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Introduction

Students usually meet tensors in courses on Mathematical
Physics [1, Chapter 3], and are sometimes told that all isotr~
opic tensors can be expressed as sums of products of Kronecker's
§ and the alternating tensor € (see below). Several years agpo,
the first author was asked by an inguisitive student how to
prove this fact. The author in guestion did not, at that time,
know of a proof in the literature, and (having more energy then
than now) he tried to find his own proof. He was led to a
question about the group rings of symmetric groups, which he
found interesting in its ouwn right, and which he answered to
the satisfaction of both himself and the student who had prom-
pted the question. Soon afterwards, he learned that the state-
ment about isotropic tensors is eguivalent to a result proved
by Weyl [4, page 53, Theorem (2.9.A)] using a different method.
More recently, an error was noticed in the calculations in the
group ring of the symmetric group, and we give here an exposit-

ijon of a corrected version of this proof.

Notation

For each positive integer m, put m = {1,2, ...
let n™ be the

,m}, and

set of maps from m to n. An element of nT can
be identified with a polyindex

with

(1) = (i,512s eos sip) where

1 si,s0 (1 s s m) . respect to given axes in n-dimen-
sional Euclidean space E7, a tensor u can be defined as a map

from n® to the field of real numbers: for gach polyindex

(i)e nT, we have a real coordinate ul(i). We shall say that

u has dimension n and order m.

Examples A tensor v of order 1 is the same as a vector in EM

with coordinates v(1), v(2), ... ,v(n). a tensor

T or order 2 can be regarded as an nxn matrix with entries

Similarly,
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T(ilriZ)‘ In particular, we put
'lifil=ii
§(iy.ip)= )
0 if ip # 1
which corresponds to the identity matrix. Moreover, for each
polyindex (i) = (i),ip, oo 2ip) € nl, we can define
1 if (i) is an even permutatian of n,
e(i) = {-1 if (i) is an odd permutation of 0,
g if (i) is not a permutation;
then € is a tensor of order n, equal to its dimension. If 7T

is a tensor of order 2, then we can use ¢ to give a formula for

its determinant:

det T = I, oelipsips oo )T, 1)T(2,1p) .. Tl ig).

(i)e o~

Remark The indices i3, ip, «.- ,im are usually written as sub-

scripts or superscripts, but we prefer to avoid double suffices;
we consider anly perpendicular axes in €7, so we do not need

to distinguish between cogredient and contragredient indices.
Also, we.shall not use the Summation Convention [3, page 59].

Examples of physical quantities represented by the concept are
the strain tensor

1,9uy duy
fik = 5(57; * %)

in the Theory of Elasticity [1, page 98, Section 3.101], and

the metric tensor gik of Differential Geometry (as used in the

Theory of Relativity) which determines the incremental distance

C k.
ds =jf4;§kvgikdxldx H

in our case gjx = 8(i,k).

Definition: When we change the axes in £EM, there is an nxn
matrix T(h,k) such that the coordinates of a vector v are alt-

ered to
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n
vt(n) = L T, K)u(k)

For u to be a tensor of order m, .it is required that its coord-

inates become

n

ne~13

Ut(iys oee sig) L e jm;lT(il,jl)...T(im,jm)u(jl,.,,,jm>

3
A tensor is said to be isotropic if its coordinates remain un-
altered when we change from one set of perpendicular axes to
any other such set with the same orientation; this means that
u'{i) = u(i) whenever the matrix T(h,k) is orthogonal with det-

erminant 7.

Examples It can be verified that the tensors § and € defined
above are both isotropic {1, page B7, Section 3.03)], and It is
known that, in the 3-dimensional case, any isotropic tensor
of order 2 or 3 is a multiple of § or € respectively. More-
over, it can be shoun [1, page 88, Section 3.031)] that the iso-
tropic tensors of dimension 3 and order 4 are the linear combin-

ations of the tensors
8 (1) ,ip)8(ig,iy ), 80y .z )8(iy,d,), 6(iy,1,)8(iniz)

which are called outer products of § [1, page 115]. These

facts can be used to motivate the next definition.

Notation

Taking outer products of § and €, we define the follouwing

isotropic tensors of dimension n and order m:

(1) 6(11,12)6(13,ih) oo §(igo1sip) if m is even,
d(i) =

0 - if m is odd,

E(il,iz, cee sig)dligggs eessipg) if moz N,

It

e(i)

o ’ if m o< on.

If o is an element of the symmetric group Sp of all per-
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mutations of m, and if ha denotes the image under a of an elem-
ont h&€ m, then o acts on the polyindices (i) as a place perm-

tation: (oi) = (igipgs «+- sigg). This leads to an action
on the tensors of order m given by (ua)(i) = u{ai); we shall
call the tensor ua a conjugate of u. It is clear that the
conjugates of d and e are still isotrepic. OQur aim is to give

a proof of the following result.

Theorem Let Dy be the set of linear combinations of the con-
jugates of the tensors d and e of order m, and let U, be the

set of isotropic tensors of order m. Then Dp = Unp-

Remark We have seen that D5 s U so we have to show that

Up % Ope
the conjugation action of Sp, which is said to have been first

m,
Dur proof uses induction on m, and our main tool is

exploited by Schur, and developed by Ueyl [4, page 96, Section
65]. We begin by deriving certain relations between the coord-

inates of an isotropic tensor.

Lemma 1 If u is isotropic, then
p .
(a) T 6(p,iplu(ip, oo sipysQripyys oo yig)
= m
= 1_21 ‘S(Q’ir)u(il) s ’il'—l ’p’ir+li o8 o yim)
m
(b) (n=1).uliy, »ee »ig) + 22 Wliprips eov sdpgadysdpgyseein)
Ir=
m n
- rzz 53y »ip) DZ1 W(Prigs wor sipoyBripy s inh
Proof The equation (a) is trivial when p = g, so we suppose
p # q. Define
cos ¢t when h = k = p or h = k = q,
( ) sin t when h = p and k = g,
T{hy;k) =
’ |l-sin t when h = g and k = p,
16(h,k) otheruise.




3. Prov

1. Forl
By
is
is

is
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Then T(h,k) represents a rotation of the pg plane by an angle

t, and is an orthogonal matrix with determinant 1. Therefore

n n .
_2 _2 T(iy537) oon Tl dgiuliygs - »3q) = uliy, cerig).
N =1 Jm=l

We differentiate this equation with respect to t, and then take
t = 0. Note that, when t = 0,

T(h,k) = 6(h,i), SLth,k) = 8(p,n)6la,k) - 6(p,k)6(a,n);
hence we get

m n n
2 X oo z é(il’il) o e 6(ir_l,jr_l).(G(D,ir)MQ:jr)—
r=1 j=1 Jm=1

§(p,ip)ela,ig)) e 6lipy sdpay) «o» 8Uigrdn)uldy,eesin)=0.

Now & has the substitution property [1, page 59, Section 2.021]

| o~ 3

6(il"jl‘)u(jl’ o5 o ’jm) = U(jlv v ew 9jr,l!irsjr+l: o0 e sjm)
1

t

q

Using this, we can deduce (a) from the last eguation.

In (a), take i, = p, and add the resulting relations for

P =132, o0 sNe This gives

m

noulasins wvv sig) + Ly ulipsdp, wov sippasizgys oo sip)

m

n
= U(Chizz ° o0 sim) + rzz d(q’ir)piz»‘ U(D,iz: e :ir_]_ ;psir+l;

Replacing q by i;, we get (b).

Definition The eqguation (b) suggests the following notation

and Lemma. Let Ry be the rational group algebra of the symm-
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etric group Sp [3, page 42, Section 2.2]. The elements of
Ry a@re the expressions 8 = Ztaa, where the coefficients ty
are rational, and where a runs through S. If further, u is
a tensor of order m, we define uf = [t,(ua), where ug is given
by the conjugation actiqn. As usual, 1 denotes the identity
permutation in S;, and (h,k) is the transposition which inter-
changes h and k, but fixes the other elements of m. We write
o = (p=1).1 + (1,2) + (1,3) + ... + (1,m)E R

me

Lemma 2 (a) If u is isotropic, then

n

m
up = L, S(il,ir)pz1 Wlpsings wee sipogsPorips wen Lig).
(b) {8€ Ry ¢ UP s DL} is a (2-sided) ideal of Rp.

proof (a) is a restatement of Lemma 1(b) in terms of the above
definition. To prove (b), note that if a,B € Sy then clearly

Unp® = Ups DpB = Dy Hence UpaBf < DB = D as required.

Proof of the Theorem We use induction on m. We interpret

a tensor of order 0 as a scalar (a real number whose value does
not depend on the choice of axes). This means that when m=0,
then every tensor is a multiple of d, so the Theorem is trivial.
When m=n=1, then a tensor is again the same as a scalar, and

is a multiple of e, and so lies in D, as required. Next supp-
ose m=1 and n 2 2, and let u be isotropic. Taking p # q and
(i) = (g) in Lemma 1(a), we get u(p) = 0 for all p, so the The-
orem is again true. We have now proved the result when m=1

or 2, sSo we may suppose m > 2, and assume that the Theorem

holds for orders less than m.

The contracted tensor [1, page 87]

Eal
'EU'-(‘Drizy R ,ir_l,D;ir+l, 0 e e y‘im)
p=1

is clearly isotropic of order m-2, so it lies in Dp-2 by the
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inductive hypothesis. Hence Lemma 2(a) implies that ud € D,

whenever u is isotropic, and therefaore
(1) Up® £ D

The following result will be proved later.

Suppose 1 s m < n, and let X be the
Then 1€ X.

Lemma 3

erated by ¢.

ideal of Ry gen-

It follows from (1) and Lemma 2(b) that UpX s Dp. Ass-
uming Lemma 3, we deduce that Un s UpX s Dg. This proves the
Theorem when m < n.

Remark For each subset {15105 a. sip} of m, define
ﬂ'(il,iz, e ’iI’) = EEOLG'
where a runs through the permutaticns of {il,iz, o ,ir} and

where

1 if a is even,
8q =
-1 if a is odd.

It can be shown that if m = n, then ¢.7(1,2, ... ,m) = 0, which
implies that the conclusion of Lemma 3 no longer holds.

Indeed, the tensor € appears in Up for the first time in this
case, so a different argument is needed.

Returning to the proof of the Theorem, suppose that
m =n >2, and that u

and (i) = (2;2’3147 o5 e

is isotropic. Taking p = 2, g = 1,

sm) in Lemma 1(a), we get

u(1,2, oo ) = -u(2,1,3,4, ... ,m).

Similarly, one can show that, if the polyindex (i)e nl is

a permutation, then interchanging any 2 indices alters the sign
of u(i).
136, Thearem 21], it follows that if (i) is a permutation, and

Since Sy is generated by transpositions [2, page
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ifFu, = ul1,2, o.. ,m), then u(i) = uge (i), Writing
(i) = ul(i)-uy (i), we deduce that v is an isotropic tensor
with
(2) v(i) = 0 when (i) is a permutation.

gut if (i) is not a permutation, then it must haue a repeated

Now if iy = iy and 8 = 1 - (1,2) € Ry» and if w is
then

entry.

any tensor,
(w8)(i) = 0.

we-note also that if y is the sum of the even permutations of
m, then 6 = w(1,2, »m) [2, page 137, Proposition 26],
whence the last eqﬁation implies that (w.w(1,2, ... ,m))(i)=0
Similarly, one can see that if (i) is a polyindex

with a repeated entry,

when 1i=i5.

and if w is any tensor of order m, then

(wer{1,2, .o ym))(1) = 0.  Combining this with (2), we conc.
lude that
(3) (vom(1,2, c.0 ,m))(i) = 0 for all (i)e mm,

The following result will be proved later.

Lemma 4 Suppose m = n 2z 1, and let Y be the ideal of Rm gen-

erated by (1,2, ... ,Mm) and 4. Then 1€ Y.

Copying the proof of Lemma 2(b), we see that if UV, is the
set of isotropic tensors v which satisfy (3), then
(6 Ry Vp® = D,) is an ideal of R -

we deduce that VpY =

Using (1) and (3),
Dps so Lemma 4 implies that

v = vle VoY 5 Dp.

Hence u = uge + veE Om as required.

Finally, suppose m > No. Then there must be a repeated
index among 1,15,
u.m(1,2, ...

case,

cee sippys and it follows as before that
sN+1) = 0, In the same way as in the previous
the Theorem is a consequence of the following result,

which will be proved later.
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3 Ifm=1c< th = (n-1),1,
Lemma 5 Suppose m > n 2z 1, and let Z be the ideal of Ry gen- Proof of Lemma m n en ¢ (n-1),1

erated by w(1,2 n+1) and ¢ Then 1€ 1Z we may therefore suppose m > 1, and use induction
39&y eoce 9 N o

particular, the inductive hypothesis allows us to

i <r < m, then 1 is in the ideal generated b

It now remains to prove the ‘Lemmata 3, 4 and 5. This wiljlF ! + tf 8 ¢ b oth i y
rmutations aj ; of © suc a

be done with the help of the following calculations. We writeare pe iroRPL -

) 1 = (08, .,
8 = n.l+ (1,2) + (1,3) + ooe + (1,1) € Ay, (4) Le; 8,

We shall prove by induction on r that

Lemma 6 (a) #(l,r+l,r+2, .. sm) = {(l,r).m(r,r+1, ..,m).(1,r;
5) plr+l,0+2, ... ,m) € X (0 g1 < m).
(b) B.m(r+l, t+2, ... ,m)-= ¢.m{r+l,r+2, ... ,m) (
+ "(l¥r+l’r+2,gi}. ,m). we note first that if 1 < i s m, then (1,i).n(71,2,

-m{1,2, ... ,m) and hence ¢.m(1,2, .. ,m) = (n-m).qn(1,2,

Since n > m, it follows that (S) holds when r = 0.
Proof (a) follows from the rule for conjugating permutations

[2, pages 128-130]. To prove (b), let G and H be the symm-

etric groups of permutations of the sets {l,r+l,r+2, ... ,m}

therefore suppose r > 0, and assume that w{(r,r+l,

we deduce that
and {r+l,t+2, ... sm} respectively. Then H is a subgroup of

G of index |[G:H| = (m-r+1)!/(m-t)! = m-r+l. If i # j then 9.m(r+l,c42, ... ,m)<E X.
(1,i)-1(1,5) = (1,1i,3) H and therefore the cosets (1,i)H and
(1,3)H are distinct [2, page 33, Proposition 5]. It follous
[2, page 34] that {1,(l,t+1),(1,r+2), ... ,(l,m)} is a set of

. . m(r+l,c+42, ... ,m) to get
representatives (or transversal) for the cosets of H in G, and

that
m(r+l,T+2, ... ,m) = zdi&W(r+l,r+2, cee ym)BrE X,
G = HU (1,z+1)8 U (1,r+2)0U .. U(1,m)H. i
This proves (5). Taking r = m-1, we conclude that 1 =
Noting that multiplication by a transposition (1,i) changes as required.
even to odd permutations and vice-versa, we deduce that
ml,r+1,742, «.. ,m)
Proof of Lemma 4 We shall prove by induction on r that
= (1 - (l,r+1) - (l,v42) - oo. = (1,m)).m(r+l,742,... ,m)
{ ( ) ( ) (1,m)).m( (8) m(r+l,t+2, ... ,m)E ¥ (0 st <m.
= (6 - T +1,T42, .. ,m R
( 0).ml ’ ’ ) By the definition of Y, (B6) holds when r = 0, so we may suppose
which is equivalent to the required relation. r >0, and assume that n(r,r+l, ... ,m)E VY. Using Lemma 6,
as above, we deduce that 8.m(r+l,t+2, ... ,m)E Y. Since

whence 1 &€ X.

on m,

In

assume that

6, so there

,m) =

We may

,m) & X.
Then w(l,c+l,r+2, ... ,m) € X by Lemma 6(a). Using Lemma 6(b)

Now the permutations g; in (4) are disjoint fram #{r+1,r+2,

.. ,m) and so commute with it. Hence we can multiply (4) by

m(m)e X,

m=n >r, it follows from Lemma 3 that 1 is in the ideal gen-

erated by 8. As before, this enables us to prove
we get the result by taking r = m-1.

(5))

and
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Proof of Lemma 5

1= p.(1,2) € 1.

If m = 2, then n =1 and ¢ = (1,2), so

We may therefore suppose m > 2, and use ind-

Y or
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7 can be replaced by a one-sided ideal in Lemma 4 or 5.

We mentioned in an earlier remark that n(1,2,

uction on m. In particular, we may assume that if n+l <1 < m . cee am) s
then 1 is in the ideal generated LY w(1,2, ... ,n+2) and ¢. needed 10 Lemma 4. It can also be shown that if either m = 2
Since and n =80, orm =4 and n =1, or m = 6 and n = 2, then 1 is
not in the ideal of R, generated by §. However, we do not know
7(1,2, ... ,n+2)

= (1 - (1,n+2) - (2,n+2) - ... =(n+l,n+2)).w(1,2, ...

it follows that there are permutations oy, Bi’ A uj, such tha

jy

(7) Layml,2, ..

3
If r =

gdieﬁi + ,n+l)Uj,

provided n+l <1 < m. n+l, then the same result follou

from Lemma 4. Moreover, if r < n+l, then Lemma 3 implies that

1l is

(73,

in the ideal generated by 8, so we again get the equation 2.

but now with Aj = My o= 0. Thus (7) holds whenever © < m,

3.
We shall prove by induction on r that

(8) a(r+l,t42, ... ,m)E€ Z (m-n-1 s T <m.

If yisin the m-cycle (1,2, ... ,m) & S, then

m(m=n,m-n+l, ... ,m) = Y‘m+”+1ﬂ(l,2, e ,rn)‘fr"“'-'“l & 1,

for which values of m and n,

m1,2, ... ,n+l) is needsd in

,n+llLemma 5.
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so (8) is true when r = m-n-1,

We may therefore suppose that Galway.

T 2 and assume that 7n(r
51

multiply (7) by w(r+l,r+2, .

m=n,

we deduce that O.m(r+l,r+

g{r+l,T42, ...

:m) = Z
1

+ X)\jﬂ(l,Z,
J

This proves (8). Taking ©
ult.
Remark It can be shown tha

right or left ideal generate

sT+ly cee sm)E .
29 s 0 ,m)G .

.. ,m) to get

Using Lemma

As before, we cat

Giﬂ(r+l,r+2, e

’m)Bj.»

vew sn+l)qu(r+l,T+2, ... ,m)gje 7.

= m-1, we obtain the required res-

t if 1 s
d by ¢.

then 1 is in the

We do not know whether

m < n,




