S NEVANL INNA THEORY DEAD? - AN ESSAY

o Richand M. Timoney

First of all, what is (or was) Nevanlinna theory ? It is

far-teaching elaboration of the Picard theorem mentioned in
A non rational mero-~

a
all fipst courses an complex analysis:
ned on the complex plane T takes (nearly)
with at

morphic function defi
every value in the extended plane T infinitely often,

most two exceptional values.

The question of obtaining further information about the
was studied by various

solutions of the equatian F{z) = a,
pPicard obtained his result (1880). If f(z) is

people after
then there are a finite number (2 1)

raticnal and non-constant,

of solutions of f(z) = a, for all a ¢ L.

include z = = in the domain of f to make this statement).

(To be exact we must

if we count solutions of f(z) = a, according to
then the number of solutions is independent

Furthermore,

their multiplicity,
of a. Picard tells us that, for non-rational f(z), if we avoid
exceptional values a, then the number of solutions of f(z) = a,

is countably infinite and thus independent of a.

However, something more exact is true about the "number"”

of solutions. Consider the following examples,

(i) The solutions of el? . g3 are z = a + 2nmW, n € 2,

where « is one solution (if a #+ 0,=).
s 2
(ii) e*?* = a has solutions, z = +/BZ + 2nm, n € 2,

where 8 1is one solution (as# 0,o).

Intuitively, there seem to be "more" solutions in the second

example, in the sense that the solutions are packed more dens-

ely.

A concept which expresses this is the counting function

L
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nfe(r,a) = n(r,a) = number of soiutions of f(z) = a, in |
In the first example n(r,1) is roughly 2r+l, while’in chl o
second n(r,1) is about 4r?+1. In both cases n(r,1) )
n(r,a) have the same behaviour for large r (as 10;9 a:n: # 0

,

), N i
evanlinna, as we shall see, found a way to express th
e

inde
pendence of nf(r,a) from a and the relationship of nf(r

to the size of f (for general f). '

Usi . .
) sing the counting function, Hadamard found a relatio
et i :

ween the size of f and the size of n(r,a) in the case of

the e tire unctio (Z) (Wlt out DDIES)- e order P o a

enti .
ntire function corresponds to the exponent of z in our

I3 v . exav )

ples (i) amd (ii). It is defined to be "

p = lim sup Al loaM(r,f)
T+ logr

where M(r,f) = sup{|f(z)|:|z] < r}. The order o(a) of n{r,a)

is
o(a) = 1im sup Lognir.a)
T+ logr

Using infinite products, Hadamard (1893) showed that

(a) <
po(a) < p, for all a €. Borel (1897) proved that pla) =

( Y) one EXCEDth al a [
’
(DI earl all a e € wit at most € .

o : 1s automatically exceptional in this cont-
. N exceptional a could exist only for p iti
totener o oo 4 a positive

.

}
Borel's result was, of course,

a8 co i
ening of Picard' nsiderable strength-

s theorem for the case of entire functions

tic
No e that it includes our two exa ples. Rol Vevanli a’s

celebrated contributio (1925) was to ind a way to op t
C e wl
the case o arbltrary eromorphic unctions (Z). He repl-

aced i i
the counting function n{r,a) by a logarithmic integral

( " d
N(r, = t
r,a) j;]n(t,a)_t_
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i f T difficulty was to
{changes are needed if §(0)=a). he

( ’ ) c o}
ind a replace ent ar the aximu odulus T whnl would

measure the size of a meromorphic F(z).
.

called the characteristic function

i ts T(r,f) -
Nevanlinna's N :
generalization tg the meromorphlc case of

- is more a ;
v Nevanlinna's idea was based on

log M(r,f) than of m{c,f).
the following formula due to Jensen.

I3

(zwloglf(reie)]de ¢ N(r,®) - N(r,0)

l

1
log[F(U)l = 5x

- + 01 .
log x,0) and log x = log (;) (if

¥ (
iti log x to mean max '
e : ed the above equation

x > 0), Nevanlinna rearrang

L {Zn log~|#(xet®)[de + n(r,0) + Log|f(0)]
2n

a
2n .
- X loa—|f(rele)[d8 + N(r,=).
T2 =
He defiped . .
1 tie(ret )]de + N{(r,=)
T(r,f) = 33 f log | f(
0
= m(r,m, f) + N(r,m)
(again modifications needed if f(0) = =).
Now Jensen's formula says that
Ly = F(0
T(r,f) - T(r, ) = loglf( )

1 g =£ I3 i the
( ( ) 0 m) and it is a si Dle atter to odi Y
.

argument to show that

T(r,f) - T(r, 1/(f-a))

1s a8 ounded unctic o} r >0 or eac a This 1s a
1 ( )-

stateme t alo t 1i = ’ = ave
and (Z) ’
Q he nes that f(Z) a 1 L

the same umber o solutions, EXCEDt that it is ClUttEIEd up

with m(z,=,f) and m(r,a.f) = w(r,=,1/(f-2a)).
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The term m(r,e,f) can ve expialned as measuring the aver-
age growth of log|f| on the set where [f] > 1. Its role in
T{r,f) is subservient to that of N(r,»), unless « is an exc-
eptional value - that is, unless N{(r,») is not as large as
N(r,a) usually is. This was shown in a precise form by
Nevanlinna,

Before elaborating on this, we note a basic fact about
the characteristic function. The functien f(z) is rational
if and only if

lim inf T_ILEL)
T+ ogr

This may be viewed as a generalization of Liouville's theorem
(f entire, M(r,f) < cr” 4+ ¢, implies f a polynomial) because,
if f{z) is entire,

T(r,f) < log+m(r.f} < 3T(2r, F)

(This ineguality can be shown using the fact that log |f] is
subharmonic).

Nevanlinna called ‘i E
Sgla) = §(a) = 1 - lim sup N(i'f)
Lo *

the deficiency of the value a ¢ T. It is easy to see that,
if f is not ratienal, then &§(a) < 1 implies f(b) = a has inf-
initely many solutions. Also O < §(a) < 1 is always true.
Nevanlinna showed that (if f is not constant) 6&(a) # 0 for at
most countably many a e & and

I, 8(a) <2
This is a quantitative version of Picard's theorem,

Nevanlinna's characteristic function T{r,f) became the

magic tool for studyina the distribution of f-1(a) c f, for




f{z) meromorphic. All sorts of results were obtained under

various restrictions on the function - mainly restrictions an

the order

o(€5 = 1im sup loa T{(r.f)
e log T

wer= also investigated as were

simultaneous sciutions of f(z) = a and a{z) = a. Ahlfors

developed a geometrical approach to the characteristic funct-
field was that there were interesting

Relations between f and f!

ion. The beauty aof tha
results to be proved which were simple to state, but tequired
ingenuity to derive. Nevanlinna's theory can justifiably be
described as one of the greatesst of mathematical theories.

It is a marvellaus simplification of the difficult problem of

studying solutions of f(z) = a, which nevertheless has great

depth,

Now, however, this gre=at industry started by Nevanlinna

seems to be suffering from the worldwide ecanomic recession.

One might argue that David Crasin hammered the last nail in
the caffin when he settled one of the most fundamental out-
sﬁanding questions, He showed (13977) that Nevanlinna's

defect inequality £é(a) < 2 told the full story when f is un-

restricted. Given a sequence (a,), of distinct elements of

T and positive numbers dn satisfying Iidy, £ 2, it is possible
to find £(z) meromorphic with 8f(an) = dy and 8(a) =0 for a

not one of the ap's.

One might ask
After all,

gut can such a wonderful theory die?
whether Euclidean geometry died centuries ago.
it is hard to find a major unsolved problem in Euclidean

geometry. Of course the story changes considerably if we

look at differential geometry,
manifolds, etc., which are the subjects one might imagine

Riemannian geometry, Kahler

Fuclid considering if he were around in this century.

So it seems to me to be unreasonable to point to the

scarcity of really central open problems in value distribution
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THE MEAN VALUE THEOREM FOR VECTOR VALUED FUNCTIONS:

A SIMPLE PROOF
—_—_— TR

Wittiam §, Hatll and Martin L, Neweltt

It is wel) known that the
ension extends Teadily to real-
variables,

mean value theorem in one dim-

valyed functions of several
but fails for the vect

let F(t) = (cost, sint
(0,27) such that fleg) = g

. Then -sin¢ - cos & = 0, an imp-
o0ssible situation,

A useful ang torrect generalijzat
the inequality

ion is

fy) - f(x)] < sup ilf'(X+t(y-X))fllY~XI
D<t<g

where f:DCFn-*]Rmis a differenti

able vector-valyed function
0N & convex apen set D, f!

is the matrix 3fi/3xi, i=1,2

em,
j=1,2 ..n, I ] is the appropriate norm (in<mn, or inRp),
Il !{ is the usual norm in the set.of linear maps from Ry to
.
R,» and X,y are arbitrary points in the domain 0,

analysis texts prove the
mean value theorem in the real tase but omit the result above.
Those that do Present this more general form usually give

using Components, or 3 "slick"
rem,

either a "sloppy" proof,

proof
with the Hahn-Banach Theo

roach, requiring only the chain ruie and the mean value thegrem
in &, It is worth noting that ! at each point is 2 linear
map (given by the Jacobian matrix)

a linear map (matrix) is given by

sup lax|,
lx’=l

!
2
However, other norms such as (Zaij)j where 4

i

(aij) are
frequently used in advanced

calculus Courses,
use is that lax| ¢ Ial]

All we really
Ixt.




