SIMPLE GEOMETRIC PROOFS IN L INFAR ALGEBRA
Michael Clancy
The orthogonal decomposition of symmetric, skew-symmetric
matrices etc. is usually established by computational type

proofs. The following geometric approach I feel is easier

and more illuminating.

Preliminary ideas: Let (V,<,>) be a finite dimensional inner-

product space over R. If A:V>V is linear and we express every-
thing with respect to some orthonormal basis, then <AX,Y> =
<X,AtY> for all X,Y in V, where At is the transpose of the
matrix A. By definition the map A is symmetric with respect

to <,> if and only if <AX,Y> = <X,AY> for all X,Y in V and is
skew-symmetric with respect to <,> if and only if <AX,Y> =
-<X;AY> for all X,Y in V.

Thus the notions of (skew)-symmetric mapsxand (skew)-
symmetric matrices are equivalent provided the maps are repr-
esented with respect to an orthonormal basis. We note that
the same ideas follow through in the Hermitian case with at
replaced by At The crucial point is contained in the foll-

owing lemma.

Lemma 1 If the linear map A:V>V is symmetric and leaves the
subspace U invariant (i.e. AUZ U), then it also leaves UL, the

orthogonal complement of U, invariant.

4
Proof: If Y€ U , then for all X € U we have 0 = <AX,Y> =
<X,AY> so AY € U*,

Remark: 0f course this lemma also holds if A is skew—s}mm-

etric and correspondingly in the (skew)-Hermitian case.

The equation (A-AB)X = O: We consider this generalised

eigenvalue problem when A and B are symmgtric matrices and in
addition B is positive definite. (The Hermitian case is iden-
tical.) Throughout <,> will denote the usual inner product
on RM"or €, the context will make clear which is being used.

We define a new inner product on R™ (or C7) by (X,Y):=<BX,Y>.

Lemma 2: The eigenvalues of (A-AB)}X = 0 are all real.
Proof: If the eigenvector X & " has eigenvalue A& C, then

A(X,X) = A<SBX,X> = <AX,X> = <X,AX> = <X,ABX> = A(X,X). Thus
A = A so that A€ R and in particular X € R,

Theorem 3: If A and B are symmetric nxn-matrices with B posit-

ive definite, then there exists a basis of eigenvectors Xi,..;Xp
of the equation (A-AB)X = 0 which are orthonormal with respect
to B (i.e. <BXisz> = 6ij)‘

Proof: We remark that since B is positive definite B!

exists, so we can define A': = B~!A and observe

(i) X; is an eigenvector of (A-AB)X = D with eigenvalue Ay
if and only if it is an eigenvector of (A -AI)X = 0 with

eigenvalue 1.

(ii) A,4is symmetric with respect to ( , ) because (A'X,Y) =
<SBAX,Y> = <AX,Y> = <X,AY> = <X,BA'Y> = <BX,A'Y>=(X,A'Y).

(iii) By lemma 2 there exists an eigenvector X: of Al which we
may assume to have unit length with respect to ( , ).
If [X;] denotes the subspace spanned by Xi, then [X1] is
invariant under A! and therefore (by lemma 1) [X1]" (its
orthogonal complement with respect to ( , }) is also inv- -

ariant under Al.

(iv) The argument is now completed by induction with Al rest-
ricted to [X:]".
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Corpllary 4: If A and B are as in theorem 3 then there exists

a matrix Q such that

Az

and QtBq = I.

Proof: Let @ = [X,,X,5...5Xy] the matrix whose it column

is Xj the ith eigenvector (as in theorem 3) with eigenvalue Aj.

Remarkss: 1° If B = I, then corollary 4 is the usual statement
that every symmetric matrix can be orthogonally diagonalized.
That symmetry is necessary here is obvious since QYAQ = D where
D is diagonal and G%Q = T imply A = goat - (goat)t = at,

2° While symmetry is used to show that the eigen-

values are real it is not the key point. Indeed, A =<1 1) has

g2
real distinct eigenvalues but cannot be orthogonally diagonal-
ized. Of course we see that (é) is an eigenvector whose orth-
ogonal complement, i.e. the line {(g): t€ Rl}is not invariant

under A.

Theorem 5: If A is an nxn skew-symmetric matrix, then there
exists an orthonormal basis for R" with respect.to which A
is tri-diagonal. That is there exists Q satisfying Qtu =1
and

0 ~-by

-b,
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Proof: By the argument of lemma 2 one sees that all the eigen-
values of A are pure imaginary. If m(t) denotes the minimal

polynomial for A (over R) and if ib, b # 0, is an eigenvalue

of A with eigenvector X, then 0 = m(A)X = m(ib)X implies ib

is a root of m(t) = Q. Accordingly m{t) = g(t)(t2+b2). There-
fore, since m(t) is'minimal, there exists a unit vector X € Rr"
such that (A®+b®I)X, = 0. If we define X, = (AX,)/b then

(i) AX, = bX, and AX, = (A%?X,)/b = -bX;.
(11) <Xp,X2> = <(AXy)/b, (AX;)/b> = -<X1,A*Xy>/b® = <Xi,Xi> = 1.

(iii) <Xi,%X2> = <X1,(AXy)/b> = = <(AX1)/b,X1> = =<Xy,X:> implies
<XysXp> = O

i

(iv) The subspace [Xi1,X2] spanned by X1 and X; is invariant
under A and therefore (by lemma 1) so also is its orth-
ogonal complement [X1,X2]*. We now continue by induct-

L
ion on A restricted to [X:,X2] .

(v) The case of zero eigenvalues is easily taken care of and
it is clear that the basis produced is the required one

with Q being the change of basis matrix.
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