ASYMPTOTIC BEHAVIOUR OF GRAVITATIONAL INSTANTONS ON R*

Niall O Aunchadha

Instantons are objects which play an important role in the
transition from a classical to a quantum model for many physical

theories.

ical field eguations, satisfying appropriate boundary conditionsf

"Euclidean" means that the signature of the spacetime is changed

An instanton is a solution of the 'euclidean' class—j

from (-, +5 +5 +) to (+, +5 +, +) but the form of the field
equations is left unchanged. In particular this means that

the D'Alembertian
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gets changed into a four-dimensional Laplacian

Thus there is an interest in gravitational instantons,
asymptotically flat solutions to the Einstein equations, on
Eduward

Witten [1], in a recent paper, has shown that no gravitational

Riemannian rather than pseudo-riemannian manifolds.
instantons exist on R. His proof is very simple but assumes
that the (non-existent) solution falls off like =" (where

r2 = w? + x2 + y2 + z2). Witten argues that this is a reason-
able assumption on the basis that the monopole in four dimen-
sions falls off like r~ 2, the dipole like 17’
like 7%, Since gravity is a quadrupole theory, then the sol-
utions should fall off like r~".

ted, because ordinary general relativity, in addition to the

and the guadrupole
This argument cannot be trus-

quadrupole term also contains a monopole term, the Newtonian

gravitational potential.

Therefore, it would be more reasonable to assume that the
gravitational instantons fall off like r-2, rather than =%,

In this article, I will show that if I assume that the instanton
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vanishes at infinity,I can prove that it must fall off like
This result will

depend only on very simple properties of the four-dimensional

-% and thus complete the Witten proof.

Laplacian.

Near infinity, the gravitational field is weak and I can
legitimately ignore the higher order non-linear terms by comp-
arison with the linear terms. Thus the leading part of the
gravitational field must satisfy the (euclidean) linear theory

of gravity eguations.

The structure of linearized gravity bears a strong resem-
blance to electromagnetism. In Maxwell's equations the field
variable is the vector potential A,. The field equations
are not hyperbolic, due to the gauge freedom (many different
When,

the gauge freedom by imposing the Lorentz gauge condition

Aus give the same physical effects). however, uwe reduce

v
T)u Au,\) = 0 (1)
[n is the Minkowski metric diagram (-1, +1, +1, +1)]
then Maxwell's equations take the nice hyperbolic form

OAy = O (2)

a

The Lorentz condition does not completely eliminate the

gauge freedom. If we have a scalar ¢ satisfying

O¢ = 0 (3)

and a vector A, satisfying (1) and (2), then

Aﬂ = Ayt b,y (4)

also satisfies (1) and (2).

The linear theory of gravity looks Jjust like Maxwell's
equations except that the field variable is a symmetric tensor
huv rather than a vector. Again,the field equations are not

hyperbolic until we impose the gauge condition




o -
n BhUW’B = 0 (5)
The field equations now become

Ohyy =0 (8)

Gauge condition (5) does not entirely eliminate the gauge free-
dom. If we have an hyy, which satisfies (5) and (6), and a

vector Xu which satisfies
EP‘U = 0 (7)

then .

v = hpy + Aiyv *t Av,u (8)

also satisfies (5) and (6).
The euclidean linear gravity equations look just like (5),

(8), (7) and (8) except that the Minkowski metric is replaced

by the euclidean metric 6&3‘ The field equations are

(9)

[l
o

Vzhuv

The gauge condition is

§%Bh 4, g = O (10)

and the residual gauge freedom is represented by a vector
satisfying

v2), = O (11)

If huv falls off at infinity, one can always impose gauge
condition (10), just as we can always use the Lorentz gauge
in electromagnetism. Therefore we have from (9) that each
component of hyy is a harmonic function of the four dimensional
Laplacian. The leading (monopole) term of the Laplacian is
1/t2.

nine 1/r* harmonic functions, sixteen of order 1/c5 and so on.

There are four dipole terms, uw/r%, x/t%, y/t4, z/t",

These can be found by taking repeated derivatives of 1/r?2,
because of course any derivative of a harmonic function is

a harmonic function.

1f we have a solution to (9) which vanishes at infinity

-2, If it has an -2

it must fall of f at least as fast as T

term it must be of the form

A/r?, B/r%*, C/r?*, D/r?

B/r%, E/r?, F/r?, G/r?
hyy = ,

c/r%, F/r?, H/r?, K/z?

D/r?, G/r?, K/r?, L/r?

where (A,B,...,L) are ten arbitrary constants. But huv must
also satisfy the four divergence conditions of (10) as well.
This means that each row of huv must be divergence-free.

Looking just at the first row we get

w X y z
-2A % - 2875- 20 - 20 5= 0 (12)

T T

The only solution to this is A =B =C =0 = 0. The other
three divergence equations require that all the others of the
ten "arbitrary" constants must be zero.

solution ta (9) and (10).

Thus there is no r~2

A counting argument may be illuminating at this point.
There are ten components of hy, and one harmonic function which
gives ten arbitrary constant coefficients. The gauge condit-
ion (10) involves first derivatives of hy,, so we get the four
independent 1/r3 harmonic functions (see (12)). We have four
divergence conditions and therefore sixteen conditions on the

ten coefficients. The only solution is that they all vanish.

If hyydoes not fall off like 1/r?, the next possible fall-
off is 1/r3. 'In this case we can have that each of the ten
components of huv is a sum of the four 1/r3 harmonic functions.
The first
derivatives of the 1/r?® harmonic functions will give us the

This gives us forty arbitrary constant coefficients.

nine (linearly independent) 1/r* harmonic functions. Thus
the four divergence conditions will give us thirty-six cond-
itions on the forty coefficients. This means that we have

four linearly independent 1/r’ solutions to (9) and (10).
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0f course, this needs that the thirty-six conditions be lin-
early independent. They are.

This is not the end of the road, however. We still have
to account for the residual gauge freedom (11).
falls off like 1/r?®, we seek solutions to (11) which fall off
like 1/r% (see (8)).
of the form

Since huv

The general 1/r? solution to (11) is

A =

u (o/r2, B/r?2, Y/r?, §/z?)

with four arbitrary constants (o,B8,Y,9). Thus we have four

linearly independent pure gauge 1/r® solutions to (9) and (1D)f

These are the only solutions that are left after imposing the
They do

not correspond to real solutions because they can be totally

thirty-six conditions on the forty coefficients.
eliminated by a gauge transformation.
The next term to consider is 1/t4. Now each component
of huv can be a sum of the nine 1/rk harmonic functions of
the Laplacian giving ninety constant coefficients. Since
there are sixteen 1/r® harmonic functions, each of the four

divergence conditions will give sixteen conditions, sixty-four

in all.
falling off like 1/r* of eguations (9) and (10).

Therefore we have twenty-six independent solutions
The resid-
val gauge freedom is represented by a vector that falls off

like 1/13.

1/r3 harmonic functions.

utions of (9) and (10) are pure gauge, leaving ten independenti

solutions which cannot be eliminated by a gauge choice.

We see then that if the instanton falls off at infinity,
it must fall off like r~%, and so the Witten assumption is
not only reasonable but correct, and his proof of the absence

of any gravitational instanton goes through.

It is important to notice that the proof in this article

is entirely local (although "local at infinity"). I do not

Fach component of the vector is a sum of the four

Thus sixteen of the tuwenty-six sol-
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assume that the Einstein equations are satisfied everywhere;,
Thus,

the result here covers cases where one looks for solutions

I only need that they are satisfied near infinity.

to the euclidean Einstein equations with sources; such solut-
ions will exist, but they must fall off at infinity like 1/c".
The ten independent 1/r" solutions that I find must have some

interpretation as moments (quadrupole ?) of the sources.

I would like to stress that this proof of the non-exist-
ence of gravitational instantons holds only for instantons
on manifolds with the topology of K. There do exist inst-
antons with R®xS' topology [2]. The absence of the R" inst-
anton is interpreted as meaning that cold flat space is stable,
whereas the existence of R3®x S! instantons shouws that hot
flat space is unstable (for example, via the spontaneous form-

ation of asmall black hole).

Notes for the Initiated:

(i) Function spaces: To make this whole scheme work I have
to assume that h

if hu

" belongs to some weighted space, i.e. that

falls off like r~% then huv falls off like r-(@+1) ang

Weighted Sobolev spaces or weighted Holder spaces

v
SO 0N,

will do.

I ignore the non-linear terms in favour of the linear terms,

This is used in several places, particularly when

and again when I claim that I can make the gauge choice (10).

This involves solving an elliptic equation.

(ii) Gauge freedom: This arises from the fact that the exact
theory is geometrical; thus I can make coordinate transform-
ations at will. The linear theory inherits this, and the
gauge transformation (8) is nothing more than the Lie deriv-
This

is why all solutions to (8) and (10) which-can be written in

ative of the metric along a coordinate transformation.

the form Ag,g + AB,u can be eliminated.
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INTRODUCTION

KNOWING 'ABOUT' MATHEMATICS: A FOCUS ON TEACHING

John 0’Donoghue

"Wathematical Education” may

be seen then as an operational
activity based on a number of
areas of study with the analysis
of the communication of mathem-

atics as its objective.

(G.T. Wain)

Since all of us have a good intuitive idea of what is meant
by mathematical education it is acceptable to start by pres-
enting a definition. The above definition may not suit every-
one's tastes but then definitions rarely find universal accept-
ance. It is not my intention to argue a case for mathematical
education as a discipline but rather to focus attention on
some important aspects of mathematical education as an activity.
This particular definition serves to.focus attention on the
communication of mathematics. All of us at some time or
another have been concerned with this aspect of mathematics
teaching as students, teachers, lecturers or professors. Many
of us have resolved to improve matters given the opportunity.
My particular concern has been to improve teacher preparation
so that better mathematics teaching results in secondary sch-

ools.

The purpose of this paper is to draw attention to a negl-
ected aspect of mathematics teaching at third level which is.
vitally important for future teachers of mathematics. A- case
is made for better treatment of this aspect, and finally an

outline of an experimental course is given.




