (infinite

trees is significant in the study of finite groups;

see, Tor example, Goldschmidt's article [3].

(c)
Theory see Cohen's notes [2] or the Scott-Wall art-
icle [5].
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AN _INTUITIVE PROOF

OF BROUWER'S FIXED PQINT THEOREM [N R®

Clanence C. Mornisontand Mantin Stynes?

Fixed point theorems play a major raole in general equilib-
‘ium theory. Brouwer's theorem is the most basic of these;
|t states that any continuous function mapping a closed bounded

sonvex set into itself must contain at least one fixed point

For a more topological account of the Bass-Serreii_e,, a paint that is its own image).

Elementary discussions invariably qive an intuitive prD;F
sf the theorem for functions of a single variable, as illustr-
ated in Fig. 1. In R a set is convex if and only if it is
an interval; thus a continuous mapping of the closed boundary

interval [xo,x;] into itself can be represented by a curve f.
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FIGURE |

Since f connects the left-hand side of the rectangle to the
right-hand side of the rectangle, it is intuitively obvious

that f must intersect the diagonal of the rectangle at least
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once, and at this point F(x*) = x%, A bit more formally, if - 55 -
flxo) = xo and f(xy) = x1, then ¢(xe) = flxo) - xo > O and apping is continuous and maps the closed rectangle ABCD into
¢(x;) = f(x,)-x; <0. Since ¢ is continuous on [xos%xy], the For simplicity we denote the extended mapping by f and rep-
intermediate value theorem impliés that ¢ must assume the Valk;sent f by f(x,y) = (x',y') where
zero somewhere on the open interval (xg,x,), which proves the
theorem. . xt = glx,y)

' y' o= hix,y) (1)

An intermediate- or advanced-level student should be a bj

. 1 . | . ; .
street-wise and skeptical of the validity of demonstrations ﬂlth xx' & [xosxals yay'e [yosyals and with 9 and h contin

based on two-dimensional diagrams. The purpose of this noteious‘

is to demonstrate that the intuitive graphic proof generalizes

to three dimensions (i.e., to functions on R?) and can be mads Fig. 3 gives a three-dimensional representation with W

rigorous at that level and the rectangle ABCO in the horizontal coordinate plane.
gepresented above the two-dimensional rectangle ABCD is the X
EIJFCKLH. The sides EI, FJ, GK and HL

and FG all correspond to the interval

To begin, let W be any closed bounded (i.e., compact) Ccﬁhree dimensional box

vex set in R? and let f be any continuous function mapping W 2% well as EH, IL, JK

into itself. Since W is bounded it can be contained in a relxo’xl] Similarly, the sides EF, IJ, LK and HG all corres-
angle as shown in Fig. 2. We may now extend f to the closeg?ond to the interval [ye,y:]. The graph of g is given by the
B=(xp.3) C=(x,. 1) : surface MNOP which is restricted to the closed three-dimensiaonal

sox since x' is restricted to [xo,xi].

b

) Now consider the projection mappings Pxs Py defined by
a X = Dx(x,y)
W y = pylxsy) (2)

The graph of py, in Fig. 3 is the diagonal plane EFKL and the
intersection of g and px is the manifold RQ which projects into
the horizontal coordinate plane as TS. Since 081ther the sur-

face MNOP nor the diagonal plane EFKL have any rtips in them,

it is 1ntu1t1vely obvious that the intersection of g and py must

A = (xg, yo) D =(xy, y)
connect the face and back of the three-dimensional box and that
FIGURE 2 the projection TS connects opposite sides of ABCD. Further,
TS represents the points (x,y) in ABCD for which x' = x.  Sim-
rectangle ABCD as follows. Choose an arbitrary interior POlilarly, the intersection of h and Py projected to the coordinate

a in U and for each point b in the rectangle but not in v, plane will connect the left and right sides of ABCD as UV does

define f(b) to be the image of the point c at which the linein Fig. 3. This projection represents the points (xsy) in

through a and b intersects the boundary of U. The extendedapcp for which y! = y. Again, intuition tells us that UV must

intersect TS (at least once) and any intersection of UV and TS




FiGure 3

is a fixed point of f.

To make this demonstration rigorous, it is necessary to
prove that TS (or UV) actually connects opposite sides of
ABCD. As a first step we show that if Brouwer's theorem holds
for functions which are "very close" to f, then it must hold
for f itself. Let |’Q-r|| denote the usual Euclidean dist-
ance between two points g,T in R?. For any given €> 0, supp-
gse that there exists a cdht{ﬁhous function f*:ABCD -+ ABCD such
that ||F*(x,y)-f(x,y)||'§ ¢ for all (x,y) € ABCD, and such that
fx has a fixed point in ABCD. We claim that this property
implies that f has a fixed point in ABCD. Applying the prop-
erty, we can assume that for each n = 1,2,3,... there exists
a continuous function fn:ABCD -+ ABCD such that

HEnGoy)-fOGy) T s 5

for all (x,y) e ABCD, and there is a point L,& ABCD such that
fn(Zn) = 1. The compactness of ABCD implies that the seqg-
uence {Zn} has a limit point, Z%. We invite the reader to
show that Z*¥ is a fixed point of f.

It is thus sufficient to replace f by another function
which closely approximates f, then prove the Brouwer theorem
for the replacement function. The Weierstrass approximation
theorem (a generalized version is proven in {4, 8§36]; for the
specific R? case see [2, p. 187, problem 2]) yields, for a
given € >0, a function f = (?1,?2):ABCD + R? such that
[1f(x,y)-F(x,y)|]| = € for all (x,y) & ABCD, with f; and f,
polynomials in x and y. However f may give values lying at
a distance € outside of ABCD, so we must shrink its range sli-

ghtly. To do this, replace ?l(x,y) by

] Xo + X3
Xo + X ( filxy) - 2
— 5 + X1 = Xo)
Xy = Xo + 4€
and replace ?2 by a similar expression. A short calculation

shows that these new functions (which for simplicity we again




- 58 - - 53 -

call f, and Fz) approximate f and give us f = (f, ,f,):nBCOD =

To complefe the proof, we define ﬁ x = ? - .
interior of ABCD. » (x,y) 2 (x,y) y

Clearly h is continuous. Since Q(S) =0 = G(T), the inter-

" diate value theorem assures us of the existence of at 1
Now define-g on ABCD by: me . east

one point (x*,y*) on TS such that ﬁ(x*,y*) = 0 or {(equivalen-
8(xny) = B (xsy) - x | tly) fa (x¥,y%x) = y¥. Since all points (x,y) on TS satisfy
! é(x;y) = x, we have a(x*,y*) = x*, Thus there exists at least
Then f one point (x¥,y%) in ABCDJsuchthat (x*,yx) = F(x*,y*). Since
§ >0 on AB and § < 0 on CD (3) : FiABCD » W we must have (xfty¥)65 W, Thus (x*,y%X) is a fixed
. point of ?.
We must modify g still further so that its partial derivatives
satisfy certain conditions, while retaining property (3). It is well known that in the class of compact sets, the
First, on AD, y = y, is constant so on AD §(x,y) = §(x,y,) is fixed point property is not restricted only to convex sets [s,
Jjust a polynomial in x, By altering g(x,y) slightly if nec- f p. 91, It can be shown that if a set has the fixed point

essary we can ensure that g(x,y,) has no repeated factors. property, then any set to which it is homeomorphic also has

There are then no points on AD where G(x,y) and 38g(x,y)/ ax ' the fixed point property [5, p. 9]. This theorem can be used
vanish simultaneously. A further slight perturbation of 6

to prove that various plane sets with amoeboid shapes have the
will ensure that at least one partial derivative of § is non- fixed point praoperty. Our proof given above shows that any
zero at each point in ABCD where 4(x,y) = 0. This assertion

follows from Sard's theorem ([3], [6, Chapter 13, §14]; or for

a proof of a special case of this theorem which can easily be

bounded set S in R? having an interior point x such that each
ray from x has only one intersecting point with the boundary

of S has the fixed point property.
adapted to the present situation, see [1, p. 35]).

We can now proceed directly. ' By the implicit function ; References
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THE _ANALYTICAL REFORM OF IRISH MATHEMATICS

1800 - 1831

N.D, McMillan

The Origin of the Dublin Mathematical School

The mathematical tradition established by the Dublin Phil-
osophical Society of Wiliiam Molyneux (Fig. 1) had a major inf-
juence on the character of mathematics in Ireland [1]. The
convergence of interests at the University of Dublin on spec-
ific aspects of mathematics, e.g. the theory of equations,
optics, potential theory and variational principles (2], and
the strong Irish tradition in statistics [3)] had their origins

in the interests and contributions of the members of the society.

W, Petty, Political Arithmetick (London, 1690).

STATISTICS F. Robartes, An Arithmetical Paradox Concerning the
Chances of Lotteries, Phil. Mag. XVUII (1693) pp.677-84,

CEOMETRY St. George Ashe; A New and Easy Way of Demonstrating
Some Propositions in Euclid, Phil. Mag. XIV (1684),
pp. 672-6.

0PTICS W. Molyneux, Solution of a Dioptric Problem, Biblioth-

eque Universelle et Historique, III (1686).

ENGINEERING W. Molyneux, 4 Demonstration of an Error Committed by
MATHEMATICS  Common Surveyors .....»Phil. Mag., XIX (1677) pp. 625-31.

W. Molyneux, Concerning the Parallax of Fixed Stars,
Phil. Mag. VXII (1693) pp. 844-9.

ASTRONOMY
J. Walley, Ptolemy's Quadripartite, {Dublin, 1701).
ACOUSTICS N. Marsh, An Introductory -Essay to the Doctrine of
Sounds, PHil. Mag. VIX (1684) pp. 472-88.
FIGURE1: Mathematical Interest of the Dublin Philosophical Soc-

iety Illustrated by Selection of Works.,




