VAN DER WAERDEN'S CONJECTURE ON PERMANENTS
AND |TS RESOLUTION

Thomas J. Laffey

Let A = (ajj) be an nxn matrix. The permanent, per A, of

A is given by the formula

per A = ] a1 ,5(1)82,6(2) --+ @n,0(n)
OeSn

.

where the sum is over the symmetric group Sp. Thus per A is
obtained from det A by formally replacing the factors sign(o)
in the expansion of det A by +1. Let a; be the ith column
of A. Then it is clear that per A = per(a;,...,ap) is multi-
linear. Also if A(i,j) is the (n-1)x(n-1) submatrix obtained
from A by deleting row i and column j, we have the Laplace-

like expansions

per A = aj jper A(i, i) (j=1525..1)

n
!
i=1
n
JLpaigeer AGLG) (1=1,2, 000,
However, per A does not have the alternating properties of
det A and it is not in general multiplicative, so it is not

a similarity invariant. However, it is clear that per pTap

H

per A for all permutation matrices P,Q. This last property
enables one to replace A by a matrix equivalent to A by perm-
utation matrices in carrying out calculations and it is used

many times without explicit mention in this article.

A real nxn matrix is called doubly-stochastic if its ent-

ries are non-negative and

ajj = 1 (i=1,2,...5n)

j=1

e~ ~13

i 1aij =1 (i=1,2,...,0)
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Let DS(n) be the set of nxn doubly-stochastic matrices. Then
ps(n) is a compact subset of R"?, Let

f(n) = inf{per A|A & DS(n)}.

By compactness, there exist elements A € DS(n) with per A = f(n).
Such a matrix A is called a minimizing matrix. Thus A is a
minimizing matrix if A is an {nxn) doubly-stochastic matrix
such that its permanent achieves the absolute minimum of the

permanent on the set of all doubly-stochastic matrices.

The famous van der Waerden conjecture (1928) states

Van der Waerden Conjecture

(1) f(n) = nt/An

(2) there is exactly one minimizing matrix, namely the matrix

J_ that has all its entries equal to 1/n.

n

This conjecture was resolved in the affirmative by G.P.
Egorychev of Krasnoyarsk in the U.35.5.R. in 1980.
ently D.I. Falikman, also from the U.S5.5.R., proved part (1)

Independ-
of the conjecture in a paper submitted in 1879, Various spec-
ial cases of the conjecture had béen resolved earlier by var-
ious authors. 0f particular beauty was the verification of
the conjecture for the class of positive sehi—definite symmet-
ric doubly-stochastic matrices by Marcus and Newman (1862},
later improved by Minc (1963), and the work of Friedland in

the 1970s who showed in particular that per A > 1/n! 0f part-
iculér relevance to subsequent interest in the problem as well
as to its solution was the verification by Marcus and Newman
(1959) of the conjecture for matrices that have all their ent-
ries positive. While the verification of the van der Waerden
conjecture for n=2 is an elementary exercise, the problem
quickly increases in difficulty as n increases and it was not
until 1968 that Eberlein and Mudholkar settled the case n=4 '

and 1969 that Eberlein settled the case n=5.




In this expository article we present an account of Egor-
ychev's work and describe the necessary background results.
As well as Egorychev's own account [2] which appeared in Eng-
lish in Advances in Mathematics, an account of his work has
been published by van Lint [10] and a detailed account with
the background filled in has been given by Knuth in the Amer-
ican Mathematical Monthly [5S]. The presentation here has been
greatly influenced by the accounts of van Lint and Knuth. 1In

the final section we describe a few more recent results.

A full and authoritative account of the properties and
importance of permanents has been given by Minc in his enjoy-
able book [7]. The problem of computing permanents is desc-
ribed by Nijenhuis and Wilf in Chapter 23 of [8]. Permanents
arise in many combinatorial problems and the "permanental
polynomial" per (xI-A) is sometimes referred to as one aof the

isomorphism invariants of a graph with incidence matrix A.

1. Preliminaries

Let A = (aij) be an nxn matrix. The (directed) graph G(A)
is the graph with vertices 1,2,3,..,n and such that for i = j,
ij is a (directed) edge of G(A) if and only if ajj = 0. G(A)
is connected if for all i = j, there exists s z 1 and a seqg-
uence i, = i.d,,...,ig = j such that iji;, 1 i,,..,iq,,15 are
edges of G(A). Equivalently, A is irreducible under permut-
ation similarity, i.e. there is no permutation matrix P such
that
oTap Ria Ayg

0 Aoz

where A;; is an rxr, A,, an (n-r)x(n-t) matrix, some 1 <t <n.
(A special case of) the Perron-Frobenius theorem states that

if A is a permutation irreducible non-negative real matrix,

then A has a real eigenvalue t with r z || for all eigenvalues

A of A and r is a simple eigenvalue.
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A theorem of Birkhoff states that the set DS(n) of doubly-
stochastic matrices is precisely the set of convex combinations

of the permutation matrices, i.e. Ae DS(n) if and only if

there exist non-negative real numbers a(g) with Ja(o) = 1 such
that
A = T alo)P(o)
0ESn

where P(o) is the permutation matrix corresponding to o. Note

that this result in particular implies that f(n) > O.

2. Minimizing Matrices
Throughout this section A = (aij) € DS(n) is such that
per A = f(n).

Lemma 2.1 A is irreducible under permutation similarity.

Proof Suppose not. Since per (PTAP) = per A for P a permut-

ation matrix, we may assume

A1 Aiz
A =
0 Ay,
where Ay, is ©xT, Az (n-rv)x(n-r), some 1 £ 1 < n. Since

Ae DS(n), looking at the sum of all the entries in A,,, we
see that A;; € DS(r), that A,, = 0 and thus that A,,& DS(n-t).
Note that per A = per A per A,,.

Now a simple induction yields that per A;; > 0 and that
per Ay, > 0. We may assume that a;; > 0, (i=1,2,...,n). Let
A(e) be the matrix obtained from A by replacing a;, by a;;-e,

ay,r41 DY @y,04.F € 8pyy T+1s1 arpy,re1 DY
- e. Then for sufficiently small e > 0,A(e) € DS(n).

a by a + e,

8r+1,T+1
But a simple calculation yields -per A(e) < -per A for all suff-

iciently small e > O. This is a contradiction.

The next result, due to Marcus and Newman, is crucial to

the discussion.
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Theorem 2.2 For all i,j for which ajj > 0, we have

per A(i,j) = per A.

Proof Let Z = {Be DS(n)|bij = 0 if a;; = 0}.

J
Using Lemma 2.1, we see that A is an interior element of Z and

hence it must satisfy the analytic criteria for a local min-

imum. A matrix X = (xij)e Z if the following conditions
hold
xij E (all iyj)
xij =0 if aij =‘D
n .
E Xij -1 =0 (i=1,..,n)
J=1
) ( )
x:s =1 =20 J=15..5N0
i=1

n n n n
F(X) = per (X) —.Z Ai(.i xij'1) -<Z Uj(.z Xij‘1)'
i=1 Cj=1 j=1 i=1
If Xij * 0, the partial derivative
oF P
=——— = per X(i,j) - Aj -u;
Bxij L1
s0
(*) per A(i’j) = Ai + uj if aij z 0.
Now the expansions
n
per A = ] ajj per A(i,j)
i=1
n
= 7 aj j per A(i,j)
j=1
yield
n
(1) pem A= s v ) ey

Remark

n
(2) per A = Z a

Let e = (19---’1)T’ A= (A1$---9kn)T! o= (u15-~-sun)T- The

equations become

1

(per A)e A+ Au

(per A)e ATA + .

Since A€ DS(n), Ae = ale = e. Thus we obtain

aTa + ATap ATA + u

A+ Au aAT + Au.

Thus ATAu = U, AATu = A. But A and therefore AAT, ATa are
irreducible with maximum eigenvalue 1 and corresponding eigen-
vector e. By the Perron-Frobenius theorem, 1 is a simple

eigenvalue, so

[}

Ay = v.. = An a, say .

b, say.

fl

W1 = ... = Hg
N .
But then per A =~z1aij per A(i,j) = a + b and the result follows.
1=

We note that Knuth [5] gives a purely combinatorial

argument to establish (*).

We note alsoc that Marcus -and Newman were able to obtain
a proof that if aj 3 > 0 for all i,j, then A = J, easily from
(2.2).

Details are given in Minc [7], page 79.

This is not used in Egorychev's work, so we omit it.

The following partial extension of (2.2) to the case where
ajj = 0 is due to London (1971) ([7], page 85).

Theorem 2.3 For all i,j, per A(i,j) z per A.

Proof In proving the result for a pair i,j we may assume

ajj = 0. Using the remark on permutation equivalence in the
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introduction and (2.1) we may assume i=1, j=1 and further that

agk # 0 (k=2,...,n).

Note that for sufficiently small e > 0,(1-e)A+ele DS(n)
and using the fact that for C = (cij), D = (dij),

n
p(C + eD) = per C + e § dij per C(i,j) + 0(e?)
J
and (2.2) we obtain
per((1-e)A + eI) = per A + e(per A(1,1) - per A) + 0(e?).
Since A is minimizing, we obtain per A(1,1) z per A, as reg-

uired.

3. Aleksandrov's Inegquality

The next ingredient in Egorychev's solution is (a special
case of) an inequality of Aleksandrov (1938) [1]. This arose
in the context of computing the volumes of convex sets.

We can

Suppose aj,...ag., are (column)-vectors in RM.

define an inner product by

x.y = per (@1s...8_,5%5Y)

for x,y € F”. (Of course this is not a positive definite

inner product.) We may write x.y = xTﬂy for a symmetric

matrix Q.

The result of Aleksandrov we require is

Theorem 3.1 Let ays...a8p_; be elements of RMwith all their

entries positive. Then (using the notation above) for x & RP

(x) (x.aq_,)? 2 (x.x)(ap_,-ap_y)

with equality if and only if x = bapy., for some real b. (Note
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that (%) is the reverse of the Cauchy-Schwarz inequality valid

for positive definite inner products.)

We show that Theorem (3.1) follows from

Theorem 3.2

(in the notation above) Q is non-singular and has exactly one

Let a;5...a5_, € RMhave positive entries. Then
positive eigenvalue.

For suppose (3.2) holds.
dent.
exists an element x + haj_, such that (x + ha,_,).(x + hay_,)<0O.
Thus

Suppose x and an., are indepen-
Then on the two dimensional space span(x,an_l), there

2
h an_ e 8n-1t 2hx.a + X.x = 0,

n-1

Since ap.,-8n-; > 0 (as all the a; have positive entries) the

discriminant of the polynomial

2
Afapgean., + 2Ax.ap_, + X.Xx

is positive, proving (*).

We now prove (3.2) by induction om n.

If n=2, Q = ? g) and the result is trivial.

n > 2 and that the result holds for n-1.

Suppose
We first show Q is
non-singular. For suppose QOx = 0. Since Q = (qij) where
9ij = per(al,...,an_z,ei,ej)
(where €15...8, is the standard basis of RM) we see that
(+) per(al,...ap_z,x,ej) =0 (j=1,2,..5n).
This equation is the same as

per((al,...,an_z,x,ej)(i,n)) = 0.

Applying the induction hypothesis and hence (*) to the
(n-1)x(n=1) matrix
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(al,...,an_z,x,ej)(j,n)

and the fact that (al,...,an_z,an_z,ej)(j,n) has a positive

permanent, we obtain

A
o

per((al,...,an_3,><,><,ej)(j,r\))

with equality if and only if x - cap_, is zero at all positions
except possibly the jth for some real c. But in the case of

equality we must have ¢ = 0 since ap_, has positive entries.

Hence

(+1)

per(al,...an_a,x,x,ej) <0

with equality if and only if x has all its entries except poss-

ibly the jth Zero.

But by (t)

per(al,..,,an_z,xyx) =0

and since ap_, has positive entries, this with (++) gives
per(al,...,an_a,ej,x,x) -0

for all j and hence x has all its entries zero.

Let Q()) be defined by replacing .
i (1’1,---91)-‘—.
argument to Q{)X) we conclude that @(x) is non-singular for
0 Xxs 1.

values of Q(0) = Q is the same as that of Q(1). But
Q(1) = (n-1)! (E-1I) where E is the nxn matrix that has all its

Thus Q is non-singular.

a; by xe + (1-1)a; where e =

Hence by cantinuity, the number of positive éigen-‘

entries 1 so the eigen values of Q1) are

(n =1t (n=-1), ={n = 1)t,.oes —(n'-1)!

So (3.2) holds.

By continuity we obtain from (3.1)

Applying the above
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n . .
If a;5..08p., € RM have non-negative entries,

Corollary 3.3
then for x& RD

(xeaq.1)?% 2 (x.x)(ap_y-8n21) -

4. Egorychev's Resolution

Suppose A€ D5(n), nz 3 with per A = f(n).

We first show that for all i,j
(+) per A(i,j) = per A.
This is true by (2.2) if ajj > 0 and by (2.3), per A(i,j) z per A

Suppose that for some i,j, per A(i,j) > per A.
Now for some t, ajg > 0.

if aij‘= 0.
By Corollary 3.3,

. 2
PEr(@)seess@iseevsBpsronsan)  Z

per{@ysesss@yseces@iseee@n)PEr(@1sueesBpsocasBrseesran).

Using the fact that per A(u,v) = per A for a,, # 0 and
aj¢ per A(i,j) > aj¢ per A, we see, by expanding the terms
along the tth

(per A)(per A).

column, that the right-hand side is greater than

This is a contradiction.

Next, note that using (+)

per(a,,a,,...an) = per{4(a,+a,), 3(a;+a,),a,,...a,)

and since the matrix on the tight is also in DS(n) and hence

minimizing, we may repeat this process to find a minimizing
matrix

(b1sb2,.eesbpo, sap)

in which b;,by,...b,_; have positive entries. But now using

(+) again
per(bl,...,bn_lgan)2 =

per(by,...by_ysbn. )per{by,...,b _,,ansap)
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so by Aleksandrov's result (3.1), bh—1 = Ch.;2pn for some real

Ch-q-* Expanding

per(bi,...bn.1s3p)

by its (n-1)St and nth columns and using (1) gives ¢, = 1.

Thus bp., = anp. Similarly bp., = @pse...b; = ap. Hence

since A € DS(n), a = e/n where e = (1,1,...,1)T. Similarly

a; = @z = ... = @ = e/n.

n-1 Thus A = J, and the conjecture

is proved.

5. More Recent Developments

With the solution of the van der Waerden conjecture, the
interest in permanents has increased rather than waned.
conjectures related to the van der Waerden conjecture had been
formulated and while several were special cases of the conject-
ure, some were more general. A detailed account is given in
Minc [7] Chapter 8. We refer briefly to some recent work on

a few of these conjectures.

Let A € DS(n) and let O (A) be the sum of the permanents
of all the kxk submatrices of A.
on(R) = per A.)

(Thus for example 0:(A) = n,

The Tverberg conjecture (1963) states that if A& DS(n)

and 2 £ k £ n, then
o (A)z Ok(Jn)

with equality only if A = J,. (The case k=n is the van der

Waerden conjecture.) In a beautiful paper [4], Friedland has
proved this conjecture. He first expresses O, {(A) as a perm-
anent of a (2n-k)x{2n-k) doubly-stochastic matrix having an

(n-k)x(n-k) block of zeros.

and using many ingenious arguments, he then solves the more

Modifying Egorychev's methods

general problem of finding min(per A) taken over all B € DS(m)

having a given rxr block of zeros.

Many:
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Another conjecture more general than the van der Waerden
In the notation of the

last paragraph, Djokovic conjectures that for k = 2,...,n,

pe DS(n)

conjecture is due to Djokovic (1967).

g ((1 - 8)T, + 8A)

A
@
A
-

is strictly increasing for O Many special cases of
this have been settled. Friedland and Minc [7] proved it for
k =n, A =Jqo0r (nJy - I5)/(n-1).
for k = n, A =0l + BPy, @ 2 0,8 2 0,0 +B = 1, where Pp

denotes the permutation matrix corresponding to the n-cycle

(123 ...n)and for A = (nJ, - I, - P)/(n-2) (n > 2).

London [6] has proved it

An important advance on this problem has been reported
by Egorychev in his review of London's paper (MR B83g 15005).
He asserts that if fo,f,,f 4 ;5...5T, are column n-vectors with
positive entries and fy = Ay + (1-1)f;, 0 = A = 1, then the

function per 1/"’(E!) where
B = (farfaseeesfprofpersceefn)

is concave (convex upwards).

Finally we describe a conjecture of Schrijver and Valiant
[9] which in his review of their paper, Minc (MR 82a 15004)
suggests is a worthy successor to the van der Waerden conject-

ure. !

Let Aﬁ be the set of all nxn matrices with non-negative
integer entries such that each rtow sum and each column sum
equals k. Let

A(n) = min{per(a)|n e AK}

lim )\k(n)1/n

N0

Ok

In their paper Schrijver and Valiant show that
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(1) Ap(n) s K2n/(T

(2) 0y s (k-1)K=Tyk=2

and their conjecture states that (2) is an equality for all k.
(The positive solution of the van der Waerden conjecture yie-
1ds 0 z k/e here.)
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SOME_APPL ICATIONS OF THE CLASSIFICATION OF
FINITE SIMPLE GROUPS TO PERMUTATION GROUP THEORY

Martin W. Liebeck

The classification of finite simple groups has made it
possible to prove many neuw and striking results in the theory
of finite permutation groups. We survey some of these results
and describe some of the methods used in proving them. Ue
also present a theorem on maximal subgroups of finite classical
groups which is of use in extending the techniques.

(R) The Classification Theorem This states that any finite

simple group is isomorphic to one of the following groups:

cyclic Zp

alternating Ay, (nz 5)

groups of Lie type [classical: PsL(n,q)
PSD(Zm,Q)
pPsu(n,q)

PR2*(n,q)

Gz(q)
Fol(a)
Ee(ﬂ)
£-,(q)
Ea(q)

Chevalley:

groups of Lie type

tuisted:

26 sporadic groups

See [5] for descriptions of the groups of Lie type.

(B) Some Recent Applications to Permutation Groups. As expl-

ained, for example, in Sections 2 and 3 of [2], at the heart of

1 . .
This is thg text of a talk given by the author to the Group Theory Confer-
ence held in Galway, 13-14 May, 1983, under the auspices of the I.M.S.




