18

AN INTRODUCT ION TO THE COMPUTAT IONAL COMPLEXITY OF MATRIX OPERAT |ONS

by Derek 0'Connor, U.C.D.

1. INTRODUCT ION

Computational complexity Is the study of algorithms to determine the amount
of'efforf'or'work'They require In solving problems. We assoclate with
every problem an Integer (or set of parameters) called the slze of the
problem. The time needed by an algorithm for solving a probiem, expressed
as a function of the size of the problem, Is called the Lime complexity of
the algorithm. The Iimiting behavior of this complexlity, as the size in-
Creases, Is called the asymptotic time somplexity of the algorithm. There

are simllar deflinition for SRace complexity, the storage space needed by
the algorithm. In this paper we will be concerned only with time complexity

and for the remalnder of the paper the word 'time' Is omltted.

We need to distingulsh between the Inherent complexlty of a problem and the
complexity of an algorithm used to solve the problem. The Inherent compl e~
xIty of a problem of size n 1is the amount of time that Is both necessary
and sufficient to solve the problem, This time, T*(n), Is usually difficult
to determine and we have to be content with T'(n), a lower bound on T*(n).
The complexity of an algorithm, T"™(n), Is sufficlent to solve the problem
and Is an upper bound on T*(n). The algorithm Is optimal 1f T"(n) = T*(n).

In this paper we concentrate on the asymptotic complexity of algorithms for
matrix operations., [f an algorithm solves a problem of sized n in a time
T(n) = cn2+n tor some constant ¢, we say the complexity is O(nZL
hence we are interested only In the functional form of T(n) for large
values of n. In general a function g(n) Is sald to be O(f(n)) If there
exists a constant c¢ such that gn) < cf(n) for all but some finite
set of non-negative values for n.

We consider only square matrices, but many of the results hold for non-
square matrices. The size of an n x n matrix Is n and we wish to deter-
mine the amounts of time needed to perform the familiar operations of
addition, multiplication, Inversion, equation solving and determinant eva-
luation, with +time for each operation expressed as a function of n.

We assume that our computer has the usual repertolire of operators (+, -, *,
/) for reals and integers and that each operator Is performed in a flxed
amount of time. Hence we can view the time complexity of an algorithm as
the number of basic arlthmetic operations It performs,

19

2. LOWER BOUNDS ON MATRIX OPERAT IONS

A general n xn matrix has n? elements. Hence, any operation that
involves all elements requires at least 0(n?) +time. The usual algori+thm
for matrix addi{!on/subtraction requires n? additlons/subtractions and Is
therefore optimal. The ordinary algorithm for matrix multiplication re-

quires n3 meitiplications and nz(n-l) addltlons. Surprisingly, the
best-known lower bound Is 0(n?),

3. ORDINARY K:/RIX MULTIPLICATION, INVERSION AND EQUATION SOLVING ARE
O(N>) OPERATIONS

Muitiplication: C = AB where Cij = galk*afaj

Each c[j requires n multiplications and n~| additions, The total number
of operations is n3 multiplications n3—n2 additions, Hence the
complexity of multiplication Is 0(n2),

Equation solving: Ax = b

Triangularize A using Gaussian elimination. This gives Ux = b which can be
solved by Back-Substitution because U is upper-triangular. Gaussian
Elimination is 0(n3) and Back-Substitution is 0(n?), Hence the complexity
of Equation Solving is 0(n3).

lnversion: AA~! = |

This Is equivalent to solving the n sets of equations Ax, = ©j»
J=1,2,...n where X and e; are the j*h columns of A™" and
respectively. This, in turn, iIs equivalent to solving the n sets of
equations ij = éj' U is computed once using Gaussian Elimination in
O(n3) time, each éj can be computed in O(nz) time, and each set of
equations Is solved by backsubstitution In 0(n?) time. The total time is

O(n% 4—2n0(n2). Hence, Inversion is O(n3).

20

4. IMPROVED UPPER BOUNDS FOR MATRIX MULTIPLICATION

Lemma 1: (Mn, the one Op» In) Is aring, where M, Is the set of all
n x n matrices whose eiements are chosen from arbitrary ring R.

Lemma 2: Let f be a partition of an n xn matrix into four n/2 xn/2
matrices, assuming n Is even,

Al A2
l.e. f(a) =

Az1 Ao

Then, for any matrices A and B In Mn'

FI0+B) = f(A., and f(AB) = f(A)f(B)
The above lemma allows us to transform an n x n matrix with elements from

source ring R Intoa 2 x 2 matrix wlth elements from the ring of
n/2 x n/2 matrices.

strassens Algorlthm for Matrix Multiplication

The product C=AB of two n x n matrices can be transformed into the
product of two 2 x 2 matrices whose elements are n/2xn/2 matrices.
Thus we have

Ci1 Cy2 At M2 | 1By B2

Co1 Cpp A1 A22 | IB21 By

where elements of C are defined as follows

Ci1 = AiByy + AypBy
Ci2 = AyByg + Ay By,
C21 = ApByy + AypBy

C22 = AyByg + AyoByy

21

If we have an algorithm that computes the elements of C using m
multiplications and a additions then we apply the algorithm recursively
to smaller and smaller partitions until we are reduced to multiplying the
elements of the underlying ring R. |If the algorithm multiplies two n x n
matrices In time T (n) and n Is a power of 2 (=2P) then we have

Ta(M) & mT (n/2) + an?/4, n > 2.
This Inequality can be used to show that Tpin) < kn4, q= logom, i.e.,

the complexity of the algorithm Is 0(n'%9™) and is Independent of a. If

m =8 +then the algorithm is O(n3), which Is the same as ordinary matrix
multiplication,

Sirassen's Lemma: The product of two 2x2 matrices with elements from an
arbitrary ring can be computed with 7 multiplications and 18
additions/subtraciions.,

Proof: Compute the elements of C = AB as follows:

Compute the products

m1 = (312 - 322)(b2| + b22)
mz = (ayy * azp)(byy + byy)
m3 = (311 + 322)(b11 + b12)
my = (agy * 2z = byy)
ms = apq{byz = bzy)
Mg = azz(byy = byy)
mp = {(ag * axplby;

With these seven products compute
Gy T mp tmpy = my tomg
Clz = Myt my
C21 = Mg * my
Cp2 = My = mg+ m5 - my

There are obviously 7 multiplications and 18 additions/subtractions. Simple
algebraic manipulation, using only the ring axioms, shows that the c[j's
are those required by the definition of multiplication.

This lemma leads to the following theorem.

22

Iheoreml: Two n x n matrices with elements from an arbitrary ring can be
multiplled in 0(n'097) arithmetic operations,

Proof: Assume n = 2P , for some integer p. If T(n) is the number of
arithmetlc operations needed to multiply two n x n matrices, then
using Strassen's Lemma on the matrices partitioned into four
n/2 x n/2 blocks we get the recurrence

T(n) = 7T(n/2) + 18(n/2)2 for n» 2 .

The first term on the right is the time required to multiply a 2 x 2
matrix whose elements are n/2 x n/2 matrices, while the second term
Is the time required for the addition/subtraction of these matrices,
By induction we get

T(n) = oc7leans = g(plog7,

If n Is not a power of 2 , l.e., 2P < n < 2Pt1 » then augment the
matrices with enough rows and columns of zeroes to make n = 2P,
This will Increase the size of the matrix by a factor of 2, at most.
This In turn will Increase T(n) by a factor of 7, and so T(n) is
still 0(n!997),

It can be shown (see [AHU74]) that equation - solving, inversion,
determinant evaluation, etc., are computationally equivalent. This Implies
that each of these operations can be performed In 0(n!°97) time.

5. PRACTICAL CONS IDERAT IONS

Although Strassen's Improvement is theoretically significant it Is not
better than classical 0(n>) multiplication, unless n 1Is large (> 150).
This Is because of the many hidden, non-arithmetic operations that must be
performed during the multiplication operation. Additional storage, for
Intermediate results, Is also needed because the algorithm is recursive,

Nonetheless, Strassen's Algorithm has opened up a large new area of
research (see below) whose results will have great practical significance
as computers increase In size and speed.

23

6. RECENT IMPROVEMENTS

Strassen's work [Str69] stimulated a great deal of research Into matrix
multiplication and related operations. We give here a chronology of the
Improvements since 1969, taken from a recent paper [Pan81].

Exponent

2.8074
2.7950
2.7804
2.7801
2.7799
2.6088
2,6054
2.5480
2.5220

7.A SHORT REFERENCE

1. [AHU74]

2. [Pan81]

3. [Str69]

Author Date of Publication
Strassen 1969
Pan 1978
Pan 1979
Pan 1979
Bini, et al. 1979
Schonhage 1979
Pan 1979
Schonhage To appear
Pan & Winograd To appear

LIST

Aho, A., Hopcroft, J., & Ullman, J. : The Design and
Analysis of Computer Algorithms, Addison Wesley, 1974.

Pan, V. : New Combinations of Methods for the
Acceleration of Matrix Multiplication, Computers and

Mathematics with Applications, Vol. 7, No.1, 1981.

Strassen,V. : Gaussian Elimination |s not Optimal,

Numer. Math., Vol. 13, 354 - 356, 1969,

