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GROUPS AND TREES

John MecDenmoti

For some years now, the M.S5c. Algebra course in U.C.G.
has included a unit on group presentations based mainly on
the first half of Johnson's book [4].

of the book is its emphasis on computational aspects of the

One of the attractions
subject such as coset enumeration. On the occasions that

I taught this unit, I have experimented with the use of graph-
theoretical ideas in the presentation of supplementary material
and also to provide an alternative approach to some of the
topics in the text. The graph theory involved uses little
more than basic concepts (in particular, a course on graphs
is not a pre-requisite); but the intuitive "geometric" frame-
I

"made some comments along these lines in a talk at the DIAS Sym-

work it provides is, I believe, helpful to the student.

posium in December 1882. In this note, which is based on that
talk,

group presentation.

I outline some of the graph-theoretical approaches to

AR graph 1is usually defined to be a (non empty) set V of

vertices (points), some pairs of which are joined by edges.

In the context of group presentations we should, strictly, tall
that is, '

about directed multigraphs: an edge may be directed

frem one vertex to the other, and there may be several edges

Moreover,

between two given vertices. the graph may be col-
oured: its vertices and/or its edges may have colours (labels)
attached; these are usually elements of G, some group related

to the graph. In particular, we adopt the convention that an
edge from x to y labelled g is implicitly an edge from y to x

coloured by g~ '€ G.

The classical examples of graphs related to group presen-
tations are Cayley diagrams and Schreier diagrams. Let G be

a group generated by a,b, ... 3 the corresponding Cayley diag-

‘direction.
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is the graph having the elements of G as vertices and for

~ram
each generator, such as a, an edge from x to y coloured with a
if y = X3 If H is a subgroup of G, the corresponding

gchreier diagram has the cosets of H in G as its vertices and,

for each generator a, an edge labelled a from Hx to Hy if

Hxa = Hy. There are examples in Fig. 1. '
2 |
a a
. 3
(1) (ii)

FIGURE 1

In (i) we have the Cayley diagram for G <ala? 1>,

the cyclic group of order 3; for convenience, we use i to den-

ote the vertex ai‘1, and an arrow on each edge indicating its

In (ii) we have the Schreier diagram of G with respect
to H, <a,bla® = 6% = (ab)?
Sym (3) of order 6, and H

where G

1>, the non-abelian group
The

solid edges are each coloured a in the direction of the arrow,

<b>, a subgroup of order 2.
the dotted edges are coloured b (in either direction) and the
vertex Hal-! is denoted by i.

A Schreier diagram is particularly useful in the study
of a group presentation. We can read off from it not only
the index of H in G - which is just the number of vertices in

the diagram - but also the images of the generators of G in

the permutatinn representation of G on the cosets of H. For

example, we can see in (ii) that

ar——s(123) and

One may view the construction of a Schreier diagram as a

‘pictorial implementation of the technique of coset enumeration:

and with a little elaboration it may also be used to describe
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the process of finding a presemtation for H in terms of the

given presentation for G. There is a nice informal descr-

iption of some of these ideas in the first section of Chapter
VIII of the book [1] by Bollobas.

Now we need a couple of definitions. A path from x to

y in a given graph is what intuition suggests, essentially a

SEQUENCE XgyX1seess

s X, of vertices such that x¢ = x, E

Xk Yy
If some of the

we do not insist that the direction is fran

and each pair Xj.;» X3 is joined by an edge.
edges are directed,

i-1
x; it is necessary to indicate which edge is intended in

the path.

Xj., to xi; moreover, if there are several edges between x
and
R tree is a graph in which, given any distinct vert
ices x and y, there is a unique path from x to y; eqguivalently,
a tree is connected (there is a path betuween any two vertices)
and contains no cycle (path with Xk = Xp» k > 0, not using any
edge twice). It can be shouwn, by successive deletion of edges
from cycles, that any connected graph contains a spanning tree,
that is a tree using all the original vertices. For example,
-the graph in Fig. 1(ii) is obviously connected; it contains

cycles such as 1231, and two of its spanning trees are shouwn
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[on. Tﬁe Cayley diagram T(Ff) of a free group F with respect
ﬁo a set of free generators is a tree: the "genmerating" prop-
.rty says that T(F) is connected, and the "free" property says
Ehat it has no cycles, Moreover, F acts by left multiplic-
stion as a group of automorphisms of T(F) and the action is
free (no vertex or edge is fixed by any nan-identity element

5f F). This property actually characterises free groups:

THEQREM: A group F is free if and only if it acts freely on
some tree.

Remark: The proof of the "if"™ part is non-trivial, but it
is possible to extract a reasonably simple account
from Sections 2 and 3 of the first chapter in [8].
The proof actually produces a set of free generators
for F. A key technical point is that given a span-
ning tree T, of the natural quotient graph T/G, there
is a subtree of. T which projects isomorphically onto

To -

An immediate pay-off is Schreier's subgroup theorem:

in Fig. 2.
“ - COROLLARY: If F is a subgroup of a free group F, then F is
S free.
I
Ay
1
[ e ] Proof: The theorem.ensures that Fo acts freely an some tree
T. Since F is a subgroup of Fo» it acts freely on
(i) (i1) the same T, and hence it is free.
FIGURE 2 X .
—s Remark s In the situation of the cerollary, cansider f as

In the last fifteen years, there has been a new and str-
iking use of graphs to illustrate the theory of group present-
ations, in particular the basic constructions such as free
groups and free products. This is the'Bass-Serre theory of
groups acting on trees,

book [B].

and the basic reference is Serre's

The starting point is the following easy observat-

acting of T(F,), and choose a spanning tfee Toe in
the Schreier diagram of F, with respect to F. Then
the free generaters for F produced by the theorem
are in one to one correspondence with those edges

of the diagram that do not belong to T,. Using this
fact, it is easy to establish the Schreier index

formula for the rank (number of Free generators) of F
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when the index |Fy :F| is finite. Morecver, there
is a link here with the classical approach to these
corresponds to a cert.

matters. The spanning tree To

ain Schreier transversai for Fg in F: choose as cosef
representative for a given vertex i the product of
the colours on the unique path in T, from 1 to i.

For example, recall thé'groups G and H used to illus-
trate the idea of a Schreier diagram in Fig. 1(ii).
If we interpret G as Fo/N, where F, is the free group
on a and b and N is the normal subgroup of F, gener-
ated by a’, b? and (ab)?, we may consider Fig. 1(ii)
as the Schreier diagram of F, with respect to F,
where F is the pre-image of H in Fg . If we choose
To as in Fig., 2(i) then the corresponding Schreier
transversal is {W,a_ia-lb); and since there are four

edges in Fig. 1(ii) that are not im T, we have rank
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the stabiliser of x (respectively y). We note that
ANSB = 1 by (i). A routine, if tedious, argument
shows that each edge = e‘is labelled by an alternat-
ing product of non-trivial elements from A and 8,
thus identifying G with the free product AX*B,

given G = A*B, construct T as follows:
the vertices of T are the cosets of A and B in G,

Conversely,

and Ag is joined to Bh if and only if Ag N Bh = ¢
It is clear that G acts on T by right multiplication

and that there are two corbits of vertices, so (ii)

holds. The standard properties of the free product

ensure that T is a tree and that (i) holds also.

A familiar fact follouws readily:

F = 4. JROLLARY: Let H be a subgroup of the free product G = A%B
» If no conjugate of H meets A or B non-frivially
What else can be studied in the graph-theoretical frame- then H is free.
work? By way of illustration, consider the following result.
roof: Let G act on a tree T as in the proposition. For
PROPOSITION: A group G is a free product if and only if there any vertex z of T the stabiliser G. is conj te i
ugate in
is a tree on which G acts (i) regularly on the G to A or to B according as z is ii the orbit of
it o
edges but (ii) not transitively on the vertices. A-cosets or the orbit of B-cosets Thus the h th
; " ypoth=-
esis of the corollary ensures that H N G, = 1; in
Proof: Assume that G acts with properties (i) and (ii) on other words, H acts freely on the vertices of T
o .

the tree T, and let e = xy be a particular edge in
T. Property (i) says that, given any edge f in T
there is a unique element of G which moves e to f;
we label f by the corresponding ge& G, so that e is
labelled by 1.

the same orbit as (that is, can be moved to) at leas!

It follows that every vertex 1s in marks :

one of x or y; but in view of (ii) there are then
exactly two vertex orbits, and the end vertices of

any edge are 1n different orbits. Hence, the edges

# & that meet x (respectively y) are labelled by the

non-identity elements of A = Gy (respectively B = G

Since H, being a subgroup of G, also acts freely an
the edges of T,

that H is free,

we deduce from the earlier theorem

(a) It is possible to produce similar 'special case'
treatments for free products with amalgamation and
for HNN groups; whether this is worth doing depends
on, among other things, the amount of time available

It might be argued that if there

is time for several special cases then one should treat

ghe_generalvstrpcture theorem of I.5 [6].

for the course.

However,
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1 feel that students should meet the various constr-

uctions separately in a first treatment; the general

theorem can follow if there is time - and a desire -
for it.
(b) It may be worth mentioning the somewhat surpris-

ing fact that the theory of groups acting on (infinite

trees is significant in the study of finite groups;

see, Tor example, Goldschmidt's article [3].

(c)
Theory see Cohen's notes [2] or the Scott-Wall art-
icle [5].
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AN _INTUITIVE PROOF

OF BROUWER'S FIXED PQINT THEOREM [N R®

Clanence C. Mornisontand Mantin Stynes?

Fixed point theorems play a major raole in general equilib-
‘ium theory. Brouwer's theorem is the most basic of these;
|t states that any continuous function mapping a closed bounded

sonvex set into itself must contain at least one fixed point

For a more topological account of the Bass-Serreii_e,, a paint that is its own image).

Elementary discussions invariably qive an intuitive prD;F
sf the theorem for functions of a single variable, as illustr-
ated in Fig. 1. In R a set is convex if and only if it is
an interval; thus a continuous mapping of the closed boundary

interval [xo,x;] into itself can be represented by a curve f.
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FIGURE |

Since f connects the left-hand side of the rectangle to the
right-hand side of the rectangle, it is intuitively obvious

that f must intersect the diagonal of the rectangle at least
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