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SUBDIVISION OF SIMPLEXES - IS BISECTION BEST?

Martin Stynes

Problem 1

A closed and bounded interval in R is to be subdivided
These 2
intervals in turn are to be subdivided into 4 intervals by
insertion of a point in each. Let
dn, be the length of the longest interval at the nth stage,

How should the insertion points be chosen so as to minimize d

into 2 intervals by insertion of a single point.

Continue this process.

This is not very difficult! Obviously points should be

inserted at the midpoints of intervals, i.e. the optimal poli

is to bisect intervals at each stage.

Why is Problem 1 of interest? (No doubt for many reade

Wel
0, f:la,b] + R with f(a)f(b) < O,

this is a much harder question than Problem 1 jitself!).
if we wish to solve f{x)

and we want after some fixed number of function evaluations tdE

find an interval of minimum length that is guaranteed to

ain a root of f,

cont
then Problem 1 shows that the classical
tion method is best.

bisef

(For any other algorithm there is some
function f for which the interval found is longer). In this
article we shall examine the relevance of bisection to an n-
dimensional generalization of Problem 1 which we'll call
Problem n. This problem has as yet no complete solution., I
arises in the comparison of methods used to solve f(x)=(0,0..
for f

ric

R" » R7, but we shall discuss it purely from a geomet
viewpoint.

Generalizing Problem 1 to R"

We first replace closed and bounded intervals by n-simp-

lexes (triangles when n=2, tetrahedra when n=3). The reasan

that we generalize intervals to triangles and not rectangles
is that if g

R? >R, then on each triangle in R? there is a

unique affine function which interpolates g at the vertices
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this is very useful when approximating a root

of that triangles:
fif g, and rectangles do not have the same property.
[+] ’

in higher dimensions.

Similarly

For n > 1, an n-simplex S7 (asai...apn) is the

ng;nitions: : 4

flosed convex hull of n+l points ae, 31, ce.y 3 1N rRY, g > n,
".u°h that the vectors ai-aoc, 32205 ..y a3n-30 aTe linearly
The points ao, «sss ap are called the

Any m-simplex (1 < m < n) formed by taking

_independent. a1y

N j{ces of S5".
’:j&h' closed convex hull of any m+l vertices of SN is called a
"E‘ ce of S". The one-dimensional faces (ajaj), 0 < i < j<n,
:Q’i' called the edges of S7, The diameter of S", d(s"), is the

’ ength of the longest edge of 5™ in the Euclidean norm.

We subdivide any n-simplex S" = (acai...a,) as follous.

-

§h0658 a point y € SN, Form all n-simplexes (acai... aj.1Y

) Note that if m is the minimum dimension of a
41 o an /. B

ce of S™ containing y, then the subdivision yields m+l n-

mplexes.

blem n

i n-an n-simplex SN subdivide it as just described. This is

first stage. Similarly subdivide the resulting n-simplexes

-inserting a point in each. This is the second stage.

intinue thus. Let A, denote the set of all n-simplexes T7

ained at the k th stage. Define

max d(Tn)

di
TN € A,
‘find an algorithm for inserting points which will yield

dy & CrX for k =1,2,3...

Te r > 0 (independent of S") is as small as possible and C
nds an S" only. (We consider dy, rather than di as exp-

lence shows it's a more natural measure).
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Example: For the n=1 case with 5! = [a,b] the bisection method
yields an equality:

de = (b-a)(1/2)%, « = 1,2,3...

Only partial results have been obtained fot Problem n.

The principal reference is [7], There it is shown (essent-

ially) that for any n and any algorithm one must have r > 3,
but it is also conjectured that in fact one must have r > 5,
An algorithm for which r = % is exhibited in [7]: it is based
on Whitney's simplical subdivision [8, pp 358-350]. This
algorithm may be fairly described as a generalization of the
one-dimensional bisection method. Nevertheless a different
generalization has become established as the "n-dimensional
bisection method" [1,2,3,&,5,8]. We shall concentrate on this
latter algorithm as it is simple to describe, it is clearly a
generalization of the one-dimensional method, and yet it has

not been satisfactorily analysed up to now.

The n-Dimensional Bisection Method

For n> 1, given an n-simplex T" choose any edge (aiaj) of
T" whose length is d(TN), Let b be the midpoint of this edge.
Bisect T" into (ao..ai_l b aj,; .. an) and (a,.. aj.1 b ajuy..
an). That is, b is the point inserted into T" to subdivide it,

In attacking Problem n this method is intuitively attract-
ive. To decrease the diameter of an n-simplex one must divide
edges, and the bisection method bisects the longest edge. 1It's
intuitively reasonable that the method will yield n-simplexes
of diameters shrinking to zero, and this fact was implicitly

assumed in D]; however a proof did not appear until later &].

To demonstrate the elementary nature of the arguments
which can be used in relation to Problem n, we shall give a

new proof of {a slightly stronger result than) the main theorem

of [l].
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s Given a triangle (2-simplex) of diameter d, the length
Lemna. 5 ioini the midpoint of the longest
of. the median obtained by joining e midpoi 9
i edge to the opposite vertex is at most V3 d/2.

c

FIGURE 1

« See Figure 1,
“of AB, Now

There AB > AC, AB > BC, D is the mig-

BC? = AC% + AB? - 2AC.AB Cosa
so AB > BC implies Cosa > AC/(2A8)
Hence CD2? = AC? + AD? - 2AC.AD Cos a

AC? + AB?/4 - AC.AB.AC/(2AB)

[

In

3AB2/4 as required.

Now any neuw edge (akb) say formed by the bisection method
N-simplex T7 lies in the triangle (aiajak) just as (D
in ABC above. From the Lemma it follows that the length

‘New edge is at most 3I/G(T")/2.
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Applying the Theorem again to each of the 2" n-simplexes pres-
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: ent after n iterations gives
Theorem. Let S7 be an n-simplex having exactly m+l vertices
as endpoints of edges of length greater than /3d(57)/2.  Then dop £ (d{sP)W3/2).(V3/2) = d(s") (/3/2)2.

after m iterations of the bisection method the diameter of any

resulting n-simplex is at most /3d(5")/2. Repeating this argument yields the Corollary.

-
' i f Probl h h < V/3/2 f
Proof. Bisected edges have length at most d{5")/2. New o In the notation o roblem n we have shown r < /3/2 for

edges have length at most /3d(SN)/2 by the Lemma. So we need ithe bisection method. However for n=] we clearly have r = 3,
only show that after m iterations any edge of S7 whose length
exceeds v3d(S")/2 has been bisected,

and in fact for n > 1 all the computational evidence is that
" ¥4 = 4 also. For n=2 it has been proven that r = % [6] but the
‘(%roof relies on a case by case analysis which is unlikely to
Let S"=(acai..ap.ap)where without loss of generality we extend to n > 2. Proving that r = % for the bisection method
assume that among all the ag only ao, a1,...538; are endpoints ‘ﬁ;ﬁﬂhe" n > 2 is an open problem which I feel should not be too

of edges whose lengths exceed v3d(5")/2. At the first bis-

';iﬁfficult - if one can find the right approach!

ection S" becomes '

@ :'m:- We close by pointing out that in fact r > 3 for the bis-

ST = (a°"ai°'b"am"an) etion method.
and 57 = (as..b..aj..an..2p) Yo
oposition. In the notation of Problem n we have r > 3 for
where b is the midpoint of (aiaj) and 0 < i<j < m, Consider bisection method.

ST . By the first paragraph of the proof only the vertices
roof. For every n-simplex TN 1et Vv(T") denote the n-dimen-

%nal volume of TN, Note that
{

20seees@jo1s @j4lseesdy Can be endpoints of edges exceeding
v/3d(5")/2 in length., That is, ST has at most m vertices with

this property. Similarly for Sg.
v(T") < gN(TN) N

At the next iteration we will obtain 4 n-simplexes each
having at most m-1 vertices which are endpoints of edges exc- When an n-simplex is bisected it's not difficult to.shouw

eeding v3d(5")/2 in length. Repeating this argument n times ﬁ st its n-dimensional volume is halved. Thus after kn iter-

ions (k = 1,2,3,...) of the bisection method applied to S"

in all proves the theorem,
may) the volume of any n-simplex TP obtained is v(sny/akn,

Corallary. (Notation as in Problem‘n). For the n-dimensional

. . Suppose now that the bisection method yields r < é.in
bisection method we have
oblem n, Then choosing a sequence of n-simplexes TQ,

din < C(/ﬁfz)k, k =1,2,3... K = 1,2,3,... (notation as above) we have

n n
Proof. An n-simplex has n+l vertices so in the Theorem uwe =3 V(Tk) > v(s") Ny
— = - - -] as > oo,
have m=n at most. Thus the Theorem implies that % dn(TC) C(2r)kn

d, < d(s")V3/2.
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This contradicts (*). Hence r < 4 is impossible. - A BIOGRAPHICAL GLIMPSE OF WILLIAM SEALY GOSSET
Phitip 1. Boland
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