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The Fundamental Theorem of Algebra

ANTHONY G. O'FARRELL

ABSTRACT. This is an expository note about the Fundamental Theorem of Algebra.

1. INTRODUCTION

Each nonconstant polynomial with complex coefficients has a complex root. In sym-
bols:

Theorem 1.1. If p(z) € C[z]| has positive degree, then there exists a € C such that
pla) = 0.

This is one of the foundations on which algebra rests. Burnside and Panton [3]' state
it in article 15, in Chapter II, and use it for most of the rest of Volume I, before giving
a proof in article 122. The proof they give is based on the argument principle.

1.1. Argument principle. The variation of the argument of the polynomial around
a simple closed curve v on which it does not vanish counts the roots inside:

/7 darg(p) = /7 u ;gz;iz — 2rin

if p has n roots inside v (where multiple roots are counted a number of times equal to
their multiplicity).

Assuming this, Theorem 1.1 follows on applying the principle, taking v to be a very
large circle around 0.

This proof of Theorem 1.1 has the merit of exposing the real reason why the theorem
is true. The theorem is a consequence of the topological action of polynomials on the
plane. More precisely, there are two ingredients: (1) the completeness of the complex
plane C, as a metric space; (2) the fact that a polynomial with b = p(a) induces a
positive map of homotopy groups

m({z€C:0< |z—a| <r}) = m(C\{b})

for all sufficiently small positive r. The latter comes down to the fact that the map
z — 2™ induces multiplication by m on m (C*), combined with the remainder theorem.

Usually, people derive the theorem from the argument principle for holomorphic
functions, and note that polynomials are entire functions, so that the argument principle
applies to them. The argument principle for holomorphic functions depends on Cauchy’s
Theorem, and hence on the Stokes-Green formula.

2020 Mathematics Subject Classification. 12-02.

Key words and phrases. Polynomial, root, fundamental theorem.
Received on 23 October 2025, revised on 27 November 2025.
DOLI: 10.33232/BIMS.0096.81.91.

LClassic text by two TCD academics, published by Hodges and Figgis, booksellers of happy memory.

(©2025 Irish Mathematical Society
81



82 O’FARRELL

1.2. Issues. The remainder theorem is elementary algebra, but plane algebraic topol-
ogy is not. So it is reasonable to ask for proofs of Theorem 1.1 that avoid analysis as
much as possible.

It seems obvious to me that you can’t avoid analysis altogether, since the complete-
ness of C is an essential ingredient.

1.3. From Cauchy-Stokes. The following proof uses a minimum of complex analysis:

Suppose p(z) € C[z] has degree m > 0 and has no roots. Assume, as we may, that
p(2) is monic. Then f(z) := 2™~ 1/p(z) has f; = 0 on C. If D = U(0, R) is the disk of
radius R about 0, then by Stokes” Theorem

- (z)dZ:/Ddf/\dz:/D(dez—l—fzdz)/\dz:0.

But, parametrising 0D by z = Re', we have
dz 2
(2 dz:/ :i/ (1+O(1/R))do
oo’ O Jop v om) ~ 'y
=2mi(1 4+ O(1/R) — 2mi
as R 1 oo. This is impossible.
1.4. Maximum principle. The maximum principle for polynomials is elementary:

Theorem 1.2. Let p(z) € C[z]. Suppose |p(z)| has a local mazimum at some point
a € C. Then p(z) = p(a), constant.

Proof. Suppose p is nonconstant. Composing with translations, we may assume a = 0.
Applying the remainder theorem, we can factor

p(2) = p(0) = 2"g(2),

where n > 1 and g(z) € C[z] has g(0) # 0. Then for small positive r and any 6 € R, we
have ' ‘

p(re’®) = p(0) + "™ g(0) (1 +o(1)).
Writing p(0) = ae®® and ¢(0) = pe’® with a > 0, 3 € R, p > 0 and ¢ € R, this gives

p(re?) = ae + e M09 p (1 4 0(1)) . (1)
So for 0 = (8 — ¢)/n and all small positive r we have

plre®) = (a+17p) ¢ + o(r™),

so for arbitrarily small positive r
n

» r
p(re”)| = a+1"p = =F > a = |p(0)],
contradicting the assumption that 0 is a local maximum. g

A small twist on the same argument gives the minimum priciple away from roots:

Theorem 1.3. Let p(z) € Clz]. Suppose |p(z)| has a local minimum at some point
a € C. Then p(a) =0 or p(z) = p(a), constant.

Proof. Assuming p nonconstant and p(a) # 0, and proceeding as before, we have Equa-
tion (1), where now « is strictly positive. So for § = (58— ¢+7)/n and all small positive
r we have

p(re?) = (a —r"p)e” +o(r"),
so for arbitrarily small positive r

| 0 < n Tnl _ 0
pre®) < a—r"p+ L < o= |p(o),

contradicting the assumption that 0 is a local minimum. 0
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1.5. Bolzano-Weierstrass. The Bolzano-Weierstrass Theorem says that each bounded
sequence of real numbers has a convergent subsequence. (See, for instance, [16, Theo-
rem 8.17].) It follows that each bounded sequence of complex numbers has a convergent
subsequnce: just apply it to the real parts and then apply it to the imaginary parts of
the resulting subsequence. This is enough analysis to give Theorem 1.1.

1.6. Proof of Theorem 1.1 without winding numbers. Suppose p(z) € C[z] is
nonconstant and has no root.

Since |p(z)| — +o0 as |z| — +o00, we may choose R > 0 such that |p(z)| > 2|p(0)]
whenever |z| > R. Let B := B(0, R).

Let m := inf{|p(z| : |z| < R}. Then 0 < m < |p(0)|.

Suppose m = 0. Then we could choose a sequence (z,) C B such that p(z,) — 0.
Passing to a subsequence, we may assume (z,) converges to some a € B. By continuity
of p, p(a) = 0, which is impossible. Thus m > 0.

Choose a sequence (z,) C B such that |p(z,)| — m. Passing to a subsequence, we
may assume z, — £ for some £ € B. Then |p(§)| = m. We cannot have |[£| = R, since
otherwise

m = [p(§)| = 2|p(0)| = 2m > m.

Thus p has a local minimum at &, which contradicts Theorem 1.3. O

1.7. Variation. A variation on the foregoing proof goes as follows:

Suppose p(z) € C[z] is nonconstant and has no root. Then f := 1/|p(z)| is positive
and continuous on C, and tends to zero as |z| — +00. Thus we may choose R > 0
such that |f(z)| < %|f(0)| whenever |z| > R. Let B := B(0,R), D := U(0,R) and
S:=B\D.

There exists some a € B such that

f(a) = sup|f].
B

By continuity, |f| < 1|f(0)| < 3|f(a)| on S, so a € D. Thus |p| has a local minimum
at a, contradicting Theorem 1.3.

1.8. Proof of Theorem 1.1 using harmonicity. Harmonic functions may be de-
fined as the twice-differentiable solutions of Laplace’s equation, or, equivalently, as the
continuous functions having the mean-value property. See [4].

Harmonic functions have a maximum principle.

Theorem 1.4. Suppose 2 C C is a connected open set, and h :  — R is harmonic on
Q. Then if there is some point a € €} such that

h(a) = sup h,
Q
then h is constant on Q.

This is most conveniently proved by appealing to the mean-value property, and show-
ing that the existence of a global maximum at a implies that the set h=1(h(a)) is
open-closed relative to Q.

Now if we had a nonconstant polynomial p(z) having no root, then u := 2log |p|
would be harmonic on C, because u = log(pp) and p, = p'zy = Py, Dyy = —Dax SO &
simple calculation gives

Uy = ]L_l“ + piv
p p
ﬁﬁxm - ﬁg% PPz — p?g
Ugxe = 5 + 2 )

p p
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and similar formulas for the y-derivatives, giving

PAp — Py — D, N pAp —p} —p;
p? p?

We could then argue much as in Subsection 1.6 that, since it is a continuous real-valued

function on C tending to infinity at infinity, u has a global minimum on C at some

point a, and hence the nonconstant harmonic function —u has a global maximum at a,

contradicting from Theorem 1.4.

AU = Uy + Uyy = =0.

2. OPEN MAPPING THEOREMS

The argument of Subsection 1.6 (or Subsection 1.7) can also be used by replacing
the minimum principle Theorem 1.3 by the open mapping theorem for polynomials,
because an open set that meets a circle must have points inside and outside the circle.

The open mapping theorem is:

Theorem 2.1. Let p(z) € C[z] be nonconstant. Then p(2) is open whenever Q C C is
open.

2.1. Holomorphic functions. The open mapping theorem for holomorphic functions
is:

Theorem 2.2. Let f : Q — C be holomorphic on the connected open set ) and non-
constant. Then p(2) is open.

The usual proof uses Rouchés Theorem. (For an alternative, see Section 4, below.)
Theorem 2.1 is an immediate corollary, and this is the standard way to prove it.

2.2. Smooth functions. The open mapping theorem for vector-valued differentiable
functions is:

Theorem 2.3. Let f : Q — R? be continuously differentiable on the connected open set
Q € RY, with nonsingular Frechet derivative at each point. Then f(Q) is open.

This is a corollary of the inverse function theorem for smooth functions, which can
be proved by applying Banach’s contraction mapping principle.

Notice that an f satisfying the hypotheses must either preserve or reverse orientation
on each connected component of {2, because the sign of the determinant of its derivative
cannot change there.

Theorem 2.3 may be used in a proof of Theorem 2.2, as follows:

Suppose f : 2 — C is holomorphic and nonconstant, and €2 is open. Let C' := {c €
Q: f'(c) = 0} be the set of critical points of f. Then C' has no accumulation points in
Q. Theorem 2.3 tells us that f(Q\ C) is open. So it remains to see that for ¢ € C' and
sufficiently-small > 0, the image f(B(c,r)) is a neighbourhood of a := f(c).

The set P := f~(f(c)) of preimages of f(c) has no accumulation points in 2.

Choose r > 0 smaller than half the distance from ¢ to the rest of C U P U (C\ Q).
Let B be the closed disc B(c,r), let U be its interior, and S be its boundary circle. Let
A be the annulus U \ {c}.

Let F := f(B). Then F is closed, since f is continuous and B is compact. Let
T :=bdy(F), so T C F. Suppose F' is not a neighbourhood of a. Then a must belong
to T. Since f(U \ {a}) is open, and is contained in F, it does not meet 7. Thus
T C {a} U f(S). Since a ¢ f(S), this means that 7" has an isolated point at a.

Now A is dense in B, so D := f(A) is a dense subset of F', thus T' C bdy(D). Since
D is open, it does not meet bdy(D), so bdy(D) C F\ D C T. Thus T' = bdy(D), and
D is a connected open set having a as an isolated boundary point. This implies that D
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contains a deleted neighbourhood of a, and then F' contains a full neighbourhood of a,
contrary to our assumption. Thus f(£2) is open. O

This proof does not simplify materially when f is assumed to be a polynomial, in
place of an arbitrary holomorphic function.

3. Roors

The fundamental theorem implies that each nonzero a € C has m-th roots of each
order m € N, but this fact is more elementary, and can be proved using De Moivre’s
formula. Proving De Moivre’s formula does require some analysis, of course, since we
have to introduce the trigonometric functions first. Look at [16], for instance.

4. FORMAL POWER SERIES

4.1. Let F be the ring of all formal power series over C in one variable, and F* be
the group of invertibles under convolution multiplication. Let G C F be the group
of the series that are invertible under formal composition. Let §, §* and & be the
corresponding subsets of series having positive radius of convergence.

Cartan [5] proves the inverse function theorem for convergent series, using a ma-
jorization argument:

Theorem 4.1. Suppose f € GNF. Then the compositional inverse of f belongs to &.

This has as a corollary the inverse function theorem for holomorphic functions, al-
ready mentioned, and this is an interesting alternative to the use of Rouchés Theorem.

4.2. Roots.

Proposition 4.2. Suppose f = ag+ a12+HOT € F and ag # 0. Then for each m € N
there exists g € F such that g(2)"™ = f(z). Moreover, if f € §, then each choice of g
also belongs to §.

(Here, HOT stands for higher-order terms.)

Proof. Since ag has m-th roots, it suffices to consider the case ag = 1. The binomial
series for the m-th root:

o ,1
rei=(1+z)/™ .= Z <Tg>xn
n=0

has radius of convergence 1 > 0, so the composition g := 7o (f — 1) has positive radius
of convergence if f does, and satisfies ¢ = f. O

This gives us another way to prove the open mapping theorem for holomorphic func-
tions:

Suppose f is holomorphic and nonconstant on a neighbourhood N of a. We want to
see that f(N) is a neighbourhood of b = f(a). Translating before and after, we may
assume a¢ = b = 0. The function f has a convergent power series expansion near 0, so
for some m € N, we have

f(z) =2"(ap + a1z + HOT) = 2™h(z),

with ag # 0. By Proposition 4.2, there is a convergent series g = by + b1z + HOT) such
that ¢™ = h. Then f = (zg(z))"™ near 0. Now by the inverse function theorem, zg(z)
maps N onto a neighbourhood Nj of 0, and since all complex numbers have mth roots,
z +— 2™ maps N; onto a neighbourhood N3 of 0, so f = (2™) o (zg(z)) maps N onto
N>, and we are done.
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5. CONNECTIVITY

Recall that a map is proper if the preimage of each compact set is compact. Proper
maps between metric spaces are continuous. A map f : C — C is proper if it is
continuous and |f(z)] — +oo as |z| = +00.

Theorem 5.1. Suppose M # 0 and N are connected manifolds, and f : M — N 1is
continuous, proper, and open. Then f(M)= N.

Proof. f(M) is nonempty, connected, open and closed in N. Since N is connected,
f(M)=N. O

This gives Theorem 1.1, once we know that nonconstant polynomials are open. This
proof sidesteps the use of maxima and minima.

6. GALOIS THEORY

People who like to use as little analysis as possible are drawn to the following proof
of Theorem 1, which uses substantial results from Galois theory and group theory. It is
found for instance in van der Waerden [17, Kap 11|, or [14]. Lang says it is essentially
one of Gauss’ proofs, and van der Waerden describes it as the second Gauss proof [17,
§81, p.252]%

The analysis is in the following two lemmas.

Lemma 6.1. Fach odd-degree polynomial over R has a real root.

Proof. 1t suffices to consider monic polynomials. If p(z) € R[z] is monic and has odd
degree, then for all large enough real x > 0, p(x) is positive and p(—z) is negative.
By the Axiom of Completeness, there exists a least upper bound A of the set {z € R :
p(z) < 0}. Since p : R — R is a continuous function, it follows readily that p(A\) = 0. O

Lemma 6.2. Each positive real number has a positive real square Toot.

Proof. If 0 < a € R, then p(z) := x? — a is negative at = = 0 and positive for all large
enough real x, so exactly as in the previous lemma, p has a positive real root. O

Corollary 6.3. Each nonzero complex number has a complex square root.

Proof. Indeed, let a, b be arbitrary elements of R . We claim that there are ¢,d € R such
that a + bi = (c + di)?. The case a = 0 is covered by Lemma 6.2 and the observation
that —1 and 7 have complex square roots. For the case of non-zero a, we may assume
that a is positive since —1 has a complex square root, and then by Lemma 6.2 that
a = 1. We have to solve the system

1=c?—d,
b= 2cd.
Squaring the second and multiplying both sides of the first by c¢?, we get
b2
e R
Completing the square gives
@—pr=

The right-hand side has a positive real square root, say e. Then % + e has a positive
real square root, say f. So ¢ = f and d = b/(2¢) give us real numbers that solve the
system. O

2t is worth noting that van der Waerden [17, §80] says that the simplest proof of Theorem 1.1 is one
that uses complex analysis: a counterexample p(z) would have 1/p(z) nonconstant, entire and bounded,
contradicting Liouville’s Theorem.
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Corollary 6.4. Fach monic quadratic over C has a complex root.
Proof. Just use the usual quadratic formula and Corollary 6.3. |

Armed with these, we can prove Theorem 1.1, as follows.

Since —1 is not a square in R, C := R[7] is a degree 2 extension of R.

Suppose some monic polynomial p(z) € C[z] has no root in C. Then there is a proper
finite degree extension K of C, which is Galois over C.

Let S be a Sylow 2-subgroup of Aut(K/R). The fixed subfield K° C K of S is an
odd degree extension of R. Pick & € K such that K° = R[¢]. Then the minimal
polynomial of & over R has odd degree, hence has a root in R, and hence has degree
one. Thus S = Aut(K/R).

Thus Aut(K/R) is a 2-group, hence so is its subgroup Aut(K/C).

Every 2-group has a subgroup of index two?, so choose H < Aut(K/C) of index 2.
Then the fixed subfield K is a degree 2 extension of C. But we can always solve
quadratics over C in C, so C does not have a degree 2 extension. This contradiction
concludes the proof.

7. PURE ALGEBRA

We can avoid analysis completely by changing the question. As already remarked, R is
a convenient fiction, containing a huge set of ‘yellow-pack’ numbers which are literally
indescribable. One can imagine trying to get along without R. Among reasonable
alternatives, three come immediately to mind:

e The field E of ‘Euclidean reals’. These are the numbers corresponding to the
points that you can construct on a line using straight-edge and compass and a
segment on the line with ends labelled 0 and 1. Algebraically, E is a quadratic
closure of Q, i.e. [E has characteristic zero, each quadratic polynomial over E
has a root in E, and no proper subfield of E has this property.

e The field G of ‘Gaussian reals’, or real algebraic numbers. This can be described
without reference to R, as follows. Let (@ be an algebraic closure of QQ, and let
i € Q denote one of the square roots of —1. The field automorphism of Qli]
that sends 7 — —i extends to an involutive field automorphism of @, which we
denote by 7 : z — z. Then G c Q is the subfield fixed by 7, and one sees that
Q = GJi].

If you try, for a moment, to put yourself in Gauss’ shoes, at the time before
he had found his first proof of Theorem 1.1, you see that the great man had to
grapple with the possibility that, big though it may be, C might not be large
enough to embrace C or even Q, and R might not contain a copy of G.

e The field D of real numbers that have a definite description. Without getting
into technicalities, ID contains G and also numbers such as 7 and Euler’s e and ~,
real and imaginary parts of the values of all explicit elementary functions at all
rationals, of zeros of Bessel functions, of Riemann’s ((s), and so on. But since
there are only a countable number of definite descriptions, D is much smaller
than R, even though it contains all the real numbers anyone might ever care
about.

3Each p-group is nilpotent [8, Theorem 3.3(iii)], so each 2-group G has [G,G] < G so the abelian
group G/[G, G] has a subgroup of index 2, hence its preimage under the surjection

G

G%[G,G]

also has index 2.
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If we ask what might replace Theorem1.1 if we replace R and C = R[i] by one of these
alternatives, then we get nowhere with the Euclidean numbers, because there are cubics
over (Q with no solution in E. For G and D, one can formulate reasonable questions.

The fields R, G and D are examples of formally-real fields in the sense of Artin and
Schreier: This just means that —1 is not a sum of squares in the field.

In logical terms, the real-closed formally-real fields share the same first-order prop-
erties as the ordered field R, and are the subject of the Grand Artin-Schreier Theorem
[19, 6]:

Theorem 7.1 (Grand Artin-Schreier Theorem). Let F' be a field. Then the following
are equivalent:

(i) F'is formally real and admits no proper formally real algebraic extension.

(ii) F is formally real, every odd degree polynomial over F' has a root, and for each
x € F*, one of x, —x is a square.

(iii) F is formally real and F(\/—1) is algebraically closed.

(iv) The absolute Galois group of F is finite and nontrivial.

To use this to prove that G[i] and D[i] are algebraically-closed, one needs to verify
condition (ii) for F = G and F' = D. I don’t see any way to do that without applying
the fact that it holds for F' = R and hence that (iii) holds for F' = R.

8. WIDER CONTEXT

It has been said that Theorem 1.1 is neither fundamental nor algebra. Algebra has
changed its meaning in the past two centuries, and no longer just means the theory of
equations, so the real question is whether the theorem is really fundamental for algebraic
equations. The field Q of algebraic numbers is certainly fundamental. It is necessary
to deal with all the algebraic numbers, fictions of our imagination though they be. But
the field of complex numbers is much larger, even in cardinality, and most complex
numbers are even more fictional. In fact, the typical complex number has only generic
properties, i.e. it cannot be characterised by a specific finite list of properties. The field
C is convenient, because Theorem 1.1 implies that it contains an isomorphic copy of
Q and because we can use the richness of complex analysis on it. It is an interesting
consequence of Theorem 1.1 that the field R has index two in its algebraic closure.
However, R is large and mysterious, and open to the same criticism as C.

8.1. C,.

Definition 8.1. |- | is a field norm on the field F if it satisfies the conditions:
(1) |z| is a nonnegative real number, whenever = € F, and |z| = 0 if and only if x = 0.
(2) | +y| < |z| + |y|, whenever z,y € F.
(3) |zy| = |z| - ly|, whenever z,y € F.
The norm is non-archimedean if it satisfies the stronger condition:
(2") |z + y| < max(|z],|y|), whenever x,y € F.

We remark that one could consider a more general concept, where the values of the
norm lie in some totally-ordered abelian group [11].

Only fields of characteristic zero admit a field norm.

Each field of characteristic zero has a subfield isomorphic to Q. Ostrowski [12] proved
that the only field norms on QQ are powers of the usual absolute value and powers of the
p-adic norms corresponding to primes p.

From the adelic point of view, there is little to choose between R and any of the p-adic
completions Q, of the rationals. It is no longer the case that the algebraic closure @;
of Q is a finite extension, nor is it complete with respect to the (unique!) extension of
the p-adic metric, and we can enlarge it to its metric completion, denoted C,.
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Theorem 8.2. [12, Theorem 13, p72][15, Theorem 4.6] The field C, is algebraically-
closed.

The key step in proving this is Krasner’s Lemma:

Lemma 8.3. Suppose K is a field complete with respect to a non-archimedean field
norm | -|. Suppose o, € K. Let L be the Galois completion of K(c, ) and let a;

(7 =1,...,m) be the conjugates of o under the group G of automorphisms of L that fix
K(B). Suppose

| — o) <min{|oy — o] 1i # 5}
Then o € K(f).

Proof. Let 0 € G. Then, since the norm is invariant under o, we have

|8 —a(a)] =lo(8—a)|=|8—al

Thus
|o(@) —af = lo(a) =S+ 5 -«
< max(|o(a) — B8 — af)
=18 —aql
<loj —af, Yo # .
Thus o(a) = «, and so o € K () since it is fixed by G. O

8.2. Proof of Theorem 8.2.
Proof. Fix a € @, nonzero. Let f(x) € Cp,[z] be the (monic) minimal polynomial of «,

and a; (j =1,...,n) be its roots. Let

M := max(1, |a|"), and m := min|a; — oyl
7

Choose a monic polynomial g(x) € @ of degree n with all coefficients within (m/2)" /M
(with respect to the field norm) of the corresponding coefficients of f(x). This ensures
that

mN\”™"
l9(e) = f()] < (%)
Let (31,..., By be the roots of g(x), so that

n

g@) = [[= - 8).

j=1
Then
m\”n
[Tle =81 =lg(a) = F@) < (5) "
j=1
It follows that for some j we have | — ;| < m/2 < m, so by Krasner’s Lemma it
follows that o € K(3;). Thus o € C,,. O

8.3. Spectra. It is interesting that this proof of Theorem 8.2 is quite different from
those we have seen of Theorem 1.1. It uses the extended norm on Q,. It raises the
question whether Theorem 1.1 could be proved in the same way. In fact, if one could
prove without assuming the fundamental theorem of algebra that the usual absolute-
value norm extends from C to C, then one could deduce the fundamental theorem in
various ways. For example, the norm would extend to the metric completion C, which
would then be a Banach algebra (a complete normed complex algebra) and a field, and

the Gelfand-Mazur Theorem[1] then yields C = C.
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Unfortunately, the usual proof of Gelfand-Mazur uses Liouville’s Theorem, which
may be applied more directly to prove the fundamental theorem. The key ingredient
in the proof of the Gelfand-Mazur Theorem is that spectra are always nonempty, for
elements of a Banach algebra with unit. The spectrum of an element f of a Banach
algebra A is defined to be

spec(f) :={A € C: f — Al is noninvertible in A}.

Theorem 8.4. Let A be a complete normed algebra with unit over C. If f € A, then
spec(f) # 0.

This theorem may be regarded as a generalisation of the fundamental theorem of
algebra, because each monic complex polynomial of degree n is the characteristic poly-
nomial of a companion n Xn matrix, the set of all n xn complex matrices forms a Banach
algebra, and the spectrum of a matrix in that algebra is the set of its eigenvalues.

Having written the account above, I had a look at Wikipedia [18], and found consid-
erable overlap, along with a good deal of historical information. In particular, it seems
that the first correct proof of the full theorem was given by Argand, in 1806, and not
by Gauss, as folklore said.

9. FINDING THE ROOTS

It is one thing to know the number of complex roots of a polynomial, counting
multiplicities, but that doesn’t butter any parsnips unless you can calculate them all to
any desired accuracy. Ever since Galois, we know that this involves more than just the
computation of k-th roots. Newton’s method, the iteration of

will approximate any given root of p(z), once you get close enough. For simple roots,
it is phenomenally efficient, eventually doubling the number of significant figures at
each step. But how can you ensure that you get close enough to each and every root?
This problem was solved quite recently by applying twentieth-century advances in the
theories of complex dynamical systems, topology, and conformal invariants. The initial
breakthrough was made in the doctoral thesis of Scott Sutherland, and a refined and
polished account is available in the paper of Hubbard, Schleicher and Sutherland [10].
This is a beautiful exposition of a stunning piece of work. It involves the classical Gauss-
Lucas Theorem, a result of F. Riesz about radial limits, the Ahlfors conformal modulus
and extremal length. The basic idea is that each root of p(z) lies in a basin of attraction
for g(z) that contains a tentacle heading out to infinity, and each sufficiently-large circle
meets each of these basins in a set that contains an interval that is not too small. So
evenly-spaced points on the circle, provided the spacing is not too large, will do as a set
of starting points for iterations of ¢(z) that will converge to all the roots. In fact, the
same evenly-spaced points will deliver all the roots of all possible polynomials p(z) of a
given degree d that have all their roots in the unit disc. By using some fast footwork,
the number of starting points can be further reduced by placing them strategically
on several circles instead of one. They give an explicit construction of approximately
0.2663 log d circles, each containing 4.1627d log d points at equal distances.
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