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NUMER | CAL_ME THODS

IN_DYNAMICAL WEATHER PREDICTION
2R, Bates

1. Introduction
—_—

dynamical methods was first tackled successfully by a group
working under the leadership of John von N

eumann at the Inst-
itute for Advanced Study,

Princeton, in the late 1940 s, At
that time the first electronic computer, the ENIAC, had just
become available, Von Neumann recognised that the new mach-
ine was ideally suited to performin
Jtations necessary to predict the n
fluid systems,

9 the hugh volumes of comp-
on~linear development of

including the motions of the atmosphere.
observed initial data derived from balloon a
continental U,S.

Using

scents over the
?

(Charney, Fjértoft and Von Neumann, 1950),

The integration
took 24 hours of computer time,

however!

due to von Neumann himself,

was the development of a comput-
ationally stable numerical sc

heme for representing the diff-
erential equations governing the floy,

It had been discov-
ered two decades earlier (Courant,

Friedrichs and Lewy, 1928)

The vast increase in the speed of computers

over the past
three decades,

more effica
of motion,
enough for

The computer fore-

coupled with progress in devising
ient numerical schemes for solving the equations
has made it passible to compute the weather fast
the forecasts tg be used Operationally,

tasts have for some time been more accurate than those which

e R

e ——
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can be produced using traditional methods alone. Even with
the most powerful eomputers available today, however, the
spatial truncation errors associated with the numerical repr-
esentation of the governing differential equations are still a
factor limiting the accuracy of forecasts. The search for
more efficient and accurate schemes therefore remains a cent-

ral problem in dymamical weather forecasting.

In this article, some of the main numerical technigues

used in this field will be briefly outlined.

2. The Simplified Governing Egquations

The large-scale motions of the atmosphere are quasi-
horizontal and, to a very high degree of approximation, hydro-
statically balanced (i.e. the vertical component of the press-
ure gradient force eguals the force of gravity). They are

also shallow, in the sense that_the vertical scale of the

Vmotions is small by comparison with the earth's radius.

These facts allow one to adopt simplified versions of the
general equations of fluid dynamics for the purpose of weather
prediction. A simplified set of equations, which are capable
of describing the flow at the atmosphere's middle level (the
500 mb level, approximately) with reasonable accuracy, are the

"shallow water" equations,

du = g—{ + DR Y

dt 3 x v (l)
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where (x,y) are the eastward and northward coordinates, (u,v)
are the corresponding velocity components, h is the height of
the 500 mb surface, g is the gravitational acceleration,
f (= fo + By) is the Coriolis parameter representing the

effects of the earth's rotation, and 4 (= %T + ¥H-V) is the

ry
C
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-derivative following a fluid particle. In these simplified

equations, the effects of friction, thérmodynamic forcing and
spherical geometry (except for the y-variation aof the Coriolis
parameter) have all been neglected.

‘ The above eguations possess tuwo distinct types of linear-
ized wave solution:

(a) gravity-inertia waves, for which the phase speed in the
one~dimensional case (with f regarded as constant) is
given by

£2)4%
= # —_—
c _[gH + k2) cees (4)
Here H is the mean height of the surface and k is the
wavenumber,
(b) Rossby waves, for which the phase speed.in the one-dimen

sional case (with no perturbation in the height of the
surface) is given by

- _B
c = = ceees {5)

The gravity~inertia waves are fast (phase speeds of hundreds

of metres per second) but have onl}‘very small amplitudes in

the atmosphere. The Rossby waves are slow (phase speeds of

ten metres per second or less) and are very important in the

development of weather systems. In the original governing

equations used by the Princeton group, the gravity-inertia

waves were filtered out by using a modified version of equat

ions (1)-(3). The filtering procedure introduces some inacc-

uracies however, and the modern practice is not to use it

In almast all meteorological applications. an Eulerian

approach has been used for solving the equatlons of motion
’

i.e. the derivatives ( 5T ) are expressed as ( + VH. V) and
the VH V term is brought to the right hand 51de of the equat-

ions, Only partial derivatives in space and time then occur

and one forgets about fluid particles, An alternative is the

L
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Lagrangian approach in which one follows the fluid particles,
retaining (%?) in its original form and doing the numerical
calculations accordingly. The Irish Meteorological Service
is the first to use a Lagrangian method operationally; we
have been using this method for our daily forecasts since May
1982 and find it to be more efficient than the Eulerian appr-

oach (see Section 4 below).

T

3. Main Categories of Numerical Methods used for Solving

the Eguations in Eulerian Form

The methods used for solving the equations in Eulerian

form can be classified under two headings:

(i) The Grid Point Method

Here the partial derivatives in the equations of motion
are replaced by finite difference approximations at a

diécrete set of points regularly distributed in space and

time. The difference eauatiéns are then solved using
algebraic methods.

(ii) Galerkin Methods

The Galerkin procedure represents the dependent variables
as a sum of functions that have a prescribed spatial
structure. The coefficient associated with each funct-
jon is then a function of time. This procedure trans-
forms a partial differential equation into a set of
ordinary differential equations for the coefficients.
These equations are usually solved with finite differen-
ces in time. Examples of the Galerkin method are (a)
the Spectral Method (using orthogonal functions as basis
functiaons), and (b) the Finite Element Method (using
functions that are zero except in a limited region where

they are low-order polynomials).

The grid point method has been the most widely used
method in meteorology, but spectral methods, using surface

spherical harmonics as basis functions, are now being used

- 23 -

for hemispheric or global forecasting mbdels at a number of

centres, e.g. the European Centre for Medium Range Weather

Forec i i
asts. Some numerical experiments have also been carried

out using the finite element method, but so far this has not

been found to be competitive in efficiency with the other
methods.

. Some examples will now be given to illustrate the stab-
ility properties of numerical schemes using thé grid point
method. We consider the equation

2
e

= -u

vees (B)

(=51
cr

L=%3
X

governing the advection of a scalar ¢ by a mean flow U {(here
considered a positive constant). Equation (B6) contains a
subset of the terms of, equations (1) - (3)

The analyti
solution to (6) is. e

v = F(x - ut)

where F(x) is the initial distribution of v,

Consider the following simple difference approximatiaon

to equation (8): .
.

PRSI r.‘] =--[n
[ J WJ v wj+l - wg_l oo (T)

At 24

where t = ndt, x = jAx. This is a "formard-in-time, centred-

We examine the stabilij
ity of (7) b
the von Neumann method, i.e. we assume o

in-space" approximation.

N _ 4N ik(ij)
by o= Ae v° vev. (8)

where A is the amplification factor.

Substitutin
then gives 9 in (7)

= . =4t o,
Ao=1-14 Uz Sinkax

2
Thus [A]? > 1 for all values of (Gat/ax) for general values

4
i
[
f
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. soluti
of k, i.e. unlike cne analytical solution, the numerical so.- ution to (11) of the form (8) we fing

ution amplifies with time and the difference approximation \ .

' \\_

7) is unstable. 5
- 1+ 1(UK;) Sin kax
1

i.e, [A[Z
_ 1

At
1+ (“K;)z Sin? kAx

i

Next consider the difference approximation

IR G ) Q)

At Ax

so t 2
0 that [A]2 ¢ ; for all values of (Gat/ax)

equati . :
Quation (11) is thys dnconditiopally stab) The oifference
e.

i.e. a "forward-in-time, upstream-in-space™ approximation.

Again assuming a solution of the form (8), we find that ‘
When the Temaining terms of (1)

13 s .
inearized analysis shoys that Eulerian

represe ltatlolls are in all kr own cases either unstable or

P a P . :
cor dlth ally Stable, the stablllt CIltEIlOlI bei 19 t at |
(CAt/Ax) be lESS tha 4 |

(3) are included, a

] - UH [l - exp(-ikAX)]

so that

At -4t
x (1-050 (1 - Coskax)
where ¢ rep-

—_—
. his repr-

In this case |A]? < 1,(i.e. stability obtains) provided
the fast 9Tavity-inertia

— At lall o] ly Olse
— < ( )
lo -
y »

ation being carried by the s
terms in the equations of motion

b .
€ circumvented by adopting an implic

The difference approximation (89) is thus conditicpally stable,
the stability criterion being that the distance covered by a

particle in the time interval At be less than the spatial grid This problem can in theory

it differencing scheme

ion, which gives uncond-

interval. 1s real stic or dES(:]‘II) n the sSlow mot n
itio al abili
all S
( ( ) Se a ti e step Uhlch :
eq ations ) a . s

g 1 ions,
httheIlg't n+l . tained b
t = sense thsa is obta e Y

ur '3 r, the Tl 1

nversions valv

involve known guantities, and the unknoun wj
ed in integratj . .

o] 10ns with implicit schemes ar

So costly that gne & computationally

a simple operation at each grid point.

1S no better off than if one had adopted
e

| . |
We now consider an implicit numerical representation of an explicit h
ptieit Scheme with a Very small time st
ep.

i (6): 1 n+l n+l
! n+ n 1
W7t - W-] = ‘”E“' " Y- ] "o .
| l;l_____?l_ L3+ "3-11 vens (11) ?ceSSFUI Compromise between these two :
| — ™ use a semi-implicit approach, uwhe th Sxtremes is to
. y re 3
Fast motions ape treated tnpiy e terms governing the

Citly while the terms governing

‘ Here the right-hand side involves the unknouwn gquantities at
xplicitly (Kwi zak and Robert
’

+1 1

time level (n+l), and the values of w? can only be obtained 1971), This leads ¢t i
. Seeking a 0 conditional stability, but with

[ a

by a matrix inversion involving the whole grid.

the sloy motions are treated e
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stability criterion which is much more lenient than that for

fully explicit methods. At the same time, the matrix inver-

sions are much simplified. The semi-implicit approach is now

widely used, with both grid points and spectral models.

An alternative efficient method is to adopt the splitting
approach pioneered by Soviet mathematicians (Marchuk, 1874).
In this approach the equations (1)-(3) are split into the tuwe

sets:
2u -ugﬁ - \/-22—li u . _gih + fv
it X 3y 35t © T9%x
%—‘ti = -u%—‘; - v-g—‘yi (12) %—‘é = -g-a—'; - fu (1L3)
3h 3h _ 230 3h . Lpfdv . 2
5t - Y Ex Viy 3t ax y

A stability analysis shows that these two sets have independ-

ent stability criteria, The set (12) can be stepped forward
.in time with a long (advective) time step, while the set (13)
can be updated successively with a fractional time step. With

both sets treated explicitly, a ratic of 3:1 in the respective

time steps can be used, This leads to an efficiency compar-

able to that of the semi-implicit method, with much simpler

programming. This method is also widely used by meteorclog-

ists.

[ The Semi-Langranaian Method

A fully Lagrangian approach to salving the equations of
fluid motion would involve following 2 fixed set of particles

throughout the period of the integration. In atmospheric

a set of particles which are initially regularly distr-

flow,
ter to adopt

ibuted soon become greatly deformed so it is bet
a semi-lLagrangian approach, where 2 set of particles which
arrive at a regular set of grid points are tra
arval to their departure points.

ced backuwards

aver a single time int The
values of the dynamicel gquantities at uhe dJeparture points are

o . . .
btained by interpolation from the surrounding grid point
nts.

A ew set o particles is tne considered at each time StED
.

. A splitting approach can be combined with the Semi-La
angian technique by writing (12) in the form o

d

&
o
)
Q
-
o
pre
il
o
i
Q

eene (14)

whi . .
ile keeping the remaining terms as in (13) The equati
. ions

(14) are integrated to give

n+l
(U’V’h)i,j = (u,v,h)]
where the guantities n+l
( )i ; are the new values at the grid

point (i,j) and the quantities ( )% are the old val
the departure point of the particle ves et

BaFes and McDonald {1982) have shouwn that for line
q?a?ratlc interpolation in the one-dimensional case S e
::i:neii anz biguadratic interpolation in the tuo—dim:::i:::l

y €@ above explicit method gives iti ili
For'the advective part of the in2egrat;Z:?ndl:;an:eSt:blllty
semi-tagrangian method has led to a saving of a thirdo' o
coTputer time required to produce ouf daily Forécast %n e
Irish Meteorclogical Service compared‘to the Euleri e
previously used, while giving equal accuracy, " nethes

5. Lonclusions

On t =} o] above ex n-—-
lY e barest outline as been ive v o] a t
e

sive ie i i i »
1d o lllVEStlgath . lar Y i portant questions suct

as non- 1 an
linear computatlolal lnStablllt)’p Staggered grids d
e Y an
th aintena ce of i ntegral constraints (SUC! as energ d
Y) um an lave not even
squared vor ticit L t erical i tegratJ. s
bee
2l o on, 2 governi 1Q e use 1 ct
-ouched n Th 4 quations sed n
pra lce
are much more co pllcal‘.ed than t e simple s 1allow water equa-

[»] lcC ave bee . ampr S1 -
tions sh h h egan dlS(:USSEd ere A com enen ve caover

age of numerical methods used in metecrology can be f d
ound in

TR s
e e e

T e s
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) 1 )-
WMo (1925) Cha o] (lg l) and Haltiner a d Williams ( 980
DESD te the progress that has been made, it appear
1 e S
k that there s sti a lor g way to 9} before e e
1i Ely 1 [=] T th ideal
numerica method is found whi ch inte rates the governin
T g 1Nng
equatlo s and glives clearly aximum accuracy OorT 38 give comp-

utational cost.
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RECENT DEVELOPMENTS IN L INEAR PROGRAMM I NG

Fergus J. Gaineas

Let A be an mxn matrix, let be R"and c¢ RO, The basic

problem in linear programming is to find, for xe¢ RN,
max ctx, subject to Ax < b, x >0 (1)

For vectors, X <y means Xj <yi for all i; x <y means x,

i <yi for
all i.)

The standard way of solving this problem is to use the

celebrated simplex method of G. Dantzig (1], The idea is to

note that the feasifle solutions of (1),

i.e. the x e RMwith
Axib, xz_D,

form a convex polytope K in RN,

The vertices of
K are those feasible x with either x = 0 or such that the

positive components of x correspond ta linearly independent
columns of A, The typical step in the simplex
proceeds from vertex x(k) to a vertex x(kfl) so that ctx(k+l)z
ctx(k). Since max ctx is attained at 'a vertex of K,
orithm eventually givgs the answer,

algorithm

the alg-

w

L]
This algarithm is arguably the most widely used algorithm
of the present day and it is probably safe to say that most of

those who use it do not understand it, whereas most of those

capable of understanding it never use it. Its Popularity is
probably the reason for the widespread,

if in many cases inacc-
urate,

coverage in the newspapers given to the discovery in
1979 of a new algorithm for solving (1),

"unknown" L.G, Khachiyan [2]. (One American Newspaper rep-
orted bitterly (but incorrectly) that a Soviet m
had solved the

the work of a Soviet

athematician
"travelling salesman pProblem", despite the fact
that the U.5.5.R has no travelling salesmen!)

The immediate reason why Khachiyan's algorithm is impor-

tant is because it is in theory more computationally efficient




