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Msjorization and Schur Functions

Philip J. Boland
University College Dwbiin

The concepts of majorization and Schuy functions lay the basis for a
vich and elegant theory in which many classical and applicable inequalities
may by viewed, In this expository paper the basic definizicns and
properties of majorization and Schur funciions are presented, togecher
with a verioly of applications emphasizing in pani'cuiar some in rellability
theory. For a thorough and recent account of majerization and Schuy
functions, the in;ca;*ested readsr should consult the excollent Ize matities:

Thaory of Msjorization and its Applications by Marshsll and Dikin {1579},
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Cre of the origins of majorization can be found in the work of
Schur (1223} on Hadamard's determinsnt inequality (which states that for
. - n
any nxn  positive sewi-definite Hermitian matrix M = (m..), det MsW m, ).
ij i ii
Preliminary to proving this result, Schur showed that the diagonal elements

®yyee-.m of a positive semi-definite Hermitian matrix M are majorized

,by the characteristic roots (J\l,...,xn). Horn (1954} lster showed that

this relatienship actually characterizes those vectors nw (“11"""“111))
snd ) « (Al,...,x n) that can arise together as respeciively the diagonal

and characteristic root vectors of the same Mermitian matrix.

Many basic inequalities reduce %0 an inequality of the form
F(Fyoanay) € £(y1,...,yn) for some sppropriate £. This suggests perhaps
considering comparisons of the type f(zl,...,xn) € f{yl,....yn) whars
X < y. Haxdy, Littlewood and Polya (1923) asked the foilowlng question:
what conditions ¢n X = (xz,...,xn] ad y = (yl,...,y“} snsure that

Zgln} % Egly))
for 311 convex functions g:R+R7 ' They proved in fuct that * is true for all

convex g if and only if x<« y.

Majorization is imherent in the work of econunists studying income
inequality in the early part of this century. Lorenz {1905} d4id so in
istreducing vhat is now known as a "Lorenz curve”. Lst x= (xl,..x,xn) be

the wealth vector for & popuietion of size n, i.e. x; is the waalth of
n ]

irdividual i. We let sc =0, and Sk b Le the total wealth of

Eox
1=n-k+17[4]
the k poorest individuals. If we plot the points

(/a, %kisy)  for
k=0,,..,n and connect them in a iinear fashion we obtaln the Lorenz curve
for the vealth vector x. The Lorenz curve is always tonvex and is a straight
line ifand only if the weaith is uniformly distributed. Supposs mow y is
another wealth vector from a population of size n. Ono would say that the

waalth distribution of x is more equal than that of ¥ if the Lovenz curve

\
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of x lies above that of Y- When the total wealth of the zwo populations

is the same this is equivaient to saylng that x«< vy,
— L)

Hardy, Littlewood and Polya {1929) showed that X<y if and oniy if
there is 8 doubly stochastic matrix P (almtri: with nomnegative elements
whose rows and columms both sum to cne) suc;h that X = yP, "Hittiog" a
vector y with & doubly stochastic matrix | P has the effect of averaging

or smoothing out its components. Birkhoff {1946} proved that the set of

doubly stochastic matcices is the convex hull of the perputation matrices
(snd morecver that the permutation matrices ars the extrame points of this
ast). Birkhoff's rssult together with the above characterization of Haxdy,
Littlewood end Pelys enable one to show that for a given Yy fxix~ yi

is the convex hull of the orbit of y under psrmutstions {the zet of pointe

obtained by permuting the components of y).

| /«—p {2:2 v v}
e B &

Yy = (.Vl uYz)

Majorisation vepreseats o partis! ordeving on Y. A schur Fonction ig

2 ran! <alusd e ] s 5 . P
2 rent valved function which is senatons with rospect to this wrdoving,

2551’.‘.‘:. Lon .1 L Snclion satisfying the property thaz  f{x} <{'.>) £y}
LE St Z

Wlinever X < x  is Schuv gonvex (_ggpgg_gg‘ Functigns which are olther Schur

fonvax ov Schur concave ars egiled Schur functions.
Rhciin BRI LTAR L B R

Hote that & Schur function is Recessarily sypasteic or permutztion
- - < n ) ’
invarigns, that Ls £(x) = £{x') where 3‘5“ is an srbitrary resrrengemont of

the coordinaves of x.
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¥ ¢ iz a convex {tomceve) Tunetion of pne teal vaviabie,

£(x) = Zg(x.) 1is Schur convex {roncave}. This epablas sae o construct
et i
wany Schue funciions.

b One may we tlis
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Mote in particuiar that waking & = { ff seens e

obtains the arithmetic-gocmsiric mesn imequali
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3. Applications in Reliability Theory

Q_rgi:initimx 3.1 A system with n independent components which fimetions

£ and only 4f av least % of the SABDARERTS function is 2 & _out of n

sysiem,




A parallei system 13 @ 1 out of n sysiem, an n-l1 out of n systems is

called a fail-safe system, and 8n n out of h system i3 & series system.

if p= {p!,.,..p } is the vector of components religbilities {that is
] Py

Py = probability that compunent i functioms), thea

I-¢ l-¢
£ € A=k,
g . 1 n H .
nE = 2 offt B Ger) T Qe

€.+, .43 %
1 n

n

{where €; is either 1 or O

iz the probability that k or wore of the components functiun, h,,_‘(g) is

called the reiiability function for 2 k out of n system, MNote also that

hk{p) o8y be interpretsd as the probability of ¥ eor more successes in n

ind epmdeu. Berncuiii trials with respective success probsbilitics Pyoveoaty

Using the Schur Gstrowski characterization of Scher functions and a

mopovonicity resulk, one obtaing the f2llowing Theorsm {Ealand-Preschau, 1962):

Theoysm 5.2 The Teiisbiiity fusction hfp) of a ¥ out of w aystom

[ kot ? Sch ve in | o, E1]"
S @ . | . k )
15 Szhur convex in i ;-—-1- s 3 and Schur concave { "

£ k=1, that is we are considering a parallel system, the above result

a . .
says that hk(p} is Schur convex on  {0,1]". 17This means that subject to
the constraint that -1y is constanz, the more spread out the component
religbilities are the morc raiiabie the svstem is. When zonsidering =

series system (ken), the cpposits is true - subjsct to the comstraint thag
op.

Tp: is constant, the more squal ths component. reiliabilities are the more
i .

reiiable the systenm is.

Exomple 3.3 iet us consider 2 3 out of 4 system, If pe @1'92"’3'3’43

is the vector of couponent relisbilitiss, then

2%

a) (1;(},.9,.8,.7) ¥ields higher reiisbility than
+-9%,.75,.75) which in turs is superior to

-25,.88,.85,.85).

b} £.6,.5,.3,.2) i3 infer ior o 0.8,.4,.4,.8) which

in tuen s inferior to {.4,.4,.4,.4),

T h{p) is tho reliability function of a systom, ons Can measure the
{ impwtanr’e ¢f a component in contrib ting to system relizbiliz 1y by the rate
at which sysces reliebility imoveves s the reliabilivy of the cospunent
tagroves. More specifivaily onv con define the relishility im Liance

5033 of componan: § u3 1.0 - k1S {5} . (Sea Barlow-Proschan, £8751,

3?1
Now lot us consider egsin a K ouz of n sysiem.  Without logs of
generality let us assume that Coapanent relisbilities D= {pl,..._.,pn}

sre such thst P&y £y By Using th Schur Sstxrawski coadition spd

LY
Theeren 3.2, 1t foliows thag

NI ‘
a) whengver p_é{g»‘- .l{ the most rellable component {component
il' 1 -

23 i3 the most inportant to the system, and

4 B
b} whenavar EE[C, L‘»‘-} the least relisbie CprO“lf..li. is the

RoST Important to the system, B

fcte that thiz says thut for example for parallel systeas, ths czwpcu =Nt with

highest reliabilizy iz the mosi iuportant to the system., Thiy is intuitively

clesr as the systen fimcticus if only one copenent functions. On the other
hund for a serias 3yst az, the weakest Corpouent iy the most irpertant to the
System. This reflects the well known adage that a chain is as strong as its

weakest link,
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aroblems.  intil Tas® vear, Lhe prosf norsally vsed was beeinsliy that 5
o L) i > ¥

wia the theuwrem: of Binch and Schebtk, . The

Landau's "Newers
ation of this Tatier proof. I gels tha resit o nne

new proet 35 & 3%
page afier Scicltiy's theorem, The entire proof, assuming the mazinum rinciple,
Rovckes theevem, and a knowledge of the Yogarithem and vomplex powers, may he

s, inc new-ides 15 Gug o Giriogus, Ca ver. Juiien,
- fourd this

gresented in twvo Tects

Hines, and Riclman, and s expiaiped in (7). Curigusiy enough, &
Yug to, but becaure they sought b

simpler pronf, not because they were try
construciive proof, if.e. one not using
The new proof of thz prime mmber Lheorsm s cue to Newser 18]
appeared, the simplest proof was that in Heing® ®Topizs™. The lalier proot
involved the Riemann-lebosgue Temas and many technicel convergencs delad
Bewsan actually offered fwo proofe. He staried by giving an inqenious proot
of 3 Tauberian theorem of Ingham, He observed that Landau's equivaient form
3f the prime number theorem follows at once. He went on to give the details
ot another proof, based ¢n the fact that the existence of the Timit




