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Editonial

At its Genernal Meeting in March 71983, the Irish flathemat-
Lcal Soclety decided to seek closen Links with the Irish Mathem-
atics Teachens’ Association. 7This move, together with othen
activities of some of oun membens, e.g. the onganisation of
the National Mathematics Contest, contaibfutions to the rnecent
Irish Times Supplement on Mathematics (Septemben 27, 28), the
submission on the Inteamediate Centificale Geometry counse to
the Syllalus Commititee etc., show a greaten awaneness of Lhe
necessdity of coopernation with those involved in second lepel

teaching of Mathematics,

The majority of oun membens are involved in teaching and
neseanch at thind fLeveld institutions. If we wish oun students
to derlve maximum benefit from oun activities and encounage some
of them to take up careens in llathematics aften graduating, then
we should be fully aware of the mathemaitical expeniences stud-
ents have at second Leveld schools, Any curniculum changes in
oun counses designed to take account of the changing role and
natune of Mathematics must de explained to those who are prep-
aning studenits 2o embark on that cuariculum. Funthermone, we
should examine the syllali and looks used in schools and, where
we feel necessarny, make effective, cogent and constructive cait-
Ledsms, School teacherns often fLeeld victimised Ly poor advice
£rom thind lLevedld mathematicians, while the Latten plead thait

thein ideas wene neven well undernstood or properly explained,
The {Links between the two professional oaganiaati&na should

be strengthened and utilized to funther the common aim OZ both
groups; the teaching of flathematics.

Donal Hunley




IRISH MATHEMATICAL SOCIETY

ORDINARY MEETING

22 DECEMBER 1983

12:15 at DIAS

Agenda

Minutes of Ordinary Meeting of 31st March, 1983
Matters Arising

Reciprocity with I.M.T.A.

Aer Lingus Young Scientist Exhibition

Elections of Secretary, Treasurer, Four Committee
Members (all for two years) and One Committee

Member for one year

Any Other Business

PERSONAL I TEM

Dr. Richand Aron has left the Mathematics Department at T.C.D.
to take up an Associate Professorship at Kent State University

in Ohio.

Dn. Don Banrny has been appointed College Lecturer in the Stat-
istics Department, U.C.C. He did his Ph.D. studies at Yale
University and works in Nonparametric Regression and Bayesian

Analysis.

Da. Peten J. Binch has been appointed to a temporary position
in the Mathematics Department, U.C.C. He did his Ph.D. stud-

ies at Teesside Polytech. and works in Near Ring Theory.

Dr. J.W. (Bill) Bruce has left the Mathematics Department,
U.C.C. to take up a Lectureship at the University of Newcastle.
He works in Singularity Theory.

Dr. Emmanuel Buffet, Postdoctoral Fellow at the Mathematical
Physics Department, U.C.D., has been appointed to a position
as Scholar at the School of Theoretical Physics, DIAS.

Dr. Edwand Cox has been appointed to a position at the Mathem-
atical Physics Department, U.C.D. He did his Ph.D. studies

in U.C.C. and works in the Theory of Nonlinear Waves.

D, Murray Golden of An Foras Forbartha is visiting Simon

Frazer University in British Columbia this year.

Dr. Maciej Klimek who was a Postdoctoral Fellow at the Mathem-
atics Department, T.C.D., has been appointed to a temporary
position at the Mathematics Department, U.C.D. His research

interests are in analysis.

Dn. Paul McGill of the New University of Ulster has been app-
ointed to a position in the Mathematics Department, St. Patr-
ick's College, Maynooth. He is on leave of absence in France

this year.




Dr, Denis 0’Brien who spent the session 1982-83 at the Mathem-
atical Physics Department, U.C.D., has left to take up a pos-

ition in the Max Planck Institute for Physics in Munich.

Dr. Donal 0’Donovan of the Mathematics Department, T.C.D.,

spent six months at the University of California at Berkeley.

Dn, Patnick 0’Leary of the Mathematical Physics Department,
U.C.6., is on leave of absence at the University of Colorado,

Boulder.

Dn, Nialld O'fMurchadhe of the Experimental Physics Department,
U.C.C., recently spent four weeks in September visiting the
Institute of Theoretical Physics, University of Vienna, supp-
orted by a Royal Irish Academy/Austrian Academy of Sciences

travel grant.

Da, Andnrew N. Prensfey of Oxford University has been appointed
to a Lectureship in Pure Mathematics at T.C.D. His field of

interest is Lie Groups.

Da. David Reynolds has been appointed to a permanent position
at the School of Mathematics, N.I.H.E (D).

Professon William Ruckle of Clemson University, South Carolina,
is visiting the School of Mathematics, T.C.D., as a Fulbright

Fellow this session. His interests are in Functional Analysis.

Da. Benedict Seifeat has resigned from his position at the

Mathematics Department, U.C.D.

Dn. Johannes Siemons who spent the session 1982-83 at the
Mathematics Department, U.C.D., has left to take up a position

at the University of Milan.

Professon C.J. Van Rijsbengen of the Department of Computer
Science, U.C.D., is on leave of absence at Cambridge University
for the session 1983-84. '

Dn. Codin Walitern of the Mathematics Department, U.C.D., is
planning to spend the second semester of 1983-84 at the Dep-
artment of Computing Studies of the University of East Anglia.

He is to do research on graph theory.

Dr, James Wand has been appointed to a temporary position at
the Mathematics Department, U.C.C. He did his Ph.D. studies
at the University of Freiburg and works in Group Theory and

Ring Theory.

Finally, the following promotions at the Department of Physical
and Quantitative Sciences, R.T.C., Waterford.

flr. D. O'flaidin (Head of Department) to Senior Lecturer 1.

and the following to Lecturer 2

Aa. P. Banny, fMa. P. Fallon, Mr. 7, Powen, Dr, J. Stynes and
Dn. M., Stynes,

PROCEEDINGS OF THE ROYAL IRISH ACADEMY

Special 0ffern 2o Membens of the
Inish Mathematical Society

£20 333% REDUCTION

Order through the Treasurer of the I.M.S.




SIMPLE GEOMETRIC PROOFS IN L INFAR ALGEBRA
Michael Clancy
The orthogonal decomposition of symmetric, skew-symmetric
matrices etc. is usually established by computational type

proofs. The following geometric approach I feel is easier

and more illuminating.

Preliminary ideas: Let (V,<,>) be a finite dimensional inner-

product space over R. If A:V>V is linear and we express every-
thing with respect to some orthonormal basis, then <AX,Y> =
<X,AtY> for all X,Y in V, where At is the transpose of the
matrix A. By definition the map A is symmetric with respect

to <,> if and only if <AX,Y> = <X,AY> for all X,Y in V and is
skew-symmetric with respect to <,> if and only if <AX,Y> =
-<X;AY> for all X,Y in V.

Thus the notions of (skew)-symmetric mapsxand (skew)-
symmetric matrices are equivalent provided the maps are repr-
esented with respect to an orthonormal basis. We note that
the same ideas follow through in the Hermitian case with at
replaced by At The crucial point is contained in the foll-

owing lemma.

Lemma 1 If the linear map A:V>V is symmetric and leaves the
subspace U invariant (i.e. AUZ U), then it also leaves UL, the

orthogonal complement of U, invariant.

4
Proof: If Y€ U , then for all X € U we have 0 = <AX,Y> =
<X,AY> so AY € U*,

Remark: 0f course this lemma also holds if A is skew—s}mm-

etric and correspondingly in the (skew)-Hermitian case.

The equation (A-AB)X = O: We consider this generalised

eigenvalue problem when A and B are symmgtric matrices and in
addition B is positive definite. (The Hermitian case is iden-
tical.) Throughout <,> will denote the usual inner product
on RM"or €, the context will make clear which is being used.

We define a new inner product on R™ (or C7) by (X,Y):=<BX,Y>.

Lemma 2: The eigenvalues of (A-AB)}X = 0 are all real.
Proof: If the eigenvector X & " has eigenvalue A& C, then

A(X,X) = A<SBX,X> = <AX,X> = <X,AX> = <X,ABX> = A(X,X). Thus
A = A so that A€ R and in particular X € R,

Theorem 3: If A and B are symmetric nxn-matrices with B posit-

ive definite, then there exists a basis of eigenvectors Xi,..;Xp
of the equation (A-AB)X = 0 which are orthonormal with respect
to B (i.e. <BXisz> = 6ij)‘

Proof: We remark that since B is positive definite B!

exists, so we can define A': = B~!A and observe

(i) X; is an eigenvector of (A-AB)X = D with eigenvalue Ay
if and only if it is an eigenvector of (A -AI)X = 0 with

eigenvalue 1.

(ii) A,4is symmetric with respect to ( , ) because (A'X,Y) =
<SBAX,Y> = <AX,Y> = <X,AY> = <X,BA'Y> = <BX,A'Y>=(X,A'Y).

(iii) By lemma 2 there exists an eigenvector X: of Al which we
may assume to have unit length with respect to ( , ).
If [X;] denotes the subspace spanned by Xi, then [X1] is
invariant under A! and therefore (by lemma 1) [X1]" (its
orthogonal complement with respect to ( , }) is also inv- -

ariant under Al.

(iv) The argument is now completed by induction with Al rest-
ricted to [X:]".
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Corpllary 4: If A and B are as in theorem 3 then there exists

a matrix Q such that

Az

and QtBq = I.

Proof: Let @ = [X,,X,5...5Xy] the matrix whose it column

is Xj the ith eigenvector (as in theorem 3) with eigenvalue Aj.

Remarkss: 1° If B = I, then corollary 4 is the usual statement
that every symmetric matrix can be orthogonally diagonalized.
That symmetry is necessary here is obvious since QYAQ = D where
D is diagonal and G%Q = T imply A = goat - (goat)t = at,

2° While symmetry is used to show that the eigen-

values are real it is not the key point. Indeed, A =<1 1) has

g2
real distinct eigenvalues but cannot be orthogonally diagonal-
ized. Of course we see that (é) is an eigenvector whose orth-
ogonal complement, i.e. the line {(g): t€ Rl}is not invariant

under A.

Theorem 5: If A is an nxn skew-symmetric matrix, then there
exists an orthonormal basis for R" with respect.to which A
is tri-diagonal. That is there exists Q satisfying Qtu =1
and

0 ~-by

-b,
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Proof: By the argument of lemma 2 one sees that all the eigen-
values of A are pure imaginary. If m(t) denotes the minimal

polynomial for A (over R) and if ib, b # 0, is an eigenvalue

of A with eigenvector X, then 0 = m(A)X = m(ib)X implies ib

is a root of m(t) = Q. Accordingly m{t) = g(t)(t2+b2). There-
fore, since m(t) is'minimal, there exists a unit vector X € Rr"
such that (A®+b®I)X, = 0. If we define X, = (AX,)/b then

(i) AX, = bX, and AX, = (A%?X,)/b = -bX;.
(11) <Xp,X2> = <(AXy)/b, (AX;)/b> = -<X1,A*Xy>/b® = <Xi,Xi> = 1.

(iii) <Xi,%X2> = <X1,(AXy)/b> = = <(AX1)/b,X1> = =<Xy,X:> implies
<XysXp> = O

i

(iv) The subspace [Xi1,X2] spanned by X1 and X; is invariant
under A and therefore (by lemma 1) so also is its orth-
ogonal complement [X1,X2]*. We now continue by induct-

L
ion on A restricted to [X:,X2] .

(v) The case of zero eigenvalues is easily taken care of and
it is clear that the basis produced is the required one

with Q being the change of basis matrix.

Schood of Mathematical Sciences,
NI, HoEWs
Dublin.

Y

From 2-Manifold, No. 1




POPULATION BIOLOGY OF INFECTIOQUS DISEASES

R.G., Flood

The Population biology of infectious diseases breaks
roughly into two main classes - those diseases causing immunity
and those not.causing immunity. These classes correspond
(again roughly) to microparasitic infections and macroparasitic

infections.

I don't intend to become too technical in this discussion
but will aim to show how some simple mathematical models can
be very powerful. In this paper I will discuss mainly micro-
parasitic infections and in particular the construction and
effects of vaccination programmes. However to start I want

to describe briefly the other major category.

MACROPARASITES

Examples of diseases: Hookworm, Schistosomiasis

These are widespread and serious diseases. Approxim-

ately 200 million people suffer from schistosomiasis.

In general macroparasites have quite long generation‘
times, and direct multiplication within the host is either
absent or occurs at quite a low rate. The immune response
elicited generally depends on the number of parasites present
in a given host and tends to be of relatively short duration.
Macroparasitic infections therefore tend to be of a persistent
nature with hosts being continually reinfected. The pathogen-
icity of the infection is related to the worm burden. Typic-
ally, theoretical work had taken the worm burden to be Poisson
distributed. However recent field trials have indicated that
a much more realistic model for some infections, e.g. Hookworm,

is to take the worm burden to be distributed according to the

- 13 -
negative Binomial distribution.

This distribution is more highly exaggerated, for example

less than 10% of the population harbours B80% of the parasites.

Distribution Probability Generating Function
Poisson m(z) = e"H(1-2)

. . s u -k
Negative Binomial w(z) = [1 + k(1-z)]

This has major implications for control strategy since
an obvious thing to do is to try and identify those people with
a high worm burden and treat them. This is being attempted

at the moment in two villages in Burma for Hookworm.
An interesting guestion concerns the reason for this aggr-

egation of the worm burden. One speculation is that there is -

a genetic predisposition to high worm density.

MICROPARASITIC INFECTIONS

These are caused by most viruses, most bacteria and many

protozoans.

They are characterized by small size, short generation
times, extremely high rates of direct reproduction ‘within the
host and a tendency to induce immunity to reinfection in those
hosts that survive the initial onslaught. The duration of
infection is typically short in relation to the 1ifespén of
the host and therefore is of a transient nature. However

there are many exceptions.

Some examples are given in the Table on the following
page:
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Incubation Duration of A
Period (days) | Infectiousness (days) Pathogenicity
Measles 9-12 5-7 Low-High
Smallpox 12-14 10 High
Rubella 17-20 14 Low
Mumps 10-20 7 Low
Whooping Cough 7-10 14+ Medium
Polio 5-20 Long Medium
ngpex Simplex 5-8 Long Very Low
Virus )
All these examples induce lifelong immunity. However

this need not be the case - typhoid is an example.

The reason why the pathogenicity of measles vaTies from
low to high is that in developing countries measles can kill -
30% of those who obtain it. Smallpox has been eradicated but
ve will see that it is an interesting example to consider when
studying the present controversy regarding vaccination prog-

rammes for Whooping Cough.

Rubella (German measles) and Mumps will illustrate another
aspect of the effects of a vaccination programme, which is,
that vaccination increases the average age at which the infect-
ion is obtained. This is of particular concern for these two
infections. Mumps in adolescent and adult males can cause
intense discomfort. In women, rubella, which is normally a
mild infectionaccompanied by a fever may cause serious diseases
in offspring if the infection is acguired during the first
three months of pregnancy; infants born with congenital rubella
syndrome may suffer deafness and neurological and other dis-

orders.

The first result I want to obtain is a connection between
the force of infection ) and the average age A at which inf-

ection is obtained. The result is:

»j—

where
A = force of infection - percapita rate of acquiring

infection; the probability to acquire infection in

unit time.

A = average age of infection.

To obtain this we use a compartment model. Divide the
host population into discrete classes, at age a and at time t,

let

X(a,t) = number susceptible,
Y(a,t) = number infectious,
Z(a,t) = number recovered and immune, at age a at time t.

The basic partial differential equations for this system

are
_g_fé_ + %é = -[Ax(t) + u(a)lx(a,t)
%% + %% = AX - [a(a) + u(a) + vlv(a,t)
%% + %% = vY - p(a)x(a,t)

with initial and boundary conditions

t=0 specify z(a,0), Y(a,0), Z(a,0)
a=0 specify Xx(0,t) = B, Y(0,t) = X(0,t) = 0O

A(t) = force of infection

u(a) = age specific death rate

a{a) = disease induced death rate
v = recovery rate (constant).

Observations: This compartment model can be modified in many

ways. Some of these are as follows:

(1) A latent class (infected but not yet infectious)
may be added.




(2)

(3)
(4)

(s)

These,

starting point for the analysis.
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Maternal antibodies may protect for first three
to nine months so infants are born into new prot-

ected class and lose immunity in the first year.
Immunity may be lost, not lifelong, as above.

We have assumed a constant recovery rate v but
recovery may be after some defined interval or

some more general statistical recovery.

The assumption of homogenecus mixing assumes that
we can average out all local details - school,

family etc. This allows us to write

A(t) = BL?Y(a,t)da.

or similar differential equations are often the

However I now want to rest-

rict attention to the equilibrium situation with the assumpt-

ions that

(a)

(b)

Births and deaths exactly balance - justified

usually by stating that population densities rem-
ain roughly constant on the time scale appropriate
to the pathology of most diseases. This 1is cle-
arly not a reasonable assumption for many count-

ries.

a = 03 infection does not cause significant num-
ber of deaths. Again this is not a reasonable
assumption for some diseases in the developing

countries.

Under equilibrium the partial differential eguations red-

uce to

‘ CL Y + u(a)x(a))
v%é = & - (v +u(a)Yy(a))
dz

da vY - wla)z(a)

- 17 -

N(a) = x(a) + Y(a) + Z(a)
x(0) = N(0); v(0) = z(0)
Then X(a) = N(D)o(a)exp(-Aa)
N(a) = N(D)o(a),
where a
¢(a) = exp(-L u(s)ds).

The fraction of people of age a who are susceptible is

x{(a) = ﬁ%gT = exp(-A)

Therefore the average age of infection

L aix(a)da

>

J:o A a)da

>
.

So A =

This relates the 'observable' A with the more abstract A -
provided we treat A as independent of age. This is freguently
done in mathematical work but usually is not true. From AA = 1
we conclude that the louwer the force of infection the greater
the age at which infection is obtained. Therefore weakening
this force of infection, e.g. by vaccination, increases this
average age which is of concern for infections such as.rubella.
We now need two further concepts. The basic reproduction
rate Ry is the number of secondary cases produced, on average,
when everyone is susceptible. Ry combines the biology of the
infection with social and behavioural factors influencing cont-

act rates.

The effective reproductive rate, R, when X out of N are

susceptible 1s, assuming homogeneocus mixing, given by R=RDX/N.
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It is the number of secondary cases produced on average when

X out of N are susceptible.

However at equilibrium we must have R = 1,
therefore
X -
(Roﬁ)eq. =1
which implies
_ (N
Rg = (Y)BQ-
Now o o
No=[ N(a)da, X =[ X(a)da
0 0

To find N,X we need to specify u{a) the age specific death rate.
I will take this as all who have lived to age L when they die.

There are obvious alternatives, e.g. taking u(a) to be a
constant. Then from the expressions previously obtained for
N(a), X(a) we obtain

Ry = % if L is much greater than A.

Note: if u(a) is taken as a constant then

Examples: Before immunization began in the U.5. and U.K.,

children typically caught measles and whooping cough

around 4 - 5 years. If we take L = 70 then
Rg = 13 - 15 for measles and whooping cough.
For rubella A is 9 - 10 years giving
Rg = 7 - 8 for rubella.

Effects of Vaccination

Mass vaccination as a means of contrelling diseases has
two main effects. Most obviously there is the direct effect
that those effectively immunized are protected against infect-

ion. The second and indirect effect which is less obvious

- 19 -

arises because a susceptible individual has less chance of
acquiring the infection in a partially vaccinated community
than in an unvaccinated population; there are fewer people
around him to give him the disease, thus it is not necessary
to immunize everyone to eradicate the infection. The crucial
factor is the effective reproductive rate R of the disease.

If Rz 1, i.e. if each infected individual infects one or more
persons before he shakes off the disease then the infection
will persist. But if R < 1 the disease will die out even if

there are susceptible people in the community.

Let us suppose a proportion p are vaccinated at age b.
Then we can find the new equilibrium for the previous system
of differential equations. From this we can calculate the
new force of infection, which will depend on p. Eradication
of the disease corresponds to the force of infection going to
ZEero. ‘To achieve this it is then seen that the critical prop-

ortion requiring to be vaccinated is given by

1 =

»|o

P critical > 1 -
s]
RO_ ﬁ-

If b = 0, i.e. vaccination occurs at birth then

P critical > 1 -

o|—=
o

For measles and whooping cough we need 93% approximately.
For polio and diptheria the situation is a little better since
we Tequire 80% and 85% respectively. If vaccination occurs
at age 2 then we need approximately 95% coverage to eradicate

measles and whooping cough.

These figures are depressingly high, but in the U.S. where
indigenous measles has virtually disappeared more than 95% of
children are currently vaccinated before reaching school age.
This is the result of the childhood immunization initiative
which began in 1977 (although widespread vaccination began much

earlier). The goal is supported by laws which require docum-




Ezamples of trends in the numbers of reported cases
of whooping cough (pertussis) and measles in Britain and the
United States. The three graphs below show the irends in the
United Kingdom of reporied pertussis cases and the numbers of
children vaccinated annually. The graphs to the right denole
the reported cases of measles in the United States and England

and Wales, plus pertussis in the United States
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entary proof that a child has been vaccinated by the time it
enters first grade; all 50 states had enforced this law by Jan-
uary 1982.

vaccinated against measles and pertussis (Whooping cough) before

Currently more than 95% of children in the U.S. are

they enter school.

In the U.K. immunization is not enforced by law and high
levels of vaccine coverage have proved difficult to achieve.
Over the past decade levels of vaccination of children against
diptheria, polioc and measles have remained approximately const-
ant - around 80% for diptheria and polio and around 50% for
measles. In the case of whooping cough, as a result of the
much publicised debateon the safety of the vaccine during the
mid-1970s, vaccination fell from 80% in 1970 to less than 40%

in 1981.

The controversy continues today and the current whooping
cough epidemic is a direct result of the low levels of vaccin-
ation. It is interesting to compare this situation with that

of smallpox.

In the U.K. from 1951 to 1370 there were roughly 100
deaths from smallpox vaccination and approximately 37 from
smallpox itself, and in the U.S5. the centre for disease control
estimated thdt it would require 15 importations per year to
produce the same mortality currently associated with smallpox
vaccinations in the U.S. As a tesult vaccination against

smallpox was discontinued both in the U.S. and U.K. in 1971,

The risk benefit analysis for whooping cough vaccine is
considerably more complex than it was for smallpox. For one
thing whooping cough has never been close to eradication in
developing countries the way smallpox was in the 1860s. For
another the range of neurological illnesses associated with
whooping cough vaccination is clinically indistingﬁishable from
that occurring in children who have not been immunized. In
smallpox, by contrast, any disease produced by the vaccine can

be clearly distinguished from the natural disease. Estimation
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of the risk of vaccination must therefore come from large and
statistically well designed studies that aim to distinguish
neurological damage caused by the vaccine from the background
of similar cases that arise in infancy and early childhood
caused by bacterial and viral infections, congenital diseases

and other processes that appear to be poorly understood.

The three year National Childhood encephalopathy study
in the U.K. examined the records of every child below three
years of age admitted to hospitals in Britain with neuroclogical
illness between June 1976 and July 1879. The study concluded
that both pertussis and measles vaccines can indeed cause acute
neurological reactions but that in both cases these are rare
events. The study estimated the risk of persistent neurolog-
ical damage one year after vaccination to be 1 in 310,000 imm-

unizations.

The 1877-79 epidemic in Britain was responsible for 36
deaths and 17 cases of brain damage. Others suffer from cont-
inuing illness. The lower level illness associated with the
disease should not be underestimated. The illness is protr-
acted and debilitating, usually lasting 10 to 12 weeks and led

to 5000 hospital admissions.

Based on the National Childhood encephalopathy study and
a birth rate of 1.2%, i.e. 600,000 births, we can estimate that
B cases of brain damage might be expected each year if every

child completes the full course of 3 injections.

The consequences of the 1977-1979 epidemic were much worse.

Inter-Epidemic Period

From the graph one can see variation in the patterns of
incidence. The models I have described also exhibit this
behaviour. The incidence varies both from season to season

and over longer periods. The seasonal trend is in part deter-
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mined by patterns of social behaviour such as timing of school
holidays. The best known examples of longer term fluctuations,
taking place on time scales greater than one .year, are the two
to three year cycles in measles and the three to four year
cycles in whooping cough. Indeed many directly transmitted
viral infections such as measles, and bacterial infections such
as whooping cough, typically follow such a pattern of rtecurrent
epidemic largely because the susceptible population varies.
First the number of susceptible people decreases as immunity

is acquired by recovering from infection and then the number

of susceptibles increases slowly as children are born.

This can be explained by the model we have proposed. In
the partial differential equations we integrate out the age
variable a to obtain a system of ordinary differential equations

in which we will take the death rate to be constant. We obtain

dx

Fr uN - (4 + w)x(t)

dy

i AX - (v + w)Y(t)

-g-% = wy - uz(t)

dN _ )

T =0 N-= x(t) + v(t) + z(t)
Assuming birth rate = death rate.

Then we can analyse the eguilibrium and stability behav-
jour of the solutions, to obtain damped periodic solutions

with period

T = 2m/AT
where A = average age on infection
T = average interval between an individual acquiring inf-

ection and passing it on to the next infectee.
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Examples:
A years years T years
" Measles 4-5 1/25 2-3
Whooping Cough 4-5 1/14 3-4
Rubella 9-10 1/17 5

The tendency for the incidence of disease to oscillate in
a regular manner raises a further problem in assessing the ben-
efits of mass immunization. If vaccination coverage is high
the non-seasonal epidemics will be small and it will be diff-

icult to distinguish epidemic from non-epidemic years.

Under low to moderate levels of vaccination however, there
may still be more cases in an epidemic year than there were

in non-epidemic years before vaccination.
Thus in any assessment of the risk of exposure to infection

we must base our calculations on the average risk over the

inter-epidemic period covering years of low and high risk.

Average Age of Infection

I wish now to discuss the effect of a vaccination programme
I will illustrate this

with respect to rubella, which as I have mentioned, is normally

to increase the average of infection.

a mild infection accompanied by a fever but can cause serious
damage to offspring if acquired during the first three months

of pregnancy.

In the U.S. boys and girls are vaccinated against rubella
around the age of two years with the aim of creating suffic-
ient levels of herd immunity to virtually eliminate rubella
from the population. Currently more than 80% of children are
vaccinated before entering school and the incidence of rubella

has dropped to very louw levels.
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In the U.K. the aim is to facilitate the natural circul-
ation of the virus in the population so that most girls have
contracted rubella before they reach child-bearing age. Curr-
ently the vaccination coverage is 60-80%. The average age
(before vaccination programmes began) at which children caught
rubella was 9-10 years. If they are still susceptible in
early childhood then girls and only girls are immunized at
around 12 years of age. This policy has had little impact on
the incidence of rubella as such but has reduced the number

of cases of congenital rubella syndrome.

Recent theoretical research has yielded the satisfactory:
conclusion that Britain's policy is best for Britain (since
high levels of vaccination cannot be achieved) while the U.S.

policy is best for its circumstances.

The important thing in the U.S. policy is that the level
of vaccination does not fall below 50% to 55% otherwise more
cases of congenital rubella syndrome will be obtained - due

to increased average age of infection.

Define

D5 = number of people acquiring infection between ages

a, and a, at equilibrium after vaccination

Dp = number of people acquiring infection between ages

a; and a, at equilibrium before vaccination.

W(a,,a,) = Ds/Dy

We wish to ensure that the ratio W(a,,a,) is less than 1.

From the theory we have developed it can be shown that

-Aa -\ a
e 191 - g 1<2
w(alya2) = (1 - D) A
e-Aa; - g-Aa,
where p = proportion vaccinated
A1 = force of infection at equilibrium after vaccination
A = force of infection at equilibrium before vaccination.
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We sketch below the graph of W(16,40) for rubella and measles.
The graphs illustrate that the number getting sick at older
ages can increase if the coverage p i1s not approaching 1 when-

ever Ry, 1is large.

w(16,40)
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VAN DER WAERDEN'S CONJECTURE ON PERMANENTS
AND |TS RESOLUTION

Thomas J. Laffey

Let A = (ajj) be an nxn matrix. The permanent, per A, of

A is given by the formula

per A = ] a1 ,5(1)82,6(2) --+ @n,0(n)
OeSn

.

where the sum is over the symmetric group Sp. Thus per A is
obtained from det A by formally replacing the factors sign(o)
in the expansion of det A by +1. Let a; be the ith column
of A. Then it is clear that per A = per(a;,...,ap) is multi-
linear. Also if A(i,j) is the (n-1)x(n-1) submatrix obtained
from A by deleting row i and column j, we have the Laplace-

like expansions

per A = aj jper A(i, i) (j=1525..1)

n
!
i=1
n
JLpaigeer AGLG) (1=1,2, 000,
However, per A does not have the alternating properties of
det A and it is not in general multiplicative, so it is not

a similarity invariant. However, it is clear that per pTap

H

per A for all permutation matrices P,Q. This last property
enables one to replace A by a matrix equivalent to A by perm-
utation matrices in carrying out calculations and it is used

many times without explicit mention in this article.

A real nxn matrix is called doubly-stochastic if its ent-

ries are non-negative and

ajj = 1 (i=1,2,...5n)

j=1

e~ ~13

i 1aij =1 (i=1,2,...,0)
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Let DS(n) be the set of nxn doubly-stochastic matrices. Then
ps(n) is a compact subset of R"?, Let

f(n) = inf{per A|A & DS(n)}.

By compactness, there exist elements A € DS(n) with per A = f(n).
Such a matrix A is called a minimizing matrix. Thus A is a
minimizing matrix if A is an {nxn) doubly-stochastic matrix
such that its permanent achieves the absolute minimum of the

permanent on the set of all doubly-stochastic matrices.

The famous van der Waerden conjecture (1928) states

Van der Waerden Conjecture

(1) f(n) = nt/An

(2) there is exactly one minimizing matrix, namely the matrix

J_ that has all its entries equal to 1/n.

n

This conjecture was resolved in the affirmative by G.P.
Egorychev of Krasnoyarsk in the U.35.5.R. in 1980.
ently D.I. Falikman, also from the U.S5.5.R., proved part (1)

Independ-
of the conjecture in a paper submitted in 1879, Various spec-
ial cases of the conjecture had béen resolved earlier by var-
ious authors. 0f particular beauty was the verification of
the conjecture for the class of positive sehi—definite symmet-
ric doubly-stochastic matrices by Marcus and Newman (1862},
later improved by Minc (1963), and the work of Friedland in

the 1970s who showed in particular that per A > 1/n! 0f part-
iculér relevance to subsequent interest in the problem as well
as to its solution was the verification by Marcus and Newman
(1959) of the conjecture for matrices that have all their ent-
ries positive. While the verification of the van der Waerden
conjecture for n=2 is an elementary exercise, the problem
quickly increases in difficulty as n increases and it was not
until 1968 that Eberlein and Mudholkar settled the case n=4 '

and 1969 that Eberlein settled the case n=5.




In this expository article we present an account of Egor-
ychev's work and describe the necessary background results.
As well as Egorychev's own account [2] which appeared in Eng-
lish in Advances in Mathematics, an account of his work has
been published by van Lint [10] and a detailed account with
the background filled in has been given by Knuth in the Amer-
ican Mathematical Monthly [5S]. The presentation here has been
greatly influenced by the accounts of van Lint and Knuth. 1In

the final section we describe a few more recent results.

A full and authoritative account of the properties and
importance of permanents has been given by Minc in his enjoy-
able book [7]. The problem of computing permanents is desc-
ribed by Nijenhuis and Wilf in Chapter 23 of [8]. Permanents
arise in many combinatorial problems and the "permanental
polynomial" per (xI-A) is sometimes referred to as one aof the

isomorphism invariants of a graph with incidence matrix A.

1. Preliminaries

Let A = (aij) be an nxn matrix. The (directed) graph G(A)
is the graph with vertices 1,2,3,..,n and such that for i = j,
ij is a (directed) edge of G(A) if and only if ajj = 0. G(A)
is connected if for all i = j, there exists s z 1 and a seqg-
uence i, = i.d,,...,ig = j such that iji;, 1 i,,..,iq,,15 are
edges of G(A). Equivalently, A is irreducible under permut-
ation similarity, i.e. there is no permutation matrix P such
that
oTap Ria Ayg

0 Aoz

where A;; is an rxr, A,, an (n-r)x(n-t) matrix, some 1 <t <n.
(A special case of) the Perron-Frobenius theorem states that

if A is a permutation irreducible non-negative real matrix,

then A has a real eigenvalue t with r z || for all eigenvalues

A of A and r is a simple eigenvalue.
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A theorem of Birkhoff states that the set DS(n) of doubly-
stochastic matrices is precisely the set of convex combinations

of the permutation matrices, i.e. Ae DS(n) if and only if

there exist non-negative real numbers a(g) with Ja(o) = 1 such
that
A = T alo)P(o)
0ESn

where P(o) is the permutation matrix corresponding to o. Note

that this result in particular implies that f(n) > O.

2. Minimizing Matrices
Throughout this section A = (aij) € DS(n) is such that
per A = f(n).

Lemma 2.1 A is irreducible under permutation similarity.

Proof Suppose not. Since per (PTAP) = per A for P a permut-

ation matrix, we may assume

A1 Aiz
A =
0 Ay,
where Ay, is ©xT, Az (n-rv)x(n-r), some 1 £ 1 < n. Since

Ae DS(n), looking at the sum of all the entries in A,,, we
see that A;; € DS(r), that A,, = 0 and thus that A,,& DS(n-t).
Note that per A = per A per A,,.

Now a simple induction yields that per A;; > 0 and that
per Ay, > 0. We may assume that a;; > 0, (i=1,2,...,n). Let
A(e) be the matrix obtained from A by replacing a;, by a;;-e,

ay,r41 DY @y,04.F € 8pyy T+1s1 arpy,re1 DY
- e. Then for sufficiently small e > 0,A(e) € DS(n).

a by a + e,

8r+1,T+1
But a simple calculation yields -per A(e) < -per A for all suff-

iciently small e > O. This is a contradiction.

The next result, due to Marcus and Newman, is crucial to

the discussion.
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Theorem 2.2 For all i,j for which ajj > 0, we have

per A(i,j) = per A.

Proof Let Z = {Be DS(n)|bij = 0 if a;; = 0}.

J
Using Lemma 2.1, we see that A is an interior element of Z and

hence it must satisfy the analytic criteria for a local min-

imum. A matrix X = (xij)e Z if the following conditions
hold
xij E (all iyj)
xij =0 if aij =‘D
n .
E Xij -1 =0 (i=1,..,n)
J=1
) ( )
x:s =1 =20 J=15..5N0
i=1

n n n n
F(X) = per (X) —.Z Ai(.i xij'1) -<Z Uj(.z Xij‘1)'
i=1 Cj=1 j=1 i=1
If Xij * 0, the partial derivative
oF P
=——— = per X(i,j) - Aj -u;
Bxij L1
s0
(*) per A(i’j) = Ai + uj if aij z 0.
Now the expansions
n
per A = ] ajj per A(i,j)
i=1
n
= 7 aj j per A(i,j)
j=1
yield
n
(1) pem A= s v ) ey

Remark

n
(2) per A = Z a

Let e = (19---’1)T’ A= (A1$---9kn)T! o= (u15-~-sun)T- The

equations become

1

(per A)e A+ Au

(per A)e ATA + .

Since A€ DS(n), Ae = ale = e. Thus we obtain

aTa + ATap ATA + u

A+ Au aAT + Au.

Thus ATAu = U, AATu = A. But A and therefore AAT, ATa are
irreducible with maximum eigenvalue 1 and corresponding eigen-
vector e. By the Perron-Frobenius theorem, 1 is a simple

eigenvalue, so

[}

Ay = v.. = An a, say .

b, say.

fl

W1 = ... = Hg
N .
But then per A =~z1aij per A(i,j) = a + b and the result follows.
1=

We note that Knuth [5] gives a purely combinatorial

argument to establish (*).

We note alsoc that Marcus -and Newman were able to obtain
a proof that if aj 3 > 0 for all i,j, then A = J, easily from
(2.2).

Details are given in Minc [7], page 79.

This is not used in Egorychev's work, so we omit it.

The following partial extension of (2.2) to the case where
ajj = 0 is due to London (1971) ([7], page 85).

Theorem 2.3 For all i,j, per A(i,j) z per A.

Proof In proving the result for a pair i,j we may assume

ajj = 0. Using the remark on permutation equivalence in the
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introduction and (2.1) we may assume i=1, j=1 and further that

agk # 0 (k=2,...,n).

Note that for sufficiently small e > 0,(1-e)A+ele DS(n)
and using the fact that for C = (cij), D = (dij),

n
p(C + eD) = per C + e § dij per C(i,j) + 0(e?)
J
and (2.2) we obtain
per((1-e)A + eI) = per A + e(per A(1,1) - per A) + 0(e?).
Since A is minimizing, we obtain per A(1,1) z per A, as reg-

uired.

3. Aleksandrov's Inegquality

The next ingredient in Egorychev's solution is (a special
case of) an inequality of Aleksandrov (1938) [1]. This arose
in the context of computing the volumes of convex sets.

We can

Suppose aj,...ag., are (column)-vectors in RM.

define an inner product by

x.y = per (@1s...8_,5%5Y)

for x,y € F”. (Of course this is not a positive definite

inner product.) We may write x.y = xTﬂy for a symmetric

matrix Q.

The result of Aleksandrov we require is

Theorem 3.1 Let ays...a8p_; be elements of RMwith all their

entries positive. Then (using the notation above) for x & RP

(x) (x.aq_,)? 2 (x.x)(ap_,-ap_y)

with equality if and only if x = bapy., for some real b. (Note
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that (%) is the reverse of the Cauchy-Schwarz inequality valid

for positive definite inner products.)

We show that Theorem (3.1) follows from

Theorem 3.2

(in the notation above) Q is non-singular and has exactly one

Let a;5...a5_, € RMhave positive entries. Then
positive eigenvalue.

For suppose (3.2) holds.
dent.
exists an element x + haj_, such that (x + ha,_,).(x + hay_,)<0O.
Thus

Suppose x and an., are indepen-
Then on the two dimensional space span(x,an_l), there

2
h an_ e 8n-1t 2hx.a + X.x = 0,

n-1

Since ap.,-8n-; > 0 (as all the a; have positive entries) the

discriminant of the polynomial

2
Afapgean., + 2Ax.ap_, + X.Xx

is positive, proving (*).

We now prove (3.2) by induction om n.

If n=2, Q = ? g) and the result is trivial.

n > 2 and that the result holds for n-1.

Suppose
We first show Q is
non-singular. For suppose QOx = 0. Since Q = (qij) where
9ij = per(al,...,an_z,ei,ej)
(where €15...8, is the standard basis of RM) we see that
(+) per(al,...ap_z,x,ej) =0 (j=1,2,..5n).
This equation is the same as

per((al,...,an_z,x,ej)(i,n)) = 0.

Applying the induction hypothesis and hence (*) to the
(n-1)x(n=1) matrix
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(al,...,an_z,x,ej)(j,n)

and the fact that (al,...,an_z,an_z,ej)(j,n) has a positive

permanent, we obtain

A
o

per((al,...,an_3,><,><,ej)(j,r\))

with equality if and only if x - cap_, is zero at all positions
except possibly the jth for some real c. But in the case of

equality we must have ¢ = 0 since ap_, has positive entries.

Hence

(+1)

per(al,...an_a,x,x,ej) <0

with equality if and only if x has all its entries except poss-

ibly the jth Zero.

But by (t)

per(al,..,,an_z,xyx) =0

and since ap_, has positive entries, this with (++) gives
per(al,...,an_a,ej,x,x) -0

for all j and hence x has all its entries zero.

Let Q()) be defined by replacing .
i (1’1,---91)-‘—.
argument to Q{)X) we conclude that @(x) is non-singular for
0 Xxs 1.

values of Q(0) = Q is the same as that of Q(1). But
Q(1) = (n-1)! (E-1I) where E is the nxn matrix that has all its

Thus Q is non-singular.

a; by xe + (1-1)a; where e =

Hence by cantinuity, the number of positive éigen-‘

entries 1 so the eigen values of Q1) are

(n =1t (n=-1), ={n = 1)t,.oes —(n'-1)!

So (3.2) holds.

By continuity we obtain from (3.1)

Applying the above
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n . .
If a;5..08p., € RM have non-negative entries,

Corollary 3.3
then for x& RD

(xeaq.1)?% 2 (x.x)(ap_y-8n21) -

4. Egorychev's Resolution

Suppose A€ D5(n), nz 3 with per A = f(n).

We first show that for all i,j
(+) per A(i,j) = per A.
This is true by (2.2) if ajj > 0 and by (2.3), per A(i,j) z per A

Suppose that for some i,j, per A(i,j) > per A.
Now for some t, ajg > 0.

if aij‘= 0.
By Corollary 3.3,

. 2
PEr(@)seess@iseevsBpsronsan)  Z

per{@ysesss@yseces@iseee@n)PEr(@1sueesBpsocasBrseesran).

Using the fact that per A(u,v) = per A for a,, # 0 and
aj¢ per A(i,j) > aj¢ per A, we see, by expanding the terms
along the tth

(per A)(per A).

column, that the right-hand side is greater than

This is a contradiction.

Next, note that using (+)

per(a,,a,,...an) = per{4(a,+a,), 3(a;+a,),a,,...a,)

and since the matrix on the tight is also in DS(n) and hence

minimizing, we may repeat this process to find a minimizing
matrix

(b1sb2,.eesbpo, sap)

in which b;,by,...b,_; have positive entries. But now using

(+) again
per(bl,...,bn_lgan)2 =

per(by,...by_ysbn. )per{by,...,b _,,ansap)
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so by Aleksandrov's result (3.1), bh—1 = Ch.;2pn for some real

Ch-q-* Expanding

per(bi,...bn.1s3p)

by its (n-1)St and nth columns and using (1) gives ¢, = 1.

Thus bp., = anp. Similarly bp., = @pse...b; = ap. Hence

since A € DS(n), a = e/n where e = (1,1,...,1)T. Similarly

a; = @z = ... = @ = e/n.

n-1 Thus A = J, and the conjecture

is proved.

5. More Recent Developments

With the solution of the van der Waerden conjecture, the
interest in permanents has increased rather than waned.
conjectures related to the van der Waerden conjecture had been
formulated and while several were special cases of the conject-
ure, some were more general. A detailed account is given in
Minc [7] Chapter 8. We refer briefly to some recent work on

a few of these conjectures.

Let A € DS(n) and let O (A) be the sum of the permanents
of all the kxk submatrices of A.
on(R) = per A.)

(Thus for example 0:(A) = n,

The Tverberg conjecture (1963) states that if A& DS(n)

and 2 £ k £ n, then
o (A)z Ok(Jn)

with equality only if A = J,. (The case k=n is the van der

Waerden conjecture.) In a beautiful paper [4], Friedland has
proved this conjecture. He first expresses O, {(A) as a perm-
anent of a (2n-k)x{2n-k) doubly-stochastic matrix having an

(n-k)x(n-k) block of zeros.

and using many ingenious arguments, he then solves the more

Modifying Egorychev's methods

general problem of finding min(per A) taken over all B € DS(m)

having a given rxr block of zeros.

Many:
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Another conjecture more general than the van der Waerden
In the notation of the

last paragraph, Djokovic conjectures that for k = 2,...,n,

pe DS(n)

conjecture is due to Djokovic (1967).

g ((1 - 8)T, + 8A)

A
@
A
-

is strictly increasing for O Many special cases of
this have been settled. Friedland and Minc [7] proved it for
k =n, A =Jqo0r (nJy - I5)/(n-1).
for k = n, A =0l + BPy, @ 2 0,8 2 0,0 +B = 1, where Pp

denotes the permutation matrix corresponding to the n-cycle

(123 ...n)and for A = (nJ, - I, - P)/(n-2) (n > 2).

London [6] has proved it

An important advance on this problem has been reported
by Egorychev in his review of London's paper (MR B83g 15005).
He asserts that if fo,f,,f 4 ;5...5T, are column n-vectors with
positive entries and fy = Ay + (1-1)f;, 0 = A = 1, then the

function per 1/"’(E!) where
B = (farfaseeesfprofpersceefn)

is concave (convex upwards).

Finally we describe a conjecture of Schrijver and Valiant
[9] which in his review of their paper, Minc (MR 82a 15004)
suggests is a worthy successor to the van der Waerden conject-

ure. !

Let Aﬁ be the set of all nxn matrices with non-negative
integer entries such that each rtow sum and each column sum
equals k. Let

A(n) = min{per(a)|n e AK}

lim )\k(n)1/n

N0

Ok

In their paper Schrijver and Valiant show that
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(1) Ap(n) s K2n/(T

(2) 0y s (k-1)K=Tyk=2

and their conjecture states that (2) is an equality for all k.
(The positive solution of the van der Waerden conjecture yie-
1ds 0 z k/e here.)
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SOME_APPL ICATIONS OF THE CLASSIFICATION OF
FINITE SIMPLE GROUPS TO PERMUTATION GROUP THEORY

Martin W. Liebeck

The classification of finite simple groups has made it
possible to prove many neuw and striking results in the theory
of finite permutation groups. We survey some of these results
and describe some of the methods used in proving them. Ue
also present a theorem on maximal subgroups of finite classical
groups which is of use in extending the techniques.

(R) The Classification Theorem This states that any finite

simple group is isomorphic to one of the following groups:

cyclic Zp

alternating Ay, (nz 5)

groups of Lie type [classical: PsL(n,q)
PSD(Zm,Q)
pPsu(n,q)

PR2*(n,q)

Gz(q)
Fol(a)
Ee(ﬂ)
£-,(q)
Ea(q)

Chevalley:

groups of Lie type

tuisted:

26 sporadic groups

See [5] for descriptions of the groups of Lie type.

(B) Some Recent Applications to Permutation Groups. As expl-

ained, for example, in Sections 2 and 3 of [2], at the heart of

1 . .
This is thg text of a talk given by the author to the Group Theory Confer-
ence held in Galway, 13-14 May, 1983, under the auspices of the I.M.S.
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the theory of permutation groups lies the study of primitive
permutation groups. Many old problems in this field have
been solved using the classification theorem. Here are some

examples.

THEOREM 1 ([2], Section 5).

are known.

All finite 2-transitive groups
Any B-transitive permutation group of finite deg-

ree n must be A, oOT She.

THEOREM 2 ([31).

primitive groups of degree n are AL and S,.

For almost all positive integers n the only
More precisely,
if e(x) = |{n = x| there is a primitive group G of degree n
with AL £ G}| then e(x) ~ 2x/log x.
THEOREM 3 (Sims' Conjecture:[4]). There is a function f:N=+ N
such that if G is primitive on a finite set @ and for ae Q,
Gy has an orbit (#{a}) of size d, then [Gy| < f(d).
THEOREM 4 ([9]).

prime and k < p, are known.

All primitive groups of degree kp, with p

THEOREM 5 ([8], Example 5).

pf with p prime, and G having no elementary abelian regular

All primitive groups G of degree

normal subgroup, can be classified.

THEOREM 6 ([2], Theorem 6.1).
Then one of the following holds:

Let G be primitive of degree n.

(1) G has an elementary abelian regular normal

subgroup;
(ii) G is a known group;

(iii) |G| < n10log logn,

(C) Methods of Reduction.

about general primitive groups to problems about primitive

simple groups is the following theorem of 0'Nan and Scott (see

Theorem 4.1 of [2]; note that there is an error in the statement

The basic tool for reduéing problems
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IN [2] - possibility (ii) below is omitted).

g'Nan-Scott THEOREM 7. Let G be primitive of finite degree n
on @ and let N = soc G, the product of the minimal normal sub-
groups of G. Then N Tixe...xTp with all T3 = T, a fixed

simple group, and one of the following holds:

1}

A

(i) T = Zp, N = (Zp)T and 6 s AGL(z,p);
(ii) T is nonabelian, Ng = 1 (o€ Q) and n = |T|T;
(iii) T is nonabelian and either

(a) wreath action: T = soc Go for some primitive
group Go of degree ngy and G s Go wr Sp, with
n=n%, or

(b) diagonal actiom: Ng = Dix...xDp where r = km
for some k > 1, D; is a diagonal subgroup of

T(i_1)k+1x...xTik and n = |T[r'm.

As an example of the use of the 0'Nan-Scott Theorem we

consider Theorem 4 above, and prove

PROPOSITION 8.
and k < p then T = soc G is simple (so that T < G = Aut T).

If G is primitive of degree kp with p prime

Proof. If case (i) of

the 0'Nan-Scott Theorem occurs then k = 1 and G s AGL(1,p).

Let N = soc G = T,x..xT, as above.

If (ii) holds then kp = |T|r with T a nonabelian simple group,
which is impossible. Similarly case (iii)(b) cannot hold.
Finally, in case (iii)(a) we must have r = 1 and ny, = kp, so

that T = soc G is simple.

The 0'Nan-Scott Theorem thus focuses attention of primit-
ive permutation representations of finite simple groups. Such
representations are determined by the conjugacy classes of max-

imal subgroups.




- 44 -

(D) Maximal Subgroups. Let T be a finite simple group and G

a group with T ¢ G s Aut T (i.e. T = soc G).

We describe some
recent progress in determining the maximal subgroups of such

groups G.

(1) T sporadic It seems certain that the maximal subgroups
of G can be determined explicitly in this case; in fact this
has already been accomplished for 14 of the 26 groups.

(2) T exceptional of Lie type Here the determination of the
maximal subgroups of G requires special techniques for each
type of group. It seems possible that a Cdmplete determin-
ation will eventually be achieved; this has been done for sev-
eral of the cases of low rank.

In this case much can be said. Let T = Ag
Let G act nat-

urally on C = {1,...,c} and let H be a maximal subgroup of G.

(3) T alternating

and suppose that ¢ > 6, so that G is Ag or S¢.

Then one of the following occurs:

(i) H is intransitive on C: then H = (SkxS,_k) NG for
' some k with 1 s k £ n-13
(ii) H is transitive and imprimitive on C: then H permutes
b blocks of size a, where ab = c¢c and a > 1, b > 1,
so H = (S5 wr Sb)ﬂ Gs
(iii) H is primitive on C: in this case our results on
primitive groups (such as 0'Nan-Scott or Theorem 6,

for example) apply to H.

Finally we discuss the case

(4) T classical 1 have recently obtained (in [10]) the foll-
owing result on the orders of maximal subgroups of G in this

case:

THEGREM g ([10].
ural projective module V of dimension n over GF(q) (for example
Go = PSL(n,q), etc.), and let G be a group such that

Let Go be a simple classical group with nat-
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If H is a maximal subgroup of G then either

Goa G = Aut Gy.

(I) H is a knouwn group, and H N G, has well-described (proj-

ective) action on V, or

(11) |H] < a3".

note. |G| is roughly a"? (if G, = PSL(n,q)) or q2"*(other-
wise), so for large n the maximal subgroups H under (II) are
of very small order. Theorem 9 improves substantially the

results of [6] and [7] (note, however, that these were obtained

without the use of the classification theorem).

The known groups under (1) comprise the following:

(a) stabilisers of

(i) certain subspaces of V,
(ii) certain decompositions of VU as a direct sum or
tensor product of subspaces,
(iii) fields Ff, < GF(g) or Fy, D GF(q), of prime index.
(b) classical groups of dimension n over GF(g) contained
in Gs )
(c) Ag or Sg in a representation of smallest degree over

GF(g) (n = c-1 or c-2).

The proof of Theorem 9 uses the following fundamental structure

theaorem of Aschbacher:

THEOREM 10 ([111]).

Theorem 9.

Let Gy, G and H be as in the statement of

Then either

(A) H is knouwn, oT
(B) there is a nonabelian finite simple group S with
S a4 H

group

< Aut S, and the representation of the covering
§ of S on V is absolutely irreducible.

The groups under (A) are as in (a) and (b) above, plus
a few extra subgroups. So to prove Theorem 9 we must essent-
ially show that if H satisfies (B) of Theorem 10 then either
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[H| < g3" or H is Ag or S¢ as in (c) above. This is achieved
by obtaining lower bounds for degrees of absolutely irreduc-
ible modular representations of groups H satisfying (B) of

Theorem 10.

(E) Some Deductions. As a corollary to Theorem S we obviously

have:

COROLLARY 11. If G is a classical group of dimension n over:

GF(g) and G acts primitively on a set @ then either

(1)

6% is 'known' (i.e. it is the action of G on the

cosets of a known subgroup), or

(11) |2l > [6]/a%n.

In order to demonstrate an application of this we return
to our consideration of Theorem 4. Let G be primitive on ‘
By Proposition 8,
excluding the case G s AGL(1,p) as
Clearly |G:Gy| < ©? uwhere

When T is alter

of degree kp with p prime and k < p.
T =

well known,

soc G is simple and,
T is also nonabelian.
T is the largest prime divisor of [T| (oeQ).
nating, exceptional or sporadic it is possible to determine
the possibilities for Gy and hence for G%. And if T is class
ical then Corollary 11 gives the possibilities for Gy for
example, if T = PSL(n,q) then |Q] = |G:Gy| < (g"-1)? and so,
provided n 2z 6, 6 must fall under (I) of Corollary 11.
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ASYMPTOTIC BEHAVIOUR OF GRAVITATIONAL INSTANTONS ON R*

Niall O Aunchadha

Instantons are objects which play an important role in the
transition from a classical to a quantum model for many physical

theories.

ical field eguations, satisfying appropriate boundary conditionsf

"Euclidean" means that the signature of the spacetime is changed

An instanton is a solution of the 'euclidean' class—j

from (-, +5 +5 +) to (+, +5 +, +) but the form of the field
equations is left unchanged. In particular this means that

the D'Alembertian

_1- 32 +82 +aZ +82
“SZ 3tz T 9xZ T dyZ T az?

a =

gets changed into a four-dimensional Laplacian

Thus there is an interest in gravitational instantons,
asymptotically flat solutions to the Einstein equations, on
Eduward

Witten [1], in a recent paper, has shown that no gravitational

Riemannian rather than pseudo-riemannian manifolds.
instantons exist on R. His proof is very simple but assumes
that the (non-existent) solution falls off like =" (where

r2 = w? + x2 + y2 + z2). Witten argues that this is a reason-
able assumption on the basis that the monopole in four dimen-
sions falls off like r~ 2, the dipole like 17’
like 7%, Since gravity is a quadrupole theory, then the sol-
utions should fall off like r~".

ted, because ordinary general relativity, in addition to the

and the guadrupole
This argument cannot be trus-

quadrupole term also contains a monopole term, the Newtonian

gravitational potential.

Therefore, it would be more reasonable to assume that the
gravitational instantons fall off like r-2, rather than =%,

In this article, I will show that if I assume that the instanton
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vanishes at infinity,I can prove that it must fall off like
This result will

depend only on very simple properties of the four-dimensional

-% and thus complete the Witten proof.

Laplacian.

Near infinity, the gravitational field is weak and I can
legitimately ignore the higher order non-linear terms by comp-
arison with the linear terms. Thus the leading part of the
gravitational field must satisfy the (euclidean) linear theory

of gravity eguations.

The structure of linearized gravity bears a strong resem-
blance to electromagnetism. In Maxwell's equations the field
variable is the vector potential A,. The field equations
are not hyperbolic, due to the gauge freedom (many different
When,

the gauge freedom by imposing the Lorentz gauge condition

Aus give the same physical effects). however, uwe reduce

v
T)u Au,\) = 0 (1)
[n is the Minkowski metric diagram (-1, +1, +1, +1)]
then Maxwell's equations take the nice hyperbolic form

OAy = O (2)

a

The Lorentz condition does not completely eliminate the

gauge freedom. If we have a scalar ¢ satisfying

O¢ = 0 (3)

and a vector A, satisfying (1) and (2), then

Aﬂ = Ayt b,y (4)

also satisfies (1) and (2).

The linear theory of gravity looks Jjust like Maxwell's
equations except that the field variable is a symmetric tensor
huv rather than a vector. Again,the field equations are not

hyperbolic until we impose the gauge condition




o -
n BhUW’B = 0 (5)
The field equations now become

Ohyy =0 (8)

Gauge condition (5) does not entirely eliminate the gauge free-
dom. If we have an hyy, which satisfies (5) and (6), and a

vector Xu which satisfies
EP‘U = 0 (7)

then .

v = hpy + Aiyv *t Av,u (8)

also satisfies (5) and (6).
The euclidean linear gravity equations look just like (5),

(8), (7) and (8) except that the Minkowski metric is replaced

by the euclidean metric 6&3‘ The field equations are

(9)

[l
o

Vzhuv

The gauge condition is

§%Bh 4, g = O (10)

and the residual gauge freedom is represented by a vector
satisfying

v2), = O (11)

If huv falls off at infinity, one can always impose gauge
condition (10), just as we can always use the Lorentz gauge
in electromagnetism. Therefore we have from (9) that each
component of hyy is a harmonic function of the four dimensional
Laplacian. The leading (monopole) term of the Laplacian is
1/t2.

nine 1/r* harmonic functions, sixteen of order 1/c5 and so on.

There are four dipole terms, uw/r%, x/t%, y/t4, z/t",

These can be found by taking repeated derivatives of 1/r?2,
because of course any derivative of a harmonic function is

a harmonic function.

1f we have a solution to (9) which vanishes at infinity

-2, If it has an -2

it must fall of f at least as fast as T

term it must be of the form

A/r?, B/r%*, C/r?*, D/r?

B/r%, E/r?, F/r?, G/r?
hyy = ,

c/r%, F/r?, H/r?, K/z?

D/r?, G/r?, K/r?, L/r?

where (A,B,...,L) are ten arbitrary constants. But huv must
also satisfy the four divergence conditions of (10) as well.
This means that each row of huv must be divergence-free.

Looking just at the first row we get

w X y z
-2A % - 2875- 20 - 20 5= 0 (12)

T T

The only solution to this is A =B =C =0 = 0. The other
three divergence equations require that all the others of the
ten "arbitrary" constants must be zero.

solution ta (9) and (10).

Thus there is no r~2

A counting argument may be illuminating at this point.
There are ten components of hy, and one harmonic function which
gives ten arbitrary constant coefficients. The gauge condit-
ion (10) involves first derivatives of hy,, so we get the four
independent 1/r3 harmonic functions (see (12)). We have four
divergence conditions and therefore sixteen conditions on the

ten coefficients. The only solution is that they all vanish.

If hyydoes not fall off like 1/r?, the next possible fall-
off is 1/r3. 'In this case we can have that each of the ten
components of huv is a sum of the four 1/r3 harmonic functions.
The first
derivatives of the 1/r?® harmonic functions will give us the

This gives us forty arbitrary constant coefficients.

nine (linearly independent) 1/r* harmonic functions. Thus
the four divergence conditions will give us thirty-six cond-
itions on the forty coefficients. This means that we have

four linearly independent 1/r’ solutions to (9) and (10).
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0f course, this needs that the thirty-six conditions be lin-
early independent. They are.

This is not the end of the road, however. We still have
to account for the residual gauge freedom (11).
falls off like 1/r?®, we seek solutions to (11) which fall off
like 1/r% (see (8)).
of the form

Since huv

The general 1/r? solution to (11) is

A =

u (o/r2, B/r?2, Y/r?, §/z?)

with four arbitrary constants (o,B8,Y,9). Thus we have four

linearly independent pure gauge 1/r® solutions to (9) and (1D)f

These are the only solutions that are left after imposing the
They do

not correspond to real solutions because they can be totally

thirty-six conditions on the forty coefficients.
eliminated by a gauge transformation.
The next term to consider is 1/t4. Now each component
of huv can be a sum of the nine 1/rk harmonic functions of
the Laplacian giving ninety constant coefficients. Since
there are sixteen 1/r® harmonic functions, each of the four

divergence conditions will give sixteen conditions, sixty-four

in all.
falling off like 1/r* of eguations (9) and (10).

Therefore we have twenty-six independent solutions
The resid-
val gauge freedom is represented by a vector that falls off

like 1/13.

1/r3 harmonic functions.

utions of (9) and (10) are pure gauge, leaving ten independenti

solutions which cannot be eliminated by a gauge choice.

We see then that if the instanton falls off at infinity,
it must fall off like r~%, and so the Witten assumption is
not only reasonable but correct, and his proof of the absence

of any gravitational instanton goes through.

It is important to notice that the proof in this article

is entirely local (although "local at infinity"). I do not

Fach component of the vector is a sum of the four

Thus sixteen of the tuwenty-six sol-
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assume that the Einstein equations are satisfied everywhere;,
Thus,

the result here covers cases where one looks for solutions

I only need that they are satisfied near infinity.

to the euclidean Einstein equations with sources; such solut-
ions will exist, but they must fall off at infinity like 1/c".
The ten independent 1/r" solutions that I find must have some

interpretation as moments (quadrupole ?) of the sources.

I would like to stress that this proof of the non-exist-
ence of gravitational instantons holds only for instantons
on manifolds with the topology of K. There do exist inst-
antons with R®xS' topology [2]. The absence of the R" inst-
anton is interpreted as meaning that cold flat space is stable,
whereas the existence of R3®x S! instantons shouws that hot
flat space is unstable (for example, via the spontaneous form-

ation of asmall black hole).

Notes for the Initiated:

(i) Function spaces: To make this whole scheme work I have
to assume that h

if hu

" belongs to some weighted space, i.e. that

falls off like r~% then huv falls off like r-(@+1) ang

Weighted Sobolev spaces or weighted Holder spaces

v
SO 0N,

will do.

I ignore the non-linear terms in favour of the linear terms,

This is used in several places, particularly when

and again when I claim that I can make the gauge choice (10).

This involves solving an elliptic equation.

(ii) Gauge freedom: This arises from the fact that the exact
theory is geometrical; thus I can make coordinate transform-
ations at will. The linear theory inherits this, and the
gauge transformation (8) is nothing more than the Lie deriv-
This

is why all solutions to (8) and (10) which-can be written in

ative of the metric along a coordinate transformation.

the form Ag,g + AB,u can be eliminated.
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INTRODUCTION

KNOWING 'ABOUT' MATHEMATICS: A FOCUS ON TEACHING

John 0’Donoghue

"Wathematical Education” may

be seen then as an operational
activity based on a number of
areas of study with the analysis
of the communication of mathem-

atics as its objective.

(G.T. Wain)

Since all of us have a good intuitive idea of what is meant
by mathematical education it is acceptable to start by pres-
enting a definition. The above definition may not suit every-
one's tastes but then definitions rarely find universal accept-
ance. It is not my intention to argue a case for mathematical
education as a discipline but rather to focus attention on
some important aspects of mathematical education as an activity.
This particular definition serves to.focus attention on the
communication of mathematics. All of us at some time or
another have been concerned with this aspect of mathematics
teaching as students, teachers, lecturers or professors. Many
of us have resolved to improve matters given the opportunity.
My particular concern has been to improve teacher preparation
so that better mathematics teaching results in secondary sch-

ools.

The purpose of this paper is to draw attention to a negl-
ected aspect of mathematics teaching at third level which is.
vitally important for future teachers of mathematics. A- case
is made for better treatment of this aspect, and finally an

outline of an experimental course is given.




A BASIC REQUIREMENT

Traditionally teacher educators have rightly insisted that
the fundamental requirement for teachers of mathematics is to
know mathematics. In other words subject competence is more

important than methodology. One cannot teach mathematics if

one does not know mathematics. While this establishes prior-

It is not prescriptive in anysens§
It is '

ities it does little else.
For example, what does it mean to know mathematics?
important to clarify what is at stake here. We demand of our
teachers a certain competence in mathematics. That is to say,
it is taken for granted’that teachers of mathematics should

be trained in the theory of mathematics, its methods and tech-
But mathematics teachers like any other teachers must

Thus

niques.
be concerned to maximise their contribution in schools.
as members of the teaching profession they will find it necess-

ary to address four guestions:

1. Why teach mathematics?
2.  What mathematics to teach?
When to teach mathematics?

How to teach it?

The nature and quality of teachers' responses to these questiong
'will, in large measure, determine their effectiveness as teach-
ers of mathematics. Success depends upon knowledge and exper
ience of a special kind. It requires of teachers perspective“

insight and knowledge adeguate for the presentation of mathem-

atics and its role in modern culture. In short teachers must
I believe that

all good mathematics teachers manage soméhow to combine these

know mathematics and know about mathematics.
two attributes in their teaching. The matter generates concert
because whereas these aims are not mutually exclusive, the att-
ainment of one is no guarantee that the other has been achieved
Some sort of intervention is required. Mathematics teachers
can be helped to help themselves in this regard. One way is
to provide them with opportunities for talking about mathematic
and for finding out about mathematics by reading as well as

doing.
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A PROBLEM WITH EXISTING PROGRAMIMES

The competing demands on a student's time in existing
undergraduate teacher training programmes in mathematics guar-
antee insufficient time for subject specialists. Inevitably
therefore, the main effort is directed towards developing stud-

ents' subject competence in the allocated time. Programmes
as a result are so crowded and demanding that little or no time
is available to develop students' perspective or to cultivate
an overview of mathematics - important but neglected aspects
of mathematical competence. That is to say that little atten-
tion is devoted to these aspects explicitly in any mathematical
programme. The accepted view seems to be that specific atten-
tion is unnecessary because it happens anyway or in any case
if it does not happen during the undergraduate phase it must
surely happen later during study for higher degrees in mathem-
atics. This state of affairs in unsatisfactory for teacher
educators for two reasons: (1) many student teachers fail to
develop a reasonable overview; (2) the vast majority of math-
ematics teachers never proceed to higher degrees in mathematics.
therefore,

In practice, most mathematics teachers forfeit any

benefits which would accrue from this activity.

KNOWING 'ABOUT' MATHEMATICS

Who can deny that knowing about mathematics is a legitim-
ate mathematical pursuit? Is the explicit treatment of problem
solving and mathematical modelling outside the domain of math-
ematics? Does the nature of proof and proof technigues const-
itute appropriate study? Is it not imperative given the nature
of school mathematics that students confront the concept of
will
not a straightforward treatment of mathematical processes such

mathematical structure and deal with it comprehensively?

as consolidation, generalization, abstraction etc., contribute
to a better mathematical experience. The list can be extended

to include history of mathematics and foundations.
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No one would deny that any of this activity is valid mathemat-
ics but many teacher educators afford it a low priority in

practice in their undergraduate programmes. In effect this

means that intervention by way of direct teaching is the excep-

tion rather than the rule. Rarely are undergraduate students

in mathematics confronted by appropriate courses, materials

and experiences. As a result few are able to talk about math-

ematics in an interesting and informed manner.

EXPECTED BENEFITS

Perhaps you feel that there really is 'much ado about

nothing' here. 1 consider this issue to be a matter of some

considerable importance for teacher educators in mathematics.

I feel strongly that teacher effectiveness is considerably imp
aired by the absence of these competencies. Further, I attr-
ibute some observed shortcomings in practice to this deficienc
namely the inability of many mathematics teachers to go beyond
the text book, to make mathematics relevant or to instill conf

idence in doing mathematics.

Teaching mathematics is not simply a matter of showing

children how to do mathematics. Pupils have to be motivated

and kept interested. pppropriate topics and seguencing have
to be used in context. Teachers have to cope even in a sing
class group with an incredible variation in ability and motiv
ation. Pupils learn in different ways. Appropriate learning
experiences and practice have to be devised and so ON.....
A teacher must be able to cope with such complexity. It is
more likely that he will cope effectively if he can present
topics in different and interesting ways, evaluate different
approaches and methods, identify significant concepts etc.
Teachers cannot be expected to do this unless they have a sound
grasp of mathematics, can see connections and interrelations,
know something of its history and foundations - in short know

about mathematics.

There are other benefits. Many teachers having completed
their initial training will never return for further formal
education in mathematics. This means that the education and
training they receive as undergraduates has to serve for their
entire professional lives. It is inconceivable in modern
times that teachers could live through their working lives
without updating their subject knowledge. If this is not done
formally then it must be done outside the system, i.e. by ind-

ependent study. In any case success is more likely if the

endeavour is built on a solid foundation of mathematics. Ind-
ependent study is more likely to succeed if the teacher is
confident in his knowledge of mathematics, knows his way 'around

the subject' and can articulate effectively.

CONCLUSTION

In this paper I have attempted to highlight an aspect of

mathematical education which, I believe, is especially signif-
icant for teacher educators and future mathematics teachers.
This has been done in a way which separates (perhaps artific-
ially) certain aspects of mathematics. Whether one agrees
with this particular approach due to May [2] is not important.
As long as the difficulty is recognised the means of describing
it may be considered of secondary importance. My attempts

to deal with the problem have been based on explicit teaching
and directed independent study in a sequence of three courses,
namely: History of Mathematics, Foundations of Mathematics and
Mathematics Seminar. I leave it to the readers to judge the
merit of such an exercise and in particular the use of the
mathematics seminar which is outlined below. It isvapprop-
riate to raise such issues here in this forum since many of
the readers are involved directly or indirectly in teacher
education in university colleges and colleges of education.

I should point out that I do not consider the list of selected
readings to be a definitive list since choice was limited by
what was immediately available. Perhaps others would want

to substitute their own preferences!




APPENDIX

EXPERIMENTAL COURSE

COURSE : Mathematics Seminar

TUTOR : Dr. J. 0'Donoghue
YEAR s Final Year Mathematics Students
DURATION : One Academic Year (30 hours)

1. Introduction

My concern, among other things, has been to ensure that student.teache
completing their initial training know mathematics and know about mathemat
ics, Obviously these aims are not mutually exclusive but the attainment
of one is no guarantee that the other has been achieved. I believe that
all good mathematics teachers manage somehow to combine these two attrib-

utes in their teaching.

The aim .of this course is to set you thinking about your mathematics
in a way which will bemefit you in your profession now and in the future.
You will be encouraged in a variety of ways to develop. your perspective, .
insight, intuition and knowledge regarding mathematics. You will be challs
enged to develop your skills in analysis and synthesis by practising on
issues in the nature of mathematics, its concepts and structures, its meth-

odologies, and by examining such processes as abstraction, generalization,

unification, consolidation, idealization, modelling as they pertain to mathé

ematics.

The hope is that you will learn to penetrate deeper the mass of detail
and apparently disparate areas of mathematics and develop a perception
which allows you to achieve a worthwhile synthesis of the mathematics-you
command. It is my earnest desire that some of you, at least, will advance
further and use these ideas purposefully at each stage of your mathematical

development and thus equip yourself with a powerful methodology for learning

to learn about mathematics.

Objectives
To encourage the student teacher to develop a wider perspective and

deeper insight into mathematics.

To promote in the student teacher an attitude of inquiry into math-

ematics requiring analysis and synthesis.

To cultivate in the student teacher a worthy sense of the meaning

and significance of important mathematical ideas.

To encourage the student teacher to develop a methodology for learn-

ing to learn about mathematics.

3. Course Organization and Content

Themes: The following themes have been selected in an attempt to add

structure to the endeavour:

(i) Problem Solving

(ii) Mathematical Modelling
(iii) Mathematical Structure
(iv)

(v) Mathematical Proof and proof technigues

Mathematical Knowledge

Various readings have been assigned.

Readings: Readings dealing

with specific themes have been grouped together. There
will be some overlap between readings and groups of

readings.

Lectures: The course tutor will deliver a series of occasional
lectures (5). Lecture topics will relate to the afore-
mentioned themes. Topic, venue and time will be posted
on the mathematics department notice board.

Discussions: The course tutor will be available to deal with individ-

uals as required. Opportunities will be provided occas-
ionally to meet as a group to discuss particular readings.

Watch your notice board for information.




Assessment:

Identify major themes running through your mathematics programme and use

them to effect a
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Assessment is based on the following course elements:

(i) attendance at occasional lectures

(ii) summaries of assigned readings

(iii) short (750 word) essay which brings the totality
of your mathematical experience to date to bear

on the following topic:

unification of the programme as a whole.

Notes on Procedure

A. Duration of Course: One full academic year beginning in first term

B. Timetable:

C. (a) Readings:

(30 hour equivalent).
See notice board.
Readings are organised into files as follous:

File 1 - Mathematical Knowledge

File 2 - Mathematical Structure

File 3 - Problem Solving and Mathematical Modelling

File 4 - Mathematical Proof and Proof Techniques.

File 5 - General Reading

(b) Availability: Three copies of each file will be available at the:

(c) Content:

D. Each student

E. Each student

Restricted Loan Counter in the College Library Frod

the beginning of term.

A full list of readings is appended to this outline,
is responsible for reading each reading on the list.

is responsible for maintaining article summaries in a file

which must be available for scrutiny by the tutor.

F. Assessment:

Essay must be submitted two weeks prior to the end of last

term.

5.

6.

study Notes
A. A number of essays should not be read at one sitting. Time has
peen provided for a leisurely but measured pace spreading the wo;k

over the year.

B. The readings/essays vary in style, difficulty and point of view.
Some are short, others are long. However, they do have something in
common - each reading from a particular group relates to the theme

for that group.

C. You have been asked to summarise each essay in one half page. Why
demand such a short summary even for long readings?  You will be
surprised how many readings really only contain one or two or three

fundamental ideas. What about analysis and synthesis?

D. Read essays for impression then for detail but do not devote excess-

ive time to detail.

E. Themes are useful to focus your attention on specific important iss-
ues but boundaries between themes/topics are never sharp since themes
merge easily or envelop each other. But this is only as it should

be!

File 1 - Mathematical Knowledge

Aleksandrov, A.D. et al (Editors) (1962). Mathematics: its Content,
Methods and Meaning. Cambridge, M.I.7. Press, pp. 1-7.

Hogben, L. (1967). Mathematics for the Millions. London, Pan Books,
pp. 75-117.

Kapur, J.N. (1976). Proposal for a Course on the nature of Mathematical
Thinking. International Journal of Math Education in Science and

Technology, 1, 287-296.

Kasner, E., Newman, J. (1979). Mathematics and the Imagination, U.K.,

Penguin Books, pp. 17-35.

Kline, M. (1964). Mathematics for Liberal Arts. Reading, Addison-
Wesley, pp. 30-55.
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Rees, M, (1962). The Nature of Mathematics. Mathematics Teacher,
October, pp. 434-440.

Sawyer, W.W. (1943). Mathematician's Delight. U.K., Penguin Books,
pp. 26-34.

Bell, A.W. (1966). Algebraic Structures. London, Allen and Unwin,
Chapters 1,5 and B.

Gowar, N. and Flegg, H.G. (1974). Basic Mathematical Structures Z.

London, Transworld Publisher. Chapter 4.

Jeger, M. (1966). Transformation Geometry. London, Allen and Unwin,
Chapters 1,5 and 6.

Mansfield, D.E. and Bruckheimer, M. (1965). Background to Set and
Group Theory. London, Chatto and Windus. Chapters 1, 6 and 8.

pPiaget, J. (1972). Mathematical Structures and the Operational Str-
uctures of the Intellect. In Lamon, W.E. (Editor). Learning and the
Nature of Mathematics. Chicago, SRA, pp. 117-136.

Sawyer, W.W. (1955). Prelude to Mathematics. U.K., Pelican, Chap-
ters 4 and 5.

Bajpai, A.C. et al (1974). Engineering Mathematics. London, John
Wiley, Chapters O and 1.

Bell, M. (1979). Teaching Mathematics as a Tool for Problem Solving.
Prospects, IX, 311-320.

Jackson, K.F. (1975). The Art of Solving Problems. London, Heine-

mann, Chapters 1, 2 and 6.

Kac, M. (1969). Some Mathematical Models in Science. Science, 166,

695-693.

Kac, M. and Ulam, S. (1971). Mathematics and Logic. U.K., Pelican
Books, Chapter 3.
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Molkevitch, J. and Meyer, W. (1974). Graphs, Models and Finite Math-

ematics. New Jersey, Prentice-Hall, Chapters 1 and 2.

ormell, C.P. (1972). Mathematics, Science of Possibility. Internat-
ional Journal of Math. Education in Science and Technology, 3, 329-341.

Therauf, R.J. and Klekamp, R.C. (1975). Decision Making through Oper-
ations Research. (2nd. £d.) New York, John Wiley. pp. 16-24.

File 4 - Mathematical Proof and Proof Technigues

Bell, A.W. (1966). Algebraic Structures. London, Allen and Unwin,
Chapter 1.

Course Team (1977). Polymaths Book A: Number Systems. Cheltenham,
Stanley Thornes. pp. 1-15.

Griffiths, H.B. and Hilton, P.J. (1970). Classical Mathematics. Neuw
York, Van Nostrand. pp. 1-2 and 241-243.

Kline, M. (1962). Mathematics for Liberal Arts. Reading, Addison-
Wesley, Chapter 3. ‘

Scaaf, W.L. (1969). Basic Concepts of Elementary Mathematics. Neuw
York, John Wiley, pp. 108-113.

File 5 - General Reading

Committee on Support of Research in the Mathematical Sciences, National
Academy of Sciences (1971). "The Mathematical Sciences: A Report Sec-
tion II. The State of the Mathematical Sciences'. International Jour-

nal of Math. Education in Science and Technology, 2, 345-390.

Lighthill, J. (Editor) (1978). Newer Uses of Mathematics. U.K.,

Penguin Books.

Newman, J.R. (1956). The World of Mathematics. 4 Vols. London, Allen
and Unwin.

Stewart, I. (1981). Concepts of Modern Mathematics. U.K. Pelican
Books.
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Wilder, R.L. (1973).
Study.

Evolution of Mathematical Concepts:An Elementary
London, Transworld Publishers.

The following selections from The World of Mathematics are to be treated

as part of your reading assignment:

The Axiomatic Method by Wilder, R.L. Vol. 3, pp. 1647-67

The Essence of Mathematics by Peirce, C.S. Vol. 3, pp. 1773-83.

How to Solve it by Polya, G. Vol. 3. pp. 1980-99.

A Mathematician's Apology by Hardy, G.H. Vol. 4.

pp. 2027-38.

Mathematical Creation by Poincare, H. Vol. 4. pp. 2041-50.

The Mathematician by von Neumann, J. Vol. 4. . pp. 2053-63.

Note: As a future teacher you would be well advised to establish a

small personal collection of mathematics books. Why not begin

by selecting your favourites from those listed in the readings!
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BOOK REVIEW

"COMBINATORICS ON WORDS" (Encyclopedia of Mathematics and its
Applications Volume 17)

By M. Lothaine

Published by Addison-Wesley Publishers [id., 1983,

pp.

Stg. £24.70,

xix + 238,

ISBN 0-207-13516-7

M.
ematicians led by Dominigue Perrin who have contributed to the

writing of this volume - the first devoted wholly to the study

Lothaire is the pseudonym

chosen by a group of math-

of combinatorics on words or finite sequences of symbols (lett-

ers). Repetitions, decompositions, unavoidable regularities

and equations in words are all analysed and connections are

established with such classical areas as free groups, Lie alge-

bras, algebras with polynomial identity and coding theory.

Combinatorics on words also has significant applications to,

and indeed many of its results arise from, the theory of auto-
This book attempts

to draw together from these diverse areas the principal results

mata, information theory and linguistics.

on words and to introduce the reader to the essential methods
of a new area of mathematics. To quote from the foreword by

Roger Lyndon (written in his capacity as Algebra section editor

for the series);

"It is a pleasure to witness such an auspicious
official inauguration of a newly recognised
mathematical subject, one which carries with it

certain promise of continued increasingly broad

development and application".

The individual chapters of the book are written by the
different co-authors, but they have collaborated to produce a

unified text with consistent notation and cross-referencing
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throughout. The first chapter (by Dominique perrin) introd-
uces the reader to free monoids ("the natural habitat of words™)
and their morphismss submonoids and minimal generating sets
(codes) - ps one would expect, words have prefixes and suff-
ixes and the free monoid A% on an alphabet A also lives guite
happily in the (noncommutative) formal power series ring

7<<p>> and the free associative (polynomial) algebra Z<A>.

Chapters 2, 3 and 4 (Jean Berstel/Christophe Reutenauer,
Jean Eric Pin, and Giuseppe pirillo respectively) form a block
devoted to the study of unavoidable regularities, that is,
properties shared by all sufficiently long words. Thus it
is shown, roughly speakings that "each sufficiently long word
over a finite alphabet behaves locally in a regular fashion".
0f course the type of tegularity must be specified, a classical
example being provided by van der Waerden's theorem: If N is
partitioned into k classes, ©oNE of the classes contains arbit-
rarily long arithmetic progressions. Several formulations
of this theorem and two proofs, one combinatorial, the other
topological, are given in Chapter 3. If A is an alphabet the
set of all nonempty words OVer A is denoted Dby at. A morphism
oz AT » S from pt to a set S is called repetitive if each suff-
iciently long word contains a factor of the type WilWgeoes Wn
with 6(wy) = -0 = o(wy,) and uniformly repetitive if all the
w; can be chosen of equal length. In Chapter 4 it is shown
that if S is a finite set then ¢ is repetitive and the special
case whete § is itself a semigroup is investigated. In part-
icular if S is a finite semigroup then ¢ is uniformly repetit-
ive, a result which is shoun to be a generalisation of van der
Waerden's theorem. The dual problem of avoidable regularities
is the subject of Chapter 2. These are properties not auto-
matically shared by all long words: for such a property there
exist infinitely many words (over a finite alphabet) that do
not satisfy it. For example there are infinitely many square
free words provided that the alphabet has at least three letters,
so it is not true that every sufficiently long word contains

a square.

_ 89 -

Chapters 5, B and 7 (meinique perrin, Jacques Sakarov-
;1tch/Imre simon, and Christophe ReutenauerT respectively) also
form a blocks These deal with properties of words related
to classical noncommutative algebra. In Chapter 5 we find
the study of factorizations of free monoids which may pe thought
of as basess and their relationship to bases of free Lie algeb-
Tas. The principal tool 1is a factorization via the so-called
Lyndon words and among the results analysed are the Witt form-
ula, the Poinearé-'Birkheff—uitt theorem and the Campbell-
Baker-Hausdorff formula. Chaptetr B is devoted to subwords.

It is a simple combinatorial problem to determine the set of
subwords of 2 given word and its cardinality. 0f more int-
erest however is the converse problem: under what conditions

is a given set of words of a specified kind the set of subuwords
of a word w? Here one USEs the notion of division (u divides
y if u is a subword of v) and the partial grder it induces on
px, the main property of which 1is given by a well-known result
of Higman: any set of words OVer a finite alphabet which are
pairuwise incomparable in the division ordering is finite. Also
introduced is the binomial coefficient (3) of two words which
is intimately related to the Magnus representation of free
groups and to Fox's free differential calculus. In Chapter 7
the relationship between words and algebras with polynomial

jdentity is studied. The aim here is to prove the theorem

of Shirshov which answers both the Levitski and Kurosch problems
for pi-algebras thus: Let A4 be a finitely generated K-algebra
(K is a commutative ring with 1) generated by Myseoes Mg and
suppose A is 2 pi-algebra (with polynomial identity) of degree
ne. 1f any product of at most n-1 of the m; is nilpotent
(resp. integral over K) then A is nilpotent (resp. 2 finitely
generated K-module). What is interesting is that the proof
(taken essentially from shirshov's 1957 paper) is entirely

combinatorial and requires noO deep,knomledge of ring theoTy.

fach of the last fodr chapters of the book introduces a
new aspect of words and, as indicated by the exercises, egach
could be considerably extended. Chapter 8 on The Critical

Factorization Theorem is written by marcel Paul schutzenbergerl
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(who, incidentally, is acknowledged as the initiator of the
systematic study of monoids and combinatorics on words) and
deals with periodic properties (where the period m(w) of a word
w is defined as the minimum length of words admitting w as a
Chapter 9 (Christian Choffrut) gives

an introduction to the vast subject of equations in words

factor of some power).

(here again the name of Lyndon arises frequently in the disc-
ussion). In Chapter 10 Dominique Foata describes how rearr-
angements of words can be used in the enumeration of permut-
ations of finite sequences with certain specified properties
(such as a given number of descents or a fixed up-down sequ-
The final Chapter 11

ence). (Robert Cori) covers the relat-

ionship between plane trees, parenthesis systems and certain
families of words. An interesting aspect of this chapter is
the use of the combinatorial properties of Lukaciewicz language
to give a purely combinatorial proof of the Lagrange inversion

formula of complex analysis!

In reading a book of this nature one is of course prep-
ared to accept a certain amount of "unavoidable irregularity"
in the writing due to the varied authorship of the different
chapters. In fact the style is surprisingly consistent thr-
oughout signifying a remarkable degree of cooperation among
the (eleven) writers. The index has one or two omissions and
I found just one instance of a term (biprefix code on p. 27)
being used without having been defined (the natural place would
have been in Chapter 1). But on the whole the cross-referenc-
There

is a number of misprints but most of these are textual rather

ing and indexing are adequate to the reader's needs.

than symbolic and along with several (typically French) non-
standard uses of the English language can be forgiven in an

otherwise excellent production.

The book is written lucidly and for the most part so as
to be accessible to anyone with a standard mathematical back-
ground. It contains a wealth of information and many topics
not mentioned in this review are included. Very few results

are taken for granted and each chapter ends with a good select-
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ion of detailed exercises designed to bring out applications
and extensions of the theory. Also contained in each chapter
are comprehensive bibliographic and historical notes and disc-
ussion on a fair number of open problems to whet the appetite

for further investigation. This book is sure to become the

standard reference work in a new and potentially fruitful area

of mathematics.

P. Fatzpatrick,
fMlathematics Depantment,
University College,

Conrk.

"CALCULUS AND ANALYTIC GEOMETRY"
Trdim

by Donald W.

1983.
£25.45,

Published by Addibon—M@AZey Publishing Company, Inc.
Stg

ISBN 0-201-16270-8

Academic life is financially secure, but the chances of

It is, of course,

making a "killing" are few and far between.
interesting to speculate how we might get by if we were paid
by the theorem; if the mortgage payment next month depended
on settling that result you have been trying to prove over the
past two years. It might well extend the active mathematical
1ife of many, exposing as a myth the belief that creative math-
It would certainly make life

Most of

ematics is done by the young.
interesting; it would probably make it shorter too.
us are glad that this is not the way things are arranged, and
in a society governed by supply and demand. we may deduce that
gratefﬁl that someocne somewhere is giving us the
(Notable exceptions to these
are the U.3.A.

we have to be

time to prove theorems at all.

indeed most observations, and

hiring system in the United States has created

observations,

fFrance. The
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star and superstar status for certain mathematicians, with corr-
esponding salaries; in France people are paid money for proving
good theorems!)

One killing however beckons us all: write the perfect cal-
culus text and get rich! But perhaps I am being a little mer-
cenary. With calculus such a stumbling block for so many per-
haps the quest for the perfect calculus text is the mathematic-
ian's analogue of the gquest for the holy grail. Donald W. Trim
lays claim to the Siege Perilous. Is it his? Before pron-
ouncing judgement (how much easier it is to write revieuws than
to write books) let me describe the text.

. The first thing that strikes one on picking up the book

is its weight! There are over 800 pages and the range of
material covered is impressively complete. I will list the
chapter headings, the subheadings can be determined by analytic
?ontinuation. Chapter 1: Plane analytic geometry and funct-
?on?; Chapter 2: Limits and continuity; Chapter 3: Different-
iation; Chapter 4: Applications of differentiation; Chapter 5:
The indefinite integral or antiderivative; Chapter 6: The def—.
inite integral; Chapter 7: Applications of the definite integ-
ral; Chapter 8: Transcendental functions and their derivatives;
Chapter 9: Techniques of integration; Chapter 10: Conic sect- ’
ions, polar co-ordinates, and parametric equatidns; Chapter 11:
Infinite sequences and series; Chapter 12: Vectors and three- .
dimensional analytic geometry; Chapter 13: Differential calc-
ulus of multivariable functions; Chapter 14: Multiple integ-

rals; Chapter 15: Vector calculus; Chapter 16: .Differential
equations.

The book is very attractively produced, as one might exp-
ect from Addison-Wesley, with many useful diagrams, and an
extra wide margin down the lefthand side of the pages. (Would
the world be a miser_place if this had been the case in.Fermat'
time?) There are over 4,400 problems, some of which require )
the use of an electronic calculator, with answers to the even

numbered ones in the back. Other available supplements
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include a student's manual containing detailed solutions to
even numbered exercises, an instructor's manual containing
ansuwers and selected soclutions to odd numbered exercises (hope-
fully the hard ones) and a set of transparencies for the more

complicated figures in the text. (Thankfully no inflatable

1ecturers - at least not yet!).

A1l of this is no doubt much as you might expect and indeed
this is true of the text as a whole. It seems to be quite
well written, but I did spot some errors and points of content-
ion. On page 42 we learn that a function f(x) has limit L
as x approaches a if f(x) can be made arbitrarily close to L by
choosing x sufficiently close to a. pAlthough this ndefinition®
is not meant to be precise (there is a "mathematical definition"
of limit on page 57) it really is completely misleading, it is
ngufficiently close" that one chooses and not X The other
surprising error I spotted occurs on page 444, in exercise 35,
nprove the following result: Ifnz1cn cohuerges, then its terms
can be grouped in any manner, and the resulting series will
be convergent with the same sum as the original series." Pres-
umably the author had something fairly restrictive in mind when
he wrote "grouped in any mannert", but given the standard results
on conditionally convergent series one might have hoped for

something a little more precise (or perhaps, even better, noth-

ing at all).

Two other complaints: first why do so many calculus texts
discuss differentials? In this book we have a definition "An

increment Ax in the independent variable x is deﬁoted by
dx = Ax

and when written as dx is called the differential of x." I am
unsure what students make of such stuff, it certainly has me
puzzled and moreover undermines any other definition appearing
in the text. This approach, to 2 fairly straightforward topic -
linear approximation - is almost certain to cause confusion. .
Also in the preface to the student the author states that it is

surprising that neither Leilbniz norT Newton formulated the idea
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of limit. This seems to me to be an alarming confusion of

the logical and psychological, which thankfully is not contin-
ued in the text.

How does this book compare with its rivals? There has
been no fundamental change in the selection or treatment of
material used in calculus texts over the past 20 years, and
competitors vary by and large very little. My present favour-
ite of books of this type is Fraleigh's Calculus with (rather
than and) Analytic Geometry, also published by Addison-Wesley,

and I prefer it to the text under revieuw. It covers almost

exactly the same material as the book by Trim, but is more

direct and considerably shorter (in content, not pages; the
print in Fraleigh's book is larger than that in Trim's)., It
is to be noted that since neither book deals with complex var-
iables or Fourier series they are really not suitable as rec-

ommended texts for engineering students, but more of that later.

And my conclusion? Well I have little doubt that such a
book would make a useful addition to any university library.
What of the holy grail? Well we all know that that quest is

_part of Arthurian legend (which in turn appears to be the Eng-

lish attempt to compensate for the unmistakeable fact that God

was a foreigner). Similarly, the perfect calculus text is

a fiction; especially so on this side of the Atlantic. For in
contrast with the situation in the U.S. one rarely has a number
of classes being taught the same material simultaneously, and
consequently there is not the same need for some unifying infl-
uence. Where possible we all usually prefer to ‘'give our own
treatment, perhaps gleaned from a number of books, or courses

we have attended. Perhaps more importantiy (back to money

again) one certainly could not recommend a text at this price
to a class of students here or in the U.K.

There is one other point, which I think even (or espec-
ially) dedicated writers and publishers might lose sight of

when considering this as a students' textbook. That is the

very completeness of such texts is of f-putting. This volume
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well be the lifetime's work of its author; it has the look
may

f the same for any prospective reader. Moreover, many of the
o

interesting applications tend to be, if anything, too interest-
in

i and distracting, and the exercises suffer a little from
ing

with too few trivial ones. The author says

the same symptoms,
preface to the student that "The key word in our appT-

I hope he does not claim any

in his
oach to calculus 1is think."

iginality here But nonetheless thinking can be a rather
or .

elusive and overestimated quantity in the learning process.

A selected and condensed core of material, to be learnt by rote,
s

and a number of mechanically (and hopefully quickly boring)

i tanding. Indeed, here
examples may be great aids to understan 8]

man rob-
we may have the maln reason why calculus causes SO y p

. . its
lems, and why calculus texts are only ever a minor aid to i
9

. i1
understanding. With calculus, as with any other worthuwhile

topic, one has to be willing to soldier on in a fog for a cons-
9

i i i the
iderable time before (hopefully) sunshine filters 1in, and

erstanding is usually not enough for

S0 how do we do it? How do we

pramise of the joys of und
(at least normal) students.

c sk . °
t them to soldier on? At school by intimidation, but later
ge

i i than
I'm not gquite sure, but people really are more interesting a

9 ose to u
athematics so do t 1 ] any ig ts SlEED worrying about

those inflatable lecturers.

1.0, Bauce,
Mlathematics Depaniment,
Univensity College,

Conk.,
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"THE CONVOLUT ION PRODUCT AND SOME APPLICATIONS"
By W. Kecs
Published by D. Reidet, US $69.50. xvii + 332
Pp.

The problem of multiplying distr
mathematicians for decades.

ibutions has occupied

In many ways, this i
. S 1s an excell-
ent problem, leading to some intriguing math

has genuine use in other areas,

ematics which often

Probably, the most

s . . . Su

multiplication is the convolution pProduct S
9

this product and its uses in engin
Kecs' book.

and properties of

eering are the subject of

e cg:ve; t?o L? (i:e. inFegrahle) functions on RN, f and g5

. v? ution fxg is defined by fxg(x) = ff(y)g(x-y)d A
?ppllcatlon of Fubini's theorem shous that fxg = f i " 'n
in L1, Now, every L1 function h defines a cgn;ig* .

. n i
form Ty or distribution e

» On the space of infini i

. . itely different-
iable functions on RM yith compact support N
T = ,

_h(¢) f¢(x)h(x)dx. (orf tourse, a definition of a topol

1S needed to entitle us to say that o

via the mapping

Th is continuous, b
. . - Ut
will omit this,) Applying this to h = , -

= fxg, we
y can s t
Trxg(®) = Tr(gx ) uhere ¥(x) - 9(-x). ’ e
ation, we can write Treg(e) = Te (S
x

In more suggestive not-
. gy (O (x+y)) ). This hope-
fully, motivates the following defin{tion ’ -
For distributions S, T,

SxT =
Il(¢) Sx(Ty(¢(x+y))). (In fact, skt cannot be defined f
a pairs (S,T), just as f -
%9 cannot be defined for all i
of functions (fsg9), and it is of o
this convolution dges make sense

"very many" pairs (s,1),

let SxT be the distribution defined by

much interest to find when
However, it is defined for
and we will onl i
Y consider these,
The most useful, and straightfcrward, -
1ons are that SxT = TxS and that SxT =

: ; =T for all T
Lo i ' ) : s where §
he Dirac dlstrlbutlon, which takes a function ¢ to ¢(0)

Also, if P(D) is a differential polynomial,

properties gof convolut-

e . : ; : we can define P(D)T
0 be the distribution given by P(D)T(¢) = T(P(-D)¢) Th )
» 7 . en,

7
{
|
I
{
|
|
|
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we can verify that P(D)SxT = (P(D)S)xT. A distribution E is
called a fundamental solution for the differential polynomial
P(D) if P(D)E = &.
blocks in the theory of differential equations, because if T
is a distribution, then P(D)(ExT) = (P(D)E)xT = &xT = T, and
so ExT is a solution to the problem P(D)X = T (always assuming

Fundamental solutions are major building

that all convolution products make sense). This observation
is, in a general way, the motivating force behind the interest

in conveolution products

The book under review is the second in the Eastern Europe

Reidel series, Mathematics and its Applications. As the editor

of the series states, it is "hoped to contribute something
towards better communications among the practitioners in diver-
sified fields", by making available to western audiences mono-

graphs emanating from the Soviet Union, Eastern Europe and

Japan. It is unfortunate that this worthwhile objective has

been thwarted by Reidel which has priced this volume ($69.50,
for a 330 page book, printed in Romania) well beyond the reach

of much of its intended audience. This is a pity, since Kecs'

book deserves a larger audience than it will receive.

Put briefly, the book introduces distributions and oper-

ations on distributions in the first three chapters, with the

aim (Chapters 4 and 5) of describing applications of convolut-

ion equations in engineering. Chapter 1 is an introduction

to distributions, together with basic underlying definitions
Chapters 2 and 3 deal with convol-
Much of

from functional analysis.

ution products and Fourier and Laplace transforms.
_the material here is completely standard, with the usual pres-

entation of the basic properties of convolutions and transforms,

and the relations between them. Several interesting features

of these chapters do stand out, such as an exposition of the
author's work on the partial convolution product and a discuss-
ion of Mikusinski's operational calculus with several good
examples. The idea for this operational calculus is as foll-
We consider C(R+), the space of continuous complex valued

defining a product in the following manner:

Qws.

functions on R+,
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for f,g C(R+), fBgis the function in C(R+) given by

X
fRg(x) = fD F(t)g(x-t)dt.

By a theorem of Titchmarsh, C(R+) is an integral domain with this
product, and Mikusinski was led to the quotient algebra Q(R+).
It turns out that Q(R+) contains the usual differential and
integral operators, as well as many distributions. In partic-
ular, the Dirac 6 and the distribution s are in Q(R+), where
s(f) = f'-f'(0) for C! functions f. As a consequence, one

can apply Laplace transform techniques, using s, to solve diff-
erential equations with constant coefficients, integral equat-
ions, etec.

The main body of the book is the last tuwo chapters.

Chapter 4 deals with convolution equations in spaces of distr-

ibutions. It is here that the problem of finding fundamental

solutions for various operators is addressed, with Kecs exam-
ining the role of special spaces of distributions. The Cauchy
initial value problem is considered, in a number of settings,
and applications are made to the wave equation, heat equation,
etc, Finally, in Chapter 5, the author applies the methods

of the previous chapter to solve differential equations arising

in electrical and mechanical engineering and in viscoelasticity.

The text is readable, although the English is not always

idiomatic. It is evident that the translator has little mathem-

atical experience. Thus, for example, we find ourselves cons-

idering the "body of real or complex numbers" and the open unit

"bubble" of a normed space. A more substantive criticism can

be made of the author's approach, from the mathematician's

point of view. Routine results, such as properties of the

convolution, are usually proved in full detail. On the other

hand, the discussion is often incomplete in terms of (mathemat-

ically) more interesting results. For example, no attempt

is made to discuss topological properties of the space of dist-

ributions, beyond some mention of the weak -x topology. No ment-

ion is made of such beautiful results as the Titchmarsh-Lions

|
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theorem on the support of convolutions, the Paley-Wiener the-

ems, etc indeed, the relation of analytic function theory
or s .

to this subject seems to have been largely ignored. Unlike
"Mathematics for the Physical Sciences", this book
"eonvolution equations for the

Schwartz's
(which might be considered as

i i i " s no exercises.
engineering sciences ) ha

These doubts having been raised, it must in fairness be
mentioned that it seems remarkable that, as Ke?s sho?s, o?e
can get many, apparently non-trivial, results %n enélneerlng
mathematics using only the material developed in this volume.
Thus, it may well be that the book serves the very useful pur-

pose of introducing engineers to this fruitful area of mathem-

atics.

Richard M. Anon,

Department of Mathematical Sciences,
Kent State Univensity,

Kent,

Ohio.

"MATHEMAT ICAL SNAPSHOTS™

By H. Stedinhaus

3 .95,
Published by Oxfoad University Press, (311 pp.). Stg £5
PREFACE TO THE GALAXY EDITION

Professon Emenitus of Mathematics at the

By Moandis Kline, Wew York Univensity.

Counant Institute of Mathematical Sciences,

This reprinting of the third, enlarged edition of Stein-

i i re than welcome.
haus' Mathematical Snapshots 1s moO

The book must be distinguished from numerous books ?n
Such books may be amusing

1 content is minor

riddles, puzzles and paradoxes.
but in almost all cases the mathematica
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if not trivial. For example, many present false proafs and

the reader is challenged to find the fallacies.

Professor Steinhaus is not concerned with such amusements.
His snapshots deal with straightforward excerpts culled from

various parts of elementary mathematics. The excerpts involve

themes of sound mathematics which are not commonly found in

texts or popular books. Many have application to real prob-

lems, and Steinhaus presents these applications. The great
merit of his topics is that they are astonishing, intriguing

and delightful. The variety of themes is large. Included

are unusual constructions, games which involve significant math-
ematics, clever reasoning about triangles, squares, polyhedra,
All of these are
independent so that one can concentrate on those that attract
one most.

and circles, and other very novel topics.
All are interesting and even engrossing.

Professor Steinhaus explains the mathematics and his fine
figures and excellent photographs are immensely helpful in
understanding what he has presented. He does raise some
questions the answers to which may be within the scope of most
readers but the reader is warned that some ansuwers have thus
far eluded the efforts of the greatest mathematicians. Math-
ematical proof demands more than intuition, inference based

on special cases, or visual evidence.

This book should be and can be read by laymen interested
in the surprises and challenges basic mathematics has to offer.
Professor Steinhaus is mathematically distinguished; and, as
evidenced by the very fact that he has undertaken to present
unusual, though elementary, features, is seriously concerned
with the spread of mathematical knouwledge. The careful reader
will derive pleasure from the material and at the same time
learn some sound mathematics, which is as relevant today as

when the original Polish edition was published in 1938,

PROBLEMS
First the solutions to some previous problems.

1 A car park has spaces numbered 1:25c0005N¢ Any driver

arriving with a ticket for space k parks at space k unless it
is occupied, in which case he chooses the first vacant space

from k+1, k+2, ,n. If these are occupied he leaves 1in dis-
s oo

gust.

1f n drivers arrive in turn, each with a ticket bearing
a randomly chosen integer between 1 and n, prove that they can

all patk with probability(n+1)n’1/ﬂn-

This problem appeared in Vol. 1, No. 1, of the NatheTat-
ical Intelligencer and the solution appeared in the next %ssue.
Briefly, the idea is to consider a modified praoblem in which
the tickets bear ramdomly chosen integers betuween 1 and n+1,
and in which the car Rark has n+1 spaces and 1is circula?. The
n drivers are able to ﬁafk (since they can go tound again) and
there is always one space left at the end. The answer to the

original problem is then clear because:

(i) a successful outcome in the original problem corresponds
to an outcome in the modified problem in which the space n+1
is left vacant, and )

(ii) in the modified problem there are (n+1)' sample points,

exactly the same number of which leave any given space vacant

(why?).

2 Ship A is moving due east at constant speed andy at a

certain moment, ship B is moving due north at the same speed

towards A 1f B maintains this speed but continuously alters

course towards A how closely can B approach A?

Let both ships have speed v and begin at a distance of

d miles Make the construction indicated in Fig. 1 overleaf.




FIGURE 1: Typical Position

Then the distance AB is increasing with speed vcos 8 - v (so
it is decreasing) and the distance AC is increasing with speed
v - vcos 0. Thus the distance AB+AC is constant, and so the
distance AB tends to %d in the limit.

Now- for a problem which can be solved very elegantly by
thinking laterally (quite literally).

1. The Plank Problem. Does there exist a positive integer

n ‘such that g closed disc of diameter 1 can be cavered by feuwer
than n planks of width l?
n

A plank is defined to be a parallel strip which is closed
and of infinite length.

2. The Planet Problem. A finite number of equal spherical

planets are in outer space. A region on the surface of one of
the planets is called hidden if it is invisible from any of the
other planets. Find the total area of the hidden regions

This problem came from a Russian Olympiad.

Phil Rippon;
Mathematics Faculily,
The Open Univensity,
Milton Keynes.

CONFERENCE REPORTS

IRISH MECHANICS GROUP CONFERENCE ON _DEVELOPMENTS IN MECHANICS

Several years ago, those working in Mechanics in'Ireland
felt the need for an informal Association which could provide
more definite contact through periodic meetings. From this
need, the Irish Mechanics Group was initiated with the object-
ive of organising short, usually one-day, meetings once oOT
twice each year. The general format of such meetings aimed
at enabling Mechanicians to present brief talks (usually of
thirty minutes duration) on their current areas of research
as well as affording them an opportunity to meet and exchange
views informally but on 2a regular basis. On occasion, some
more formal meetings, having specific themes and areas of res-
earch have been organised. In order to maintain the desirable

informality of the meetings, proceedings are not published.

The meetings/conferences are held in different locations
usually shortly before or soon after the end of University
or Technical College term. Attendance, which tends to number
around thirty, usually includes personnel from the Institutes
of Higher Education, Universities, Colleges of Technologys
and various research institutes including representation from

the Meteorological Office, An Foras Forbartha etc.

For a number of rTeasons meetings of the Irish Mechanics
Group (I.M.G.) had not been held for a few yeaTs up to June
of this year. A two-day I.M.G. conference on "Developments
in Mechanics", sponsored by the Mathematical Physics Department
was held in University College Cork on 2/3 June last. The
attendance of some thirty Mechanicians included representation
from the N.U.I. Colleges, Trinity College, Queen's University,

N.I.H.E. Limerick, N.I.H.E. Dublin and some of the R.T.Cs.

The Conference Chairman - professor P.M. Quinlan, U.C.Cos

in his opening address stressed both the thealthiness' of mech-
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anics today and the international reputation which Irish applied
mathematicians have held in this field. Three 'invited' lect-
ures were well received by the participants. Professor Michael
Hayes, U.C.D.,. spoke on "Elastic and Viscoelastic Waves",

Dr. Michael Quinlan, U.C.C., spoke on "Internal Rupture of
Materials", and Professor Matt McCarthy, U.C.G., spoke on
"Scattering of Elastic Waves". In addition to these talks,
there were nine other presentations on a wide diversity of
current research interests. Topics discussed were "Viscoelas-
tic Rayleigh Waves in Low-Loss Material", "Asymptotics of Force-
Displacement Relations for a Bonded Elastic Cylinder", "Resonant
Oscillation in Water Waves", "Asymptotic Partition of Energy

in Linear Viscoelastic Materials", "Free Vibration of Thin
Elastic Plates", "Higher Order Equations in Mechanics", "Wave
Forces on a Submerged Cylinder", "Stoke's Waves, Body Waves and
Rayleigh Pressure Problem", "Cracks, Cavities and Stresses '

in Two-Dimensional Bodies".

A very pleasant and relaxing reception was provided on the
first evening of the Conference and it provided further opport-
unity for the participants to fruitfully and informally discuss
their work.

At a business meeting of the Irish Mechanics Group held
during the Conference it was decided to set up a new committee
consisting of Professor P.M. Quinlan, U.C.C., (Chairman);

Dr. M.J.A. O'Callaghan, U.C.C., (Secretary); Dr. F. Hodnett,
N.I.H.E. Limerick; Professor M.A. Hayes, U.C.D.3 Dr. A. Wood,
N.I.H.E Dublinj Professor M.F. McCarthy, U.C.G.: Dr. J. Fitz-
patrick, T.C.D., and Dr. P.J. Donochue, Q.U.B. The committee
will draw up a brief constitution, discuss the possibility

of membership fees, explore possible relationships with other
groups of compatible interests and discuss future meeting sch-
edules. The committee will communicate informally in the
interim before it meets at Christmas in conjunction with the
Mathematical Symposium in Dublin.

Michael J.A. 0°'Callaghan, Mathematical Physics Dept., U.C.C.
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SUMMER SCHOOL ON COMBINATORIAL OPTIMISATION, N.I.H.E., DUBLIN

The 1983 conference on Combinatorial Optimisation was held
between 4th and 15th July and hosted by N.I.H.E. Dublin, which

provided the financial backing to enable many well-known math-
ematicians to be invited. Considerable effort by the organiser
Michael O'hEigeartaigh was amply rewarded by an excellent conf-
erence in which the main speakers were N. Christofides,

M. Grotschel, R.M. Karp, E.L. Lawler, J.K. Lenstra, G.L. Nemh-
auser, M.W. Padberg, C.H. Papadimitrou, A.H.G. Rinnooy Kan, and
L.E., Trotter, Jr. Each of these gave two instructional talks

of a general nature and 2a lecture on an aspect of recent rese-

arch.

The most well-known problems in Optimisation are the Trav-
elling Salesman Problem (TsP) and the Vehicle Routing Problem
(VRP) . In the former, a salesman is required to visit each
of n cities and to minimise the distance he has to drive to acc-
omplish this. In the latter, a vehicle of fixed capacity must
deliver varying quantities of goods from a depot to each of n
customers, again with the restriction of minimising the dist-
ance or cost of driving to each customer. In the VURP several
journeys may be required from the depot because of the limit
on goods which the vehicle can carry. The TSP is really the
same problem, except that the salesman has sufficient space in

his car to provide an encyclopedia to everyone.

Both of these are "integer programming" problems and the
solution of them requires such a considerable amount of comp-
uting when n is large that usually only approximate solutions
are sought. Much of the conference time was spent considering
how one might change these to "linear programming" problems.

For which the simplex algorithm almost invariably finds an opt-

imal solution extremely quickly.

The first week of the summer school took place at the
Drumcondra site, and it moved out to the Glasnevin campus for

the second week. Nevertheless one still ha& the impression
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that this was about half way between the Netherlands and the .
CONFERENCE . ANNOUNCEMENTS

States!
. . FIRST ANNOUNCEMENT AND CALL FOR PAPERS
Colin Walten,
: BAIL III
flathematics Depantment,
) The Third International Conference on

Boundary and Interior LayeTs -
Computational and Asymptotic Methods
20th to 22nd June, 1984 in Trinity College, Dublin, Ireland
under the auspices of the Numerical Analysis Group
and co-sponsored by the

American Institute of peronautics and Astronautics

American Meteorological Society

Irish Mathematical Society

Univensity College,
Dublin 4.

and

Advances in Computational Methods for

’ Boundary and Interior Layers
) An International Short Course held in association with the
- BAIL III Conference
’ : 18th and 19th June, 1984 in Trinity College, Dublin, Ireland
i Aims and Scope
o . |
Z{jﬁz?%%iiiii;;}z ‘ i Boundary and interior layers are of great practical imp-

ortance. They arise in many problems in the aerospace indus-
| try, biological fluid flow, chemical engineering, combustion,
! meteorologys microstructured materials, nuclear engineerings,

petroleum reservoir modelling and semiconductor devic

e simul-

ation. In BAIL III particular emphasis will be placed on

computational methods for solving these problems.

TR

Declicated # bavid fouter

EUCLIDS €LePHANTS

It is important to bring together engineers and scientists

who encounter such problems, in order to avoid wasteful dupl-

From 2-Manifold, No. &4 |
: ication of research effort. This is because the technical

difficulties are frequently the same although the application

This becomes apparent when res-

in contact, have an opportunity

areas are quite different.
earchers, who are not normally

to exchange information
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In order to preserve the intimate and informal atmosphere
of the previous BAIL conferences, attendance at BAIL III will

be limited to a maximum of 120 delegates

Call for Papers

Abstracts of paperé on -topics in fhe above or related areas
are invited by 1st February 1984. Notification of acceptance
will be sent by 1st March 1984. Abstracts should be at most

one page in length.

For further information please contact

BAIL III Organising Committee,
P.0. Box 5, v

51 "Sandycove Road,
Dun_Laocghaire,

Co. Dublin,

Ireland.

BRITISH MATHEMATICAL COLLOSUIUM

The 36th British Mathematical Colloquium will be held at
the University of Bristol on 9th - 13th April 1984. The prin-
cipal speakers will be J.P. Serre (paris), M.0. Rabin (Harvard
and Jerusalem) and H. Funstenberg (Jerusalem); fifteen mozning
speakers have also agreed to speak. There will also be.an
educational forum on the use of computers in university math-

ematics teaching.

The registration fee will be £12.00 rising to £18.00 after
31st January 1884. The cost of accommodation for the full
period will be £81.50, both are payable in advance. Applic-
ation forms and further information are available from the .
colloquium secretary, H.E. Rose, School of Mathematics, Univ-
ersity of Bristol, University Walk, Bristol BS8 1Tw. -

APPLIED STATISTICS IN IRELAND

The fourth annual conference of Applied Statistics in Ire-
land will be held on March 29-30, 1984, at Kilkea Castle in

Castledermot, Co. Kildare.

For further information, contact Dr. P.J. Boland, Depart-
ment of Mathematics, University College, Belfield, Dublin 4, or
Dr. F. Murtagh, Department of Computer Science, University Coll-

ege, Belfield, Dublin 4.




THE IRISH MATHEMATICAL SOCIETY

Instructions to Authors

The Irish Mathematical Society seeks articles of mathematical interest for
inclusion in the Newsletter. A11 parts of mathematics are welcome, pure
and applied, old and new. Articles of an expository nature are preferred.

Tn order to facilitate the editorial staff in the compilation of the
Newsletter, authors are requested to comply with the following instructions
when preparing their manuscripts.

1. Manuscripts should be typed on A4 paper and double-spaced.
2. Pages of the manuscript should be numbered.
3. Commencement of paragraphs should be clearly indicated, preferably

by indenting the first line.

4. Words or phrases to be printed in capitals should be doubly
underlined, e.g.
Print this word in capitals =  Print THIS WORD in capitals

5. Words or phrases to be italicized should be singly underlined, e.g.

Print this word in italics +  Print this word in italics

6. Words or phrases to be scripted should be indicated by a wavy
underline, e.g.

Print this word in script +  Print ZAds woad in script
R Y VA AW N v

~J

Diagrams should be prepared on separate sheets of paper (A4) in black
ink, the original without lettering and a copy with lettering attached.

8. Suthors should send two copies of their manuscript and keep one copy
as protection against possible loss.

1f the above instructions are not adhered to, correct reproduction of a
manuscript cannot be guaranteed.

Correspondence relating to the Newsletter should be sent to:

Irish Mathematical Society Newsletter,
Department of Mathematics,
University College,

Cork.




