. THE INFLUENCE CURVE

Galrielle Kelly

The influence curve of an estimator measures how much an
individual observation changes the value of the estimator.
Thus, in any estimation problem the role the i th data
point say, plays in the analysis, can be made exact. This
intuitively appealing idea of Hampels (1974) initiated inter-
est in the influence curve. Now there is a substantial
theory on its properties and uses in statistics, of which I

give here a prelinimary account.

To understand the purpose and nature of the influence

curve, we must think of parameters and their corresponding

estimators as functionals. Consider a real-valued functional

T(+) defined on the space of distribution functions and let
the parameter of interest be 8 = T(F) (usually F denates the

ttrue' underlying distribution function). To fix ideas look

at the following examples.
Example 1: (i) The mean functional is given by
b(6) = [x 06 (x)

provided the integral exists.

(ii) The variance functional is given by
07 (6) = [x* 96(x) - Ux dG(x)]z

again provided the integral exists.

In these examples the parameters of interest might be
the true mean u(F) and the true variance 02(F). To 1look at
estimators we have to consider Xis oo Xn a random sample

from a population with distribution function F(e). The emp-

iri X . . .
cal distribution function of these X's, is F_(+) h
; n , where

Fn(t) = [Xi'sit]/n -® < t <

1 . :
n many estimation problems the estimator é can b t
e pu

1 the same unctional l.e 1 8 = F hen
or as 0
( « 2. ( ) the

Again we can look at familiar examples
Example 2: (i) Th i
: e estimator corres i
ponding to th

o e mean

A n
uo= u(Fy) = fx dF (x) = ZXi/n =X
. ?

i=1

i.e. the usual sample mean.

(ii) The estimator corresponding to the
variance is

8% = 0% (F,) = E(Xi-f)z/n.
i1

Ve . .
now define the influence curve of a functianal T(-)

at a in f =
point G, IC(T, G ;+), as follows. Let W (1-¢)6 8
= - + €
z

the "distri ;
. zr stributi :
the point mass of one at z, i.,e * on function for

be a perturbation of G by §

0, x < 2z
5z(x)=
1, x >z
Then
IC(T, 6 32) = LimTW) = T(C)
€+0 € ’
= 1) |
de 4 ’
€ =0 ‘

provided the limit exists for every z € R

Pz t ‘ (It is al
wn as the GCateau differential of T at §z) Thi dSD
. s derivative
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measures the effect on the functional T of a smal% (infiTites-
imal) change in the weight the distribution function G gives
to the point z. Thues, when we consider the estimator T(in),
its influence curve IC(T, Fy 3 z) measures the "influence" on

the estimator of an additional observation at the point =z.

To see this look at the influence curve of the mean.

Example 3: Denote the mean of F by u(F). Then we
have
W = (1-e)F + €6, ,
ulw) = jx d{(1-e)F + €8,],
= (l-e)u(fF) + ez,
and "
d =z - u(F).
-—-u(w)l = z -y
de € =0
So

1c(u, F 5 z) =z - u(F).
In particular for the sample mean
IC(u, F 3 2) =z = X .

Thus the effect on the sample mean of an additional observat-

ion is directly proportional to the value of the observation

as is shown in Fig. 1.
1c(u, Frn 3 z)

N

FIGURE 1

The Influence Curve of the Sample Mean.

Here, as is often the case, the influence curve is easy to

compute, Note that the distribution functions can be multi-

variate, In such cases, the point :z corresponds te a vector-

valued observation, The influence curve has also heen def-

ined for vector-valued functionals, For example, the funct-
ional given by T(G) = (u(g), 02(6))7T has a vector-valued inf-

luence curve defined at F. as the pointwise limit:

Ic(T, F ; z) %ET(W) .

e=0

(1c(u, F 5 z), 1c(o?,r;2))T,

provided the limit exists for every z, Now we examine var-
ious aspects of the influence curve to gain insight inteo the

nature of an estimator,

Firstly, the shape of the influence curve provides inf-
ormation about the robustness properties of an estimator.
In the example above we see the influence curve is unbounded
reflecting the fact that the sample mean is sensitive to
extremely large or small aobservations, In contrast to this
the influence curve aof the median is a step function,

Example 4: The median functional, m{(-), is given by

n(F) = 4(onroxx),"
where
0* = sup{x|F(x)<$} and g¥* = inf{x[F(x)i 3}.
Then

m(Fy) = median {X,,..., Xnl,

is the sample median.
(see Fig. 2) is given by

The influence curve

- 1 s 2 F-l(i)
HGERe
IC(m, F ; 2z) =
a, otherwise,
where d
f(x) = 7% F (x)
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This influence curve is bounded and thus is not sensitive to

extreme observatiens and is robust in this sense.

IC(m, Fro5 2)

FIGURE 2

The Infiluence Curve of the Sample Median.

is used to derive new estimators with

The study of various

The influence curve
pre-specified robustness properties.
norms connected with the influence curve leads to estimators
which are "best" over a large class of distribution functions.
This breaks with Fisher's classical theory of estimation which

looks for the best estimator with respect to one particular

distribution function. The interested reader is referred to

Huber (1977).

The influence curve plays an important role in asymptotic

The asymptotic variance of an estimator, for example,

theory.
The usual

can be written in terms of the influence function,

delta method formula for calculating the asymptotic variance

of an estimator T(F,) is in fact

JICZ(T, F 3 x)dF(x)/n.

It can be estimated in the usual way by replacing F with Fp

i.e. by N
YIC2(T, Fn 5 X)/n?,
i=1

e

n .
T(Fq) = T(F) + T Ie(r, F o
i=1 ' ’
where

i p{/;‘Rn] > E} < e

5 for n large, This means

g MFL) - TE) = §oreqr, f
i=] ’

/H(T(Fn) - T(F)) P 0

whe =}
re 5 denotes conver

gence | A
Central Limit Theorem N Probability,

AOED - 1) ¢ o, i)

where 3 de
note
S convergence in distributio
Llan and

V(F) = [ICZ(T, Fs x) oF (x),

ThUS,WE have
Variance (/AT(F,)) U (F)

A simple 111
+lustration of thi
his is as f
ollous,

£ 5 F r the mean b Exam e 3 Jje h ve
nple o] » Y P » a

IO 7y x) = X = u(F)

Thus,

]

2
[re2a, ¢ 5 9 (x) = [(x=u)? g ()

o (rF),

H

So here,

V(F) = OZ(F)'

which is estimated by

Xi)/WVA ¢+ R

3 X3 )AL,

nr

Von

Then by the
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o (fFy)

chz(u, Fn 3 x) dFn(x)
- 7 (g - ®)2/n.
i=1

Our formula for the estimated variance of X

is then

" < - 2
Variance (X) = (xy - X)2/n?,

Il ~12
—

i i yrve
A more recent development concerning the influence ¢

. e e b
is its use in outlier detection. In many statistical pro

lems it is assumed that the form of the underlying distrib-
rt from an unknown parameter 0.
; 6). A familiar

Let

ution function F is known apa
The assumed model is then denoted by F(*

example is the normal distribution with unknown mean 8.

§ = 8(Fy) be the estimator and

% 1c2(e, Fn s Xg)/n?

i=1
its estimated variance. We denote this as
- Y n 2
var (8) = I Ic2(e, Fa & X3)/n?.

i=1

The statistic

n
- 1c2(e, Fn 5 X3)/ L 1C*(8, Fno5 X3)
i=1

0

' s of fit' of
can be interpreted as a measure of the 'goodnes

the i th data point to the model F (- 5 8). It can be sh?wn
¢ - e F(1, n-1) is the F-distr-

that for n large DX F(1, n-1), wher wh

ibution with 1 and n-1 degrees of freedom. The symbol

i i i " yhen n + @, Thus
denotes "is asymptotically distributed as" w

of fit of the i th data point in terms

: rovides a measure
Dl ; For p vector-valued

of descriptive levels of significance.

T
i i by IC'IC and then
influence curves, Ic? in Di is replaced by

d

is
D5 ~ Flp, n=-p).

Another interesting interpretation of Di

as follows. Let é—i be 8 with the i th observation omitted.
Now

(n-1)(8-6_) = &) - 0(F)

_l.' (l)

and this together with the definition of the influence curve
implies

0 (8 ?:i)
Var §

{€quation (1) also provides the connecting link between the
influence curve and the jackknife; c.f. Miller (1974).}

This can be used in the following way. Let F(1, n-1, l-a)
denote the (l-@) th probability point of the F(l, n-1) dist-
ribution, Then for example, if D = F(1, n-1, 5), removal of
the i th data point moves the estimator to the edge of the 50%
confidence region for 6 based on 6. Measures of large res-
iduals from regression models surveyed by Atkinson {(1982) can

be- shown to be all versions of the statistic D; above.

The following example serves as a demonstration of the
use of Dj. No attempt at a complete analysis is made.
‘t

Example B: Miller (1982) presented simul taneous pairs of
measurements of serum kanamycin levels in bloeod
samples drawn from twenty babies, One of the
measurements was obtained by a heelstick methad
(X), the other using an umbilical catheter (Y).
The heelstick method had been customarily used
but due to the necessity of frequently drawing
samples, this left neonates with badly bruised
heels, The aim of the experiment was to see if
the two methods measured the same levels except
for error variability, If true, this would elim-
inate the unnecessary trauma to the newborn of-

repeated venapunctures. Since both measurements
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are subject to error, an error in variables rather

than regression analysis is used (c.f. Kendall and
Stuart). It was assumed the true F was the bi-
variate normal and that the points followed a line 35
with unknown slope 8 and intercept «a. The para-
meter of interest then is § = (a,8)T and the inf-
luence curve is bivariate. 30 .
The twenty pairs of heelstick and catheter values
are presented in Table 1. 25 .
Baby Heelstick Catheter . ¢ ¢
[ [ )
1 23.0 25.2 2 .
2 33.2 26.0 g 20
3 16.6 16,3 S e
4 26.3 27.2 9 iy
Q L4 L]
5 20.0 23.2 = 15 . .
B 20.0 18.1 )
7 20.6 22.2 =
8 18.9 17.2 10
9 17.8 18.6
10 20.0 16.4 "~
11 26.4 24,8
12 21.8 26.8 3
13 14,9 15.4
14 17.4 14,9
15 20.0 18.1 0 i
16 13.2 16.3 5 10 15 20 25 30
17 28.4 31.3 Heelstick
18 25.9 31.2 FIGURE 3
18 18.8 18.0 —_————
20 13.8 15.6 Plot of the Twenty p?i;; ggbferm Kanamycin levels
TABLE 1

Serum kanamycin levels in blood samples drawn
simultaneously from an umbilical catheter and
a heel venapuncture in twenty babies




for each data point

Estimates of the influence curvé and deleted estimates,

.
.

TABLE 2

Slope

t

Interce

1C(a,Fp32)

1C(B,F,3Z)

a
Deleted

Estimate

Normalised
Influence

Deleted
Estimate

Sample
Influence

Sample
Influence

Baby

.012
. 768
.001
.000
.051
.046
012
041
.010
175
.025
.088
.009
117
.048
.290
.045
.145
.013
.103

1.086
1.29
1.07
1.07
1.07
1.06
1,07

.26
-3.36

.96
-5.26
-1.07
-1.10
-1.21

-31,68

61.66

.06

1.64
1.06
1,07

.08

.08

.20

.83
-1,20

B.34

.77
7,35
3,36

~14,71

46

.03

.08
1.08
1.04
1.10
1.03
1.08
1.04
1.06
1.13
1.01

.26

.77
-1.34

.12
.52
.49
.74
-0.17

.39
~-1.61

10

11

12

13
14
15
16
17
18
19
20

02

-10.85

.58
-1.40

21
-14,.83

. 58
.20

.34
.83
-2.57

6. 34
23.83
~16,20
-30.47

.98

.88
1.68

.14

.87
1.06
1,04

. 58
.96
-2,01

A3
.59

3.75
14,40
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A graphical display of these twenty pairs is rep-
roduced in Fig. 3. The estimates of intercept

and slope from the analysis are

-

§ = -1.16, & =1.07

The line with a4 and é is drawn in Fig. 3. Table
2 presents the influence curve of the slope and
intercept at each data point. The estimates of
@ and B obtained by deleting each data point in
turn are also tabled as well as the values of D; .
We see Babies 2 and 16 have the largest values of
the influence curve and have a negative influence
on the slope estimate. If we look again at Fig.
J we realise how difficult it is to detect and
agree on what an 'outlier'is, without some object-
From Table 3, we have D; = ,688 =

F(2, 18; .45), so removal of Baby 2 maves the

ive measure.

estimate of Q to approximately the edge of a 55%
Removal of Baby 16
moves the estimate of 2 to the edge of a 40%

~
confidence region around 8.

confidence region around g.

The influence curve is easy to explain and interpret in

consultancy work and we could make ‘the argument that it

become an integral part of all data analysis,

For this

reason, I have emphasised mathematical rigor less than intuit-

ive meaning in this article.

There are still many open math-

ematical details, like regularity conditions, to be addressed.

Many other influence curves of widely used estimators, need to

be derived,
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B

FEIGENBAUM'S NUMBER

Z. Kennedy

In 1875 Mitchell J. Feigenbaum [}] of the Los Alamos
National Laboratory, whose work concerns the transition from
periodic to aperiodic bahaviour, discovered a new universal
constant which has since been called Feigenbaum's number,

He had been using a programmable calculator to examine the

iteration of One~parameter families of maps af a finite inter-
val into itself, One map he looked at was x + fg(x)=Bx(1l-x);
another was x + 8 sin mx, both on the interval [D,l]. Feigen~
baum observed same commor features of the Parameter dependence

of these maps which he suspects would not have been noticed

Tather than a smal] calculatorLN__Tbe theory of these maps has
been extended by Pierre follet of Paris, Jean-Pierre Eckmann

of Geneva angd H, Koch of Harvard, The topic is reviewed in

For the most part, Collet and Eckmann consider mappings
X > f{x) which are Cl-unimodal. A mapping f of the interval
[-1,1] into itself is Cl-unimodal }f f 1s continuous; fF(0)=1;
fis strictly decreasing on (D,l] and stricfly increasing on
[-1,0); and f ;s once continuously differentiable with f'{x)AD
when x £ 0,

Denoting by £° the identity, flsf, f2=for, fn_popn-1 the
sets of iterates of points x g [-l,l]

Or(x) = {x, f(x), F2(x), £3(x) ...}

are called the orbits of f. A point x ¢ [-l,l] is called a
periodic point for f if Op(x) is a finite set, The cardin-

ality of this set is called the period of x ang O0f(x) is called
the periodic orbit of X,

It is then also the periodic orbit of



