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RECENT DEVELOPMENTS IN L INEAR PROGRAMM I NG

Fergus J. Gaineas

Let A be an mxn matrix, let be R"and c¢ RO, The basic

problem in linear programming is to find, for xe¢ RN,
max ctx, subject to Ax < b, x >0 (1)

For vectors, X <y means Xj <yi for all i; x <y means x,

i <yi for
all i.)

The standard way of solving this problem is to use the

celebrated simplex method of G. Dantzig (1], The idea is to

note that the feasifle solutions of (1),

i.e. the x e RMwith
Axib, xz_D,

form a convex polytope K in RN,

The vertices of
K are those feasible x with either x = 0 or such that the

positive components of x correspond ta linearly independent
columns of A, The typical step in the simplex
proceeds from vertex x(k) to a vertex x(kfl) so that ctx(k+l)z
ctx(k). Since max ctx is attained at 'a vertex of K,
orithm eventually givgs the answer,

algorithm

the alg-

w

L]
This algarithm is arguably the most widely used algorithm
of the present day and it is probably safe to say that most of

those who use it do not understand it, whereas most of those

capable of understanding it never use it. Its Popularity is
probably the reason for the widespread,

if in many cases inacc-
urate,

coverage in the newspapers given to the discovery in
1979 of a new algorithm for solving (1),

"unknown" L.G, Khachiyan [2]. (One American Newspaper rep-
orted bitterly (but incorrectly) that a Soviet m
had solved the

the work of a Soviet

athematician
"travelling salesman pProblem", despite the fact
that the U.5.5.R has no travelling salesmen!)

The immediate reason why Khachiyan's algorithm is impor-

tant is because it is in theory more computationally efficient
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than the simplex method. Dne of tne noteworthy features of
the simplex algorithm (~ and its variants) is that it is very
efficient in all practical cases, 1.e. it uses very little
machine time, Empirical data show that the number of operat-
jons (+,x, etc.) in a typical application is 0(mn?®), Houwever,
Klee and Minty [3] have produced an example with m=2n where
the simpl'ex method requires more than 27 steps. In contrast,
Khachiyan's algorithm is "polynomially bounded" in all cases,

but it has serious drawbacks (see below).

But why does the simplex method work so well in practice?
In a recent, highly significant paper, [a], Steve Smale has

given a very satisfactory explanation. We discuss Smale's

result below.

Khachiyan's Algorithm

Since Khachiyan's paper contains no proofs we follow the
presentation in [5]. We note that the Zinear programme (LP)
(1) can be reduced to the problem of solving a system of linear
inegualities. We see this as follows. With LP (1) we can

associate the duel LP, which is to find, for y ¢ Rr™
min bly, subject to Aty>c. y>0 (2)

The Duality Theorem says (1) has an optimal solution if and
only if (2) has, and in the event, max ctx = min bty. Thus
(1) has a finite optimum if and only if the system of inequal-
ities

Ax < b, x>0, Aty>c, y2>20, ctxzoty (3)

has a solution, If (x,y) is a solution of (3) then x is an

optimal solution of (1). The inequalities (3) can be re-
written
Mz < d, z >0
where
A 0 X b
m = g -at z = |y and d = |[-C
-ct bt 0 o

PR

x &€ R yith ax > b, x >0

W R
e describe the algorithm for the problem:

fi " wi
nd x € R with Ax < b, x > 0, where

A and B have integer entries,

(Th
€ case Ax < b can be reduced to this case)

to integers. But this seems

behaviour of the algorithm in practice

The algorithm determines a sequence x(k)

n
sequence ¢of ellipsoids E(k> in RP G e

with centre x(k) and

If L i
1s the length of the binary encoding of (4) th
e

either gives, for some k < 4(n+1)2L an x(k)
. ’ ‘
ion of (4) or, if a solution can

algorithm
which is a solyt-

not be f
shows that no solution exists ~~Ound or s oo

If 8, i -
k 1S a positive definite Symmetric matrix th
en
(k)
£ - n. k -
{xem .(x-x( ))tBkl(x—x(k))< 1}
is an ellipsoid with centre x(k)

s The steps in the algorithm

1. set x(0) _ g g(0) _ 2%y 1

(k) .
2. If x 1s a solution to (4),

If k < 4(n+1)2L 90 to 3,
luding (4) has ng solution

terminate,

Otherwise termihate, cong-

Choose one of the inequalitie
« (k)
’

s in (4) not satisfied by

say a; by (k) . :
i “x 2 b5 (ajt is the throw of a)

R T8 T v




Let |
(k to(k H
ML R x(k)—(l/(n+l)ﬁ‘k)ai/(ai 5 )ai)
and
) K)ot to (k).
s (1) (272 1y 5% L(2/ms1) (8085 ) (89 et Aa; e ) a0 )]
Go to step 2 with k+1 in place of k.
The ellipscid E(k+l) contains the semi-ellipsoid
i (k) 5
E(k) n{x = Pn:aitax-\\ 7y <}
Alsc 0 (o)
vol(E(k+*’ = c{n)lvol (')
where o
c(n)él-:_ é
The ellipsoid algorithm in the worst case is O{(n’{m+n)L) in
contrast tﬁ the exponmential behaviocur of the Klee-Minty exam-

ple. However, the ellipscid 2% haves very beadly in

practice. As Dantzig point:z ou 8]} 2 typical economic

H
[
=g
L)

planning problem which takes half an hour machine time fo
simplex method to solve, would take the ellipscid algorithm

- [ U Lo l’ . & an
fifty million years! Traub anod Wezniakcuwski L5] give &

r ~e ~F W = LN ':‘
explanation for the poor performance of Khachivan's

They show that fer the real number compu

H 3 e — " = - v«_&il
R with exact arithmetic and wurnit "cost" for sach operstion
] T 1 J o - - 5 ] '_"J
the ellipscid algorithm in the worst case 1s not polynomially

bounded,

Despite its failure to cust the simplex m=thod, the ell-
ipsoid algorithm appears to have a future in the solution o
combinatorial optimization problems nother than linear prog-
ramming. The paper [7} of Grotschel, Lovasz and Schrijver

deals with this topic.

Smale's Theorem

Dantzig ([1], p.160) conjectured that for a randomly

chosen LP, with fixed number of constraints- m, the number of

_operations in the simplex method grows in propertion to n.

Smale [4] not only proved this result but improved on it con-

siderably.

The first problem is to define the average number of
steps in the simplex method for a Le. We get a probability
measure u on the unit sphere SP-1 in RP, by normalizing the
standard uniform (Lebesque) measure. The paints of sP~1
correspond te the rays of Pp. If X is a set of rays in Rp,
we define the spherical measune of X by v(X) = u(XﬂSp_l).
Let A,b,c be as in (1). Then q = (c,-b) ¢ RN, yhere N=m+n.
Let 0(A,q) be the number of steps required to solve (1) by
the simplex method. Since o(A,Xq) = o(A,q) for A > 0, we
identify g with a ray in RN, The average number of steps

required to solve (1), with A fixed, is

o4 fo(ﬁ\.q)du

qesp-l

Now identify the space A of all real mxn matrices with R™",

Since o(XA,g) = o(A,q) for XA > O we identify A with an element

of A1, the set of rays of 4. Put a spherical measure v on
A4y, Then the average number of steps required to solve (1)
is
p(m,n) = oy dv
ACr‘ll

We now have Smale's result,

Thearem Let p be a positive integer. Then

depending on p and m, there is a positive

constant Cm such that for all n

p(m,n) < cmnl/p




The case p=1 is Dantzig's conjecture.

a
t
m

s

a special case of the LCP,
RV so that the LCP becomes:
If go = (l: “o

segment dqo,
If Yo is the component of Y containing Qo

{thm can be viewed geometrically as "following" Yo.

of the algorithm c

- 34 -

Smale considers

The proof of the theorem is not easy.

version of the simplex method, Lemke's algorithm,
iven an NxN real

applied

o the €inean complementanity proklem (LecP): g

atrix M and g € FN, find w,z € Fg, the positive orthant,
t, = 0 and w-Mz = q. The primal-dual problem (3) is

Next he defines a mapping 2y on
find x € RV so that ¢m(x) = q.

o] tha’t w

, te RV, the inverse image of the line
¢i‘(qqo), is a piecewise linear curve Y in R
then Lemke's algor-

N

A pivot
orresponds to the intersection of Yo with a

facet (a facet is the intersection of a hyperplane with an
orthant QS; for

- {xeR':x20, i€5, x4€ 0, ] £5)).

Se{1,2, ..s N}, Og

There are three main steps in the proof of the theorem.

Firstly he derives a formula for pp in terms of the spherical

volume of certain cones.
Finally he gets a simplified version of this estimate,

Then he derives an estimate for Pp-
when m

is fixed and n is large, which gives the result.

The problem of determining the average speed of the
emains,

simplex method as a function of both m and n still r
In his Dublin lecture {(September 1982) Smale said he felt that
his general estimate for pog might be used to solve this prob-

the basic difficulty to be overcome is that &f

lem, However,

determining volumes of cones.
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