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1. INTRODUCTION

This paper discusses the formulation and solution of a non-

linear initial value, boundary value problem that arises from

a simple experiment in gas dynamics. A tube which is closed
at one end, contains a gas. The gas in the tube is driven
by an oscillating piston. It is observed that when the freg-

uency of the piston is near to a natural frequency of the tube
the resulting gas motion is periodic and characterised by a )
éhack wave travelling over and back along the tube. The theor-
etical work to explain the final periodic moticn goes back to
Betchov [2] and Chester [31. The reader should consult Sey-
mour and Mortell [9] for more recent work aon the problem.
However, the problem of the evolution of the periodic motion

of the gas from an initial state has not until now [4] been

solved.

It is worthwhile noting, at this juncture, that nonlinear
effects, such as shocks, can occur without any dramatically .
large input into the system. For example, in the present case
when the piston is operating at the fundamental frequency of
the tube, a shock has been observed even though the ratio of

piston displacement to tube length is of the order 10-2 (8],

Befare giving the details of the particular problem, the
broader background in which it is set will be sketched. The
study of nonlinear waves began with the pioneering work of
Stokes [10] and Riemann [7]. Whitham {11] distinguishes two
main classes of waves, hyperbolic and dispersive waves.
Hyperbolic waves are solutions of a set of hyperbolic partial
differential equations and our problem fits into this class.
The intersection of characteristics for a nonlinear hyperbolic

equation gives rise to the physical phenomenon of a shock.
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If the nonlinear wave is travelling in one direction only and
into a constant state, the exact solution is called a 'simple
wave' and was known to Riemann. Riemann also exposed the fun-
damental difficulty when nonlineaT waves are travelling in opp-
osite directions. It is not, in general, possible to integ-
rate the equations for the characteristics. This corresponds
to the fact that nonlinear waves interact and one must knou

the details of the right-going waves to calculate how the
left-going wave will propagate, and vice-versa. The
fundamental difficulty still remains, and even in such authorit-
ative works as [11] and [B] problems of nonlinear waves trav-
elling through each other in opposite directions receive scant
attention.

The problem discussed in this paper involves waves in a
tube of finite length and, since shocks appear, automatically
involves the propagation of nenlinear waves through each other
in a finite space domain. The problem will be approached thr-

ough a novel use of perturbation methods.

Finally it should be noted that at resonance, aside from
the appearance of a shock which is a nonlinear phenomenon, lin-

ear theory predicts the evolution to an unbounded motion.,

2. FORMULATION

In terms of nondimensional Lagrangian variables the equat-
ions expressing conservation of mass and linear momentum for

the gas are

3 3

5% * 025—5 = 0 (2'1)
2y 290 2.2
at + a ax = 8] ( )

where u, p, a, denote gas velocity, density, and sound speed
at the gas particle x, for time t. The equation of state for

the isentropic flow of an ideal gas may be written as:

a? = pY-! (2.3)

where Y is the gas constant.

Equations (2.1), (2.2) and (2.3) are supplemented by the

boundary conditions

u(o,t) 8]

]

u(1,t) = -27ewsin2mwt, € << 1 (2.4)

and by the initial conditions

u(x,t) = 0 0 s x <1, t s Q,
(2.5)"
a{x,t) = 1 0 £ x 51, t 5 0.

The problem is to follow the evolution of the gas motion under
the prescribed boundary conditions (2.4) from the initial undis-
turbed state (2.5) to the final periodic state.

Replacing p in (2.1) and (2.2) by using (2.3) the resulting

equations can be combined to form the coupled system

i}
1
}

r Y+1
9 + av-1 9l u + Y%1a = 0
1ot aﬂ L 3
(2.8)
" Y+1 0 7]
9 ¥-7 9 2
o _ SY-1 9 - -
‘at a B__U Y_1&1 0
The Riemann Invariant u + Y‘1a is constant on the characteris-
tic curves a(x,t) = constant given by
5 Y+1
X Yo7
ox = .agv-!
5T . = a (2.7)

with a similar statement for the other Riemann Invariant.

Equation (2.7) cannot be integrated since a(x,t) is unknown




until the solution is found.

The approach adopted to solve the system (2.6) is to assume

a reqgular pertﬁrbation expansion for u and a in (2.6) of the

form
ulx,t) = euy(x,t) + e2ua(x,t) + ...
(2.8)
a(x,t) = 1 + ear{x,t) + e2as(x,t) + ...
Linear theory results from terms‘at 0(e) with a nonlinear
correction at 0O(e?). The linear terms u,,a, satisfy

3 3 2 B
(3t * gz Jlus + 553 2a]= 0
(2.9)
3 9 =
[§T’- Bx][u1 Y-1 a,l=0
with general solution
up = F(t+x-1) - g(t-x)
(2.10)
av = - AU (exe1) ¢ gleex)]
where f,g are arbitrary functions - the linear Riemann Invar-
iants. It should be noted that the two sets of linear char-
acteristic curves t+x-1 = constant and t-x = constant are par-

allel straight lines and are independent of the solution ui,a:.
In other words the linmear waves neither distort, nor interact

with each other.

The boundary conditions on x=0, x=1 given by equations
(2.4) imply that on x=*%

F(t) - f(t-2) = -2mewsin 2mwt, t > 0 (2.11)
an equation which is augmented by the initial condition

ft) ; 0, t s0 ' (2.12)
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when W= %, n=1,2,3 ... equation (2.11) predicts that
f(t) is asymptotic to -nt sin(nmt), as t + =, (2.13)

in other words predicting unbounded growth frequencies equal

to the natural frequencies of the gas tube.

On substituting for u, and a, into (2.8), (2.8) we obtain
the particular integral
ba(x,t) = B (o(t-x)gt(t-x) + Fltex-1)F" (4x-1)]

Y+1
4

+ x[F1(t+x=1)G6(t-x) - g'{t-x)F{t+x-1)]

where t t
S(6) = sy ana F(e) = [ riney.

We note that the caomplementary functions associated with

u, may be absorbed into the representation for uy.

The novel feature of the approach now outlined is that the
boundary conditions are applied not to u;, and u: separately

but to the combined approximation eu,; + £2u,, i.e.

euy (0,t) + g2y, (0,t) = 0 (2.15)

and

eu, (1,t) + e2u,(1,t) = -27ewsin 2nut.

The aim is to formulate in one relationship a mechanism

of controlling the linear growth by the nonlinear terms.

The boundary condition on x = 0 implies that
fF(t-1) = g(t), t =z 0O (2.18)
After some manipulation the boundary condition on x = 1 implies

that f{t), the linear Riemann Invariant, satisfies the nonlinear

equation
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Y[ () Fr () +f (£-2)F 1 (£-2)]

t t-2
el riea) [r(ay + fr(e) [ rGey (2a7)

27w sin2mwt = f(t)-f(t-2) + €

with ipitial condition (2.12).

Ecuation (2.17) is a nonlinear functional differential

equation of neutral type, see [5]. The equation of linear

theory is included in (2.17): the nonlinear terms in (2.17)
(y+1)

2 .
effect of amplitude dispersion by which shocks form, while the

which are in the brackets associated with represent the
remaining term represents the nonlinear interaction of opposite

travelling waves.

The soclution of the nmonlinear initial value, boundary value
problem on the semi-infinite strip 0 £ x £ 1, t 2 0 and defined
by equations (2.1) - (2.5) has now been reduced to a solution
of the nonlinear equation (2.17) with the initial conditions
(2.12).
particle velocity and sound speed in the tube can be found from
the representations (2.10), (2.16).

When the linear Riemann Invariant, f, is known, the

3. GOVERNING PARTIAL DIFFERENTIAL EQUATION

The functional differential equation (2.17) was derived
using only a regular perturbation expansion and retaining the
sum of the first two terms as the basic approximation. We
now show how equation (2.17) can be simplified to a hyperbolic
partial differential equation by the use of a two variable exp-
ansion technigue. There are two natural time scales in the
physical problem under consideration: the time for a signal
to travel the length of the tube and the time for a shock to
form. The basic assumption underlying the simplification of
(2.17) is that the latter time scale is much larger than the
former. The fast time scale is t¥ = t and the slow time scale

is T = et. The function f(t) is then expanded in the form

Flrze) = fu(t5,¥) + ef(EH,F) + L. (3.1)
Since the primary motivation’is to find solutions near the
resonant frequency w = %, we introduce the small detuning para-

meter

A = 2w - 1 << 1, (3.2)

We now seek solutions which are periadic in the fast time
variable t+ with the same period as_the piston, viz, 1/w and

are slowly modulated on the long time scale.

Therefore we assume that

Foler - D) = Fi(eh,E) (3.3)

1
w

On using (3.1) - (3.3) in the functional differential equ-

ation (2.17) we obtain the partial differential equation

3f,

CAR + A EEL oM _ omew sin 2wttt (3.4)
5

2e
A W gt

e(Y+1)f,

where terms inveolving 0(a?), 0(eh), 0(e?) have been neglected.
We note that the integral terms in (2.17) which represent the
interaction of oppositely travelling waves are O(gA) and thus

negligible.

The initial condition corresponding to (2.12) and the state

of rest is

f, (£¥,0) = 0 (3.5)
Since the solution of (3.4) is periodic in t* with periods

%, integration of (3.4) over a time interval of length %, with

an appeal to weak shock conditions when necessary (see [111]),

yields the mean condition




gl-

(3.6)

n
o

J f1(s,¥)ds
0

Thus the mean value of f remains constant on lines of constant
% as the signal evolves. In order to put (3.4) in a form more

amenable for analysis we define

Fln,t) = (y+1)ewf, (£%,%) + 2 (3.7)
where % )
n = wtt, 1= 3c (3.8)

Then (3.4) becomes

oF

oF .
5T+ F T -A sin (2wn) (2.9)
A = 2mew?(y+1) << 1, (3.10)
The initial condition becomes
F(n,0) = 4 (3.11)

The remainder of this paper is concerned with the analysis
of (3.9) subject to (3.11). It should be noted that the phys-
ical properties of the system are all contained in the simil-
arity parameter A, given by (3.10). Variations in the piston
amplitude, €, and freguency w, or the gas properties Yy, corres-
ponding to different experiments are immaterial to the solution

of (3.12) as long as the parameter A remains constant.

4., EXACT SOLUTION

The nonlinear partial differential equation (3.9), which
describes the evoclution on the boundary x = 1 of the linear
Riemann Invariant, is hyperbolic and can thus be studied by

the method of characteristics. The transport equation

df
37 (n,1) = -Asin2mn (4.1)

describes the variation of the signal F on the characteristic

curves al(n,t) = caonstant given by

dn

g7 = Fln.1) (4.2)
The characteristic curves are parameterised by a(n,0) = n.

The coupled system (4.1), (4.2) and the initial condition (3.11)

are equivalent to the second order equation

o

2
dTg = -A sin 2mn (4.3)

with initial conditions

n(0) = a, -3 saos % (4.0)
~and J
an -
dt(o) =4

Thus the chara;teristic paths are given by the nonlinear pend-

ulum equation (4.3) with the signal profile given by (4.1).
On using (4.2), equation (4.3) is written as

F 95 - _asin2m (4.5)

dnyz 2 B?
()2 = F2 = 051 - m2sin2(mn)) (a.8)
where
;
n2(a,0) = a7, 82 = A (4.7)

In a standard manner, integration of (4.6) then yields

exact solutions for n(o,t) expressed in terms of elliptic func-
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tions (see [1]). With F given by (4.6) the solution of (3.9) " L
can then be tabulated.

0. Prout \ '

ke~
11. Form 5. SOLUTION CURVES AND DISCUSSION C:\\\;\\\\\\\~
qQ .
?;; Fig. 1 corresponds to A = 0.01, A= 0.02 and shouws the
. growth of the amplitude of the signal over the initial periods ::::::) i
%S. (as predicted by linear theory), but with a simultaneocus cum- e .
;sd ulative distortion of the signal shaQe until a shock forms in <:::::::::::: ;
the seventh cycle of the piston. One can see in this output . |
what was anticipated in applying the boundary conditions as :::::>
in (2.15). ) Cin
Fig. 2 shows how the signal settles down to the periodic <::::::::::: |
state, containing a shock, after about 30 cycles. Figs 3 and 2 }
4 show the evolution of the signal for the case A = 0.01, ::> s
A = 0.06. This is a particularly interesting case since exp- C:::::::::'“* ; .
eriments show that the periodic state is continuous and is, % 3
in fact, essentially determined by linear theory. The figures : E i
show how a shock forms and then decays out of the system so :> ;
that the eventual steady state is shockless. The solution rm ;

thus goes through a nonlinear regime but eventually reaches

a periodic state which is closely approximated by linear theory.

1
A shock is a dissipative mechanism so that when the piston L~ ) 1

is operating at or near resonance the shock dissipation balan-
ces the energy buildup due to the phase matchihg of the input
and response to allow a final periodic state containing a shock. :

Away from resonance, e.g. when A = 0.06, there is a sufficient
mismatch of phase to obviate an energy buildup and a shock can-
not be sustained. Thus a continuous periodic steady state

results.

The analysis given here is based on numerical calculations v T T + T T T d

™
of the exact solution. It is 'also instructive to consider = 3 = o S N 2 8 =
the phase plane associated with (4.3), (4,4) and the reader S & & & o <|: IO lO ‘o

will find this in [4].
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