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The Trace and its Extensions in Operator Algebras

MARTÍN ARGERAMI AND MOHAMMAD SAL MOSLEHIAN

Abstract. We discuss how mathematicians generalize the usual trace on matrices
to various finite and infinite-dimensional algebras. We also examine the existence or
lack of (faithful) tracial states in the framework of operator algebras.

1. Introduction and Preliminaries

A natural invariant associated to each linear operator T acting on an n-dimensional
vector space V is its characteristic polynomial pT (λ) = det(T − λI), where I is the
identity operator on V and λ is a scalar (for simplicity and because of where we are
going, we will assume that the field of scalars is C). This polynomial encodes essential
information about T ; namely its eigenvalues, which are the roots of pT (λ).

In turn, this gives importance to its coefficients, as invariants of the operator. The
most well-known of these coefficients is the constant term, that is the determinant
detT = pT (0). This is equal to the product of the eigenvalues of T , counting multiplic-
ities. Among the other coefficients of pT (λ), the best known is the coefficient of λn−1.
This coefficient is equal to the sum of the eigenvalues of T , counting multiplicities, and
it is usually called the trace of T , and denoted by tr(T ). Eigenvalues are crucial in
understanding the behavior of linear operators, so the trace and the determinant give
quick ways to relate a matrix to its eigenvalues without having to compute them.

Via the Jordan form JT of T , the number tr(T ) can be seen as the sum of the diagonal
entries of JT . A straightforward computation shows that tr(ST ) = tr(TS) for any two
linear operators S and T acting on V , and hence tr(STS−1) = tr(T ) for all invertible
S and all T . From this one can deduce that tr(T ) =

∑n
i=1 aii for any presentation of T

as a matrix A = [aij ] with respect to some basis of V . It is not hard to show that tr is
the only linear functional on V with the tracial property :

tr(ST ) = tr(TS) for all S and T, (1)

up to normalization by a scalar (see Subsection 2.1.1 for a proof of uniqueness).
The trace is particularly meaningful in the case where our finite-dimensional vector

space is a Hilbert space H , but its straightforward extension to the infinite-dimensional
case cannot work for all bounded operators on H . For example, for the diagonal oper-
ator diag(1, 1/2, 1/3, . . .) acting on the Hilbert space ℓ2 of square summable sequences,
the sum of its diagonal entries is not finite. Extensions exist, though, and they appear
in many flavours. Discussing those extensions is the main goal of this article.

To fix notation, we let H denote a Hilbert space over the field C with inner product
〈 · , · 〉. We write B(H ) for the ∗-algebra of all linear bounded operators on H ; we
denote by I the identity operator on H . The space of all compact operators acting on
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H is denoted by K(H ), which is a closed two-sided ideal of B(H ). In the case where
dimH = n, we can identify B(H ) = K(H ) with the matrix algebra Mn of all complex
n× n matrices. In this latter case the trace takes the form

tr(T ) =
n∑

k=1

〈Tek, ek〉,

where {ek}
n
k=1 is any orthonormal basis of H . We denote the normalized trace 1

n tr by

t̂r.
As noted by Albrecht Pietsch [26], the definition of the trace for a square matrix

mentioned above has been in use since the 18th century. The term “Spur” for this
notion was first introduced by Dedekind [11] within the context of algebraic number
theory. In his work on the development of mathematical foundations for quantum
mechanics ([32, 33, 34], compiled in [35]), von Neumann defined the trace of a positive
operator acting on a Hilbert space and considered the ideal of trace-class operators.
Incidentally, von Neumann also defined for the first time the idea of an abstract Hilbert
space.

As soon as one tries to extend the notion of trace to the infinite-dimensional setting,
issues arise: the only linear functional ϕ : B(H ) → C satisfying the tracial property is
the zero functional. This is what led von Neumann to consider the trace-class operators,
which form in a sense the largest ideal T(H ) where (1) holds. In fact, T(H ) is the
set of all operators T ∈ B(H ) such that ‖T‖1 :=

∑
e∈E〈|T |e, e〉 < ∞, where E is

any orthonormal basis for H . In addition, we can define the trace of T ∈ T(H ) as
tr(T ) :=

∑
e∈E〈Te, e〉, and this definition is independent of the choice of basis. The

trace in this context appears to be intrinsic, as T(H ) can be seen as the predual of
B(H ), in the sense that we have isometric isomorphisms

K(H )∗ = T(H ), T(H )∗ = B(H ),

where the isomorphisms in both cases are given by the trace; that is, a trace-class
operator T is seen as a bounded linear functional on K(H ) via S 7−→ tr(ST ), and
T ∈ B(H ) is seen as a bounded linear functional on T(H ) via the same duality pairing.

A positive linear functional ϕ on a C∗-algebra A is called tracial if it satisfies (1) for
all S, T ∈ A . As in [16, Proposition 8.1.1], one can observe that (2) and (3), the latter
when A is unital, are each equivalent to (1):

ϕ(X∗X) = ϕ(XX∗), X ∈ A . (2)

ϕ(UXU∗) = ϕ(X), X ∈ A and U ∈ A a unitary. (3)

There are several papers exploring the characterizations of the tracial functionals on
matrices and operator algebras; we mention [3] for further reference.

The study of tracial states, which are tracial positive linear functionals of norm one, is
an active area in the theory of operator algebras, particularly in Elliott’s Classification
Program (see [36] as an initial source of a very large number of references). It is a natural
question whether certain classes of C∗-algebras or von Neumann algebras admit a tracial
state or not.

Besides the intrinsic interest for operator algebras, such studies have applications in
other disciplines. From classifying linear operators to enabling quantum computations
and optimizing machine learning models, the trace features both in abstract theory and
in real-world applications.

In quantum mechanics, the trace is used in defining the notion of density matrix; such
a matrix ρ is a positive semidefinite matrix of trace one. The entropy of a quantum
system with density matrix ρ is given by S = − tr(ρ ln ρ); see [10, 24]. Moreover, the
concept of partial trace in quantum information theory is used to describe subsystems.
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The partial trace tr1 : Mn ⊗ Mm → Mm is the linear map induced by tr1(A ⊗ B) =
(trA)B and the partial trace tr2 : Mn⊗Mm → Mn is induced by tr2(A⊗B) = (trB)A.
In another setting, the trace is also used in defining the Frobenius inner product on
Mn via 〈A,B〉 = tr(B∗A). This inner product is useful in optimization problems over
matrices, for example in machine learning where one may minimize some loss function
that is expressed using the trace. Another application occurs in random matrix theory,
where the trace of random matrices is studied, and results such as the law of large
numbers for traces of powers of matrices relate to eigenvalue distributions.

For the readers’ convenience we have included a brief summary of the basic theory
of C∗-algebras and von Neumann algebras in Appendix A. For any undefined notations
or terminologies, readers are referred to [2] for matrix theory and to [16, 22, 31] for the
theory of operator algebras.

The main objective of this expository article is to discuss various extensions of the
usual trace tr : Mn → C to more general settings in operator algebras. Although the
literature contains many interesting and deep results on this topic (see, e.g., [20]), we
focus on presenting fundamental facts and some new proofs, and illustrative examples
for readers familiar with basic operator algebra theory.

2. Extensions of the usual trace, Uniqueness, and Examples

We aim to explore how to extend the usual trace tr : Mn → C to positive linear maps
satisfying the tracial property by considering changes in the domain Mn, codomain C,
or both, to some operator algebras. We also examine the existence or lack of tracial
states in the framework of operator algebras.

2.1. Changing domain.

2.1.1. Replacing Mn with a finite-dimensional C∗-algebra. As mentioned in the intro-
duction, t̂r is the only tracial state on Mn.

Indeed, consider the canonical matrix unit system {Eij} ⊆ Mn, which satisfies
EijEkl = δjkEil. For a tracial state ϕ, if i 6= j then

ϕ(Eij) = ϕ(EijEjj) = ϕ(EjjEij) = ϕ(0) = 0;

and for any i, j

ϕ(Eii) = ϕ(EijEji) = ϕ(EjiEij) = ϕ(Ejj).

Thus, for A = [aij ] =
∑n

i,j=1 aijEij ∈ Mn, we have

ϕ(A) =
n∑

i,j=1

aij ϕ(Eij) =
n∑

i=1

aii ϕ(Eii) = ϕ(E11)
n∑

i=1

aii = ϕ(E11) tr(A)

=
1

n
tr(A) = t̂r(A).

If we replace Mn with a finite-dimensional C∗-algebra A =
⊕m

k=1Mk(m), then there
are uncountably many tracial states ϕ : A → C, of the form

ϕ
( m⊕

k=1

Xk

)
=

m∑

k=1

tk t̂r(Xk),

where tk ≥ 0 for all k and
∑m

k=1 tk = 1.
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2.1.2. Substituting C in Mn(C) with an arbitrary C∗-algebra A having a tracial state.

Given a tracial state ϕ on A , we can define a tracial state on Mn(A ) by

ϕn([aij ]) :=
1

n

n∑

i=1

ϕ(aii). (4)

And this is the only way to construct tracial states on Mn(A ): if γ : Mn(A ) → C

is a tracial state, then there exists a unique tracial state ϕ on A, defined by ϕ(a) =
γ(a⊗ E11)), such that γ = ϕn. So there is a natural bijective correspondence between
tracial states on A and tracial states on Mn(A ).

2.1.3. Replacing Mn(C) with a commutative C∗-algebra. One may replace Mn with a
commutative C∗-algebra A . In this case, every state is tracial. It is known that A

is isometrically ∗-isomorphic to C0(Ω) for some locally compact Hausdorff space Ω.
Therefore, any (tracial) positive linear functional on A can be represented as ϕ(f) =∫
Ω fdµ for a unique positive Borel measure µ on Ω such that µ(Ω) = ‖ϕ ‖, where ‖ϕ ‖
denotes the operator norm of ϕ. Hence there exist uncountably many tracial states on a
commutative C∗-algebra, as long as it is not one-dimensional. If A is finite-dimensional,
then Ω must be a finite set with, say, n elements; see [22, p. 57]. In such case, the state
space is parametrized by the simplex {(t1, . . . , tn) ∈ R

n : tj ≥ 0 for all j,
∑

j tj = 1}.

2.1.4. Finite factors have unique tracial states. It is a seminal result of Murray and
von Neumann [23] that a finite factor has a unique tracial state (the original Murray–
von Neumann ideas are developed with detail in [30, Section 1.3]). The unique tracial
state is always faithful and normal. A finite-dimensional example of a finite factor is
Mn, n ≥ 1 with the usual tracial state t̂r. An infinite-dimensional example of a finite
factor is the hyperfinite II1-factor, which can be seen as the double commutant (that
is, the sot-completion) of

⋃
n∈NM2n (with the embeddings A 7−→ A⊕ A) via the GNS

representation of the tracial state ϕ((An)) extending the natural normalized trace on
each subalgebra. The hyperfinite II1-factor also appears as the sot-closure of the image
of the group algebra, via the left-regular representation, of any amenable countable
discrete group G with infinite conjugacy classes.

2.1.5. C∗-algebras without any tracial states. There exist C∗-algebras A without any
tracial states. A separable example is the simple C∗-algebra K(H ) for any infinite-
dimensional separable Hilbert space H . Given a fixed orthonormal basis (ei)

∞
i=1 for

H , the corresponding matrix units are the operators {Eij}, where Eij is the rank-
one operator that sends ej to ei. As in the matrix case, they satisfy the relations
ErsEij = δsiErj . In particular {Eii} are pairwise orthogonal rank-one projections. As
ϕ is tracial, ϕ(Eij) = 0 for any i 6= j, and

ϕ(Ejj) = ϕ(EjiEij) = ϕ(EijEji) = ϕ(Eii).

Then, with Pn =
∑n

i=1Eii,

nϕ(E11) = ϕ(Pn) ≤ ‖ϕ ‖ ‖Pn‖ = 1.

As n is arbitrary, this implies that ϕ = 0, which is not a state since its operator norm
is not equal to one.

The argument above also demonstrates that B(H ) is a nonsimple C∗-algebra with-
out any tracial state. It is known that a C∗-algebra A has no tracial states if and only
if its universal enveloping von Neumann algebra π(A )

′′

is properly infinite.

Haagerup proved that if A is a unital C∗-algebra, then A has no tracial state if and
only if there exist n ≥ 2 and a finite set {A1, . . . , An} ⊆ A such that

∑n
i=1A

∗
iAi = 1

and ‖
∑n

i=1AiA
∗
i ‖ < 1 [12, Lemma 2.1]. Pop [27] showed that a C∗-algebra A has
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no tracial state if and only if there exists n ≥ 2 such that any element of A can be
expressed as a sum of n commutators [Ai, Bi] = AiBi−BiAi, 1 ≤ i ≤ n. An interesting
question posed by Pop [27] is that if A has no tracial state, what is the smallest n such
that each element of A can be expressed as a sum of n commutators?

2.1.6. Existence of a unique tracial state on a nonnuclear C∗-subalgebra of a separa-

ble simple C∗-algebra possessing no tracial state. The Choi algebra is the C∗-algebra
generated by two unitary operators U and V acting on an infinite-dimensional Hilbert
space H such that U2 = V 3 = 1. For a construction of U and V , Choi [7] used suit-
able decompositions H = H0 ⊕ H1 and H1 = Hα ⊕ Hβ subject to the conditions
dimH0 = dimH1 = dimHα = dimHβ . He then defined U and V by block operator
matrices

[
0 U1

U2 0

]
∈ B(H0 ⊕ H1) and



0 0 V1
V2 0 0
0 V3 0


 ∈ B(H0 ⊕ Hα ⊕ Hβ),

where U1 : H1 → H0, U2 : H0 → H1, V1 : Hβ → H0, V2 : H0 → Hα, and V3 : Hα →
Hβ are unitaries between corresponding Hilbert subspaces of the same dimensions. This
C∗-algebra has a unique tracial state, even though it is a C∗-subalgebra of the Cuntz
C∗-algebra O2, which has no tracial state. To prove the latter fact, recall that O2 is
generated by two isometries S1 and S2 such that S1S

∗
1 + S2S

∗
2 = I. If ϕ is a tracial

state on O2, then 1 = ϕ(I) = ϕ (S1S
∗
1 + S2S

∗
2) = ϕ(S1S

∗
1)+ϕ(S2S

∗
2) = ϕ(I)+ϕ(I) = 2,

a contradiction. A nonunital simple separable C∗-algebra with a unique tracial state
is the so-called Jacelon–Razak C∗-algebra; see [14]. An example of a unital separable,
nuclear projectionless infinite-dimensional C∗-algebra with a unique tracial state is the
Jiang–Su algebra [15].

2.1.7. Kaplansky’s problem. What happens if one assumes that the tracial property
ϕ(AB) = ϕ(BA) holds for specific classes of elements A,B ∈ A but not necessarily all
elements of A ? For instance one could require that ϕ(A∗A) = ϕ(AA∗) for all A ∈ A .
The linearity of ϕ then implies (1). But what if ϕ is not required to be linear? A
function ϕ : A → C is called a quasitrace if it satisfies ϕ(A∗A) = ϕ(AA∗) for all
A ∈ A , it satisfies ϕ(A + iB) = ϕ(A) + iϕ(B) for all A,B selfadjoint, and it is linear
on each abelian subalgebra of A . Kaplansky [17] asked whether every II1 AW∗-factor
is a von Neumann algebra. This would be true if one can prove that every quasitrace
is a trace. While still an open problem, Haagerup [12] was able to prove in 1991 that
each quasitrace on a unital exact C∗-algebra is a trace. This result has had significant
applications to the theory of C∗-algebras.

2.1.8. Approximately tracial state. In perturbation theory, one considers situations where
(1) we have an object that approximately fulfills a property, and we try to prove that
it is close to an object that exactly satisfies that property; (2) there exists a problem
for which we do not know the exact solution, but we can find an approximate solution
for it; (3) there are objects with an approximate property and we seek an object that
exactly meets the property. Here we deal with the third situation.

We may consider (F , ε)-almost traces for any given finite subset F of the closed
unit ball of A and any ε > 0. This means that there is a state ϕF ,ε on A such that
|ϕF ,ε(A

∗A−AA∗)| < ε for all A ∈ F . It is shown in [19, Lemma 5.4] that a C∗-algebra
A has a tracial state ϕ if and only if it has (F , ε)-almost traces for all F and ε. Indeed,
ϕ can be taken to be an accumulation point of the net (ϕF ,ε) in the weak∗-compact
unit ball of the dual of A .
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2.2. Changing codomain.

2.2.1. An extension of the trace with values in a C∗-algebra. In seeking an extension
of the trace, one may substitute the C∗-algebra C with an arbitrary C∗-algebra A .
If ϕ : Mn → A is a tracial positive linear map, then by repeating the argument in
subsection 2.1.1 we get

ϕ(A) =
n∑

i,j=1

aij ϕ(Eij) =
n∑

i=1

aii ϕ(Eii) = ϕ(E11)
n∑

i=1

aii = ϕ(E11) tr(A)

= (nϕ(E11))
1

n
tr(A) = ϕ(I)t̂r(A),

where now ϕ(I) is an element of A .

2.3. Changing both domain and codomain.

2.3.1. A generalization of the trace that implies the commutativity of the underlying

C∗-algebra. One can think of replacing Mn and C with Mn(A ) and A , respectively, for
some unital C∗-algebra A , and then define ϕ : Mn(A ) → A by ϕ([Aij ]) =

∑n
i=1Aii.

Then, if In denotes the identity element of Mn(A ) and ϕ satisfies the tracial property
(1), we have

AB =
1

n
ϕ(ABIn) =

1

n
ϕ(AInBIn) =

1

n
ϕ(BInAIn) =

1

n
ϕ(BAIn) = BA.

Therefore, A has to be commutative, every state is tracial, and A is of the form C(Ω)
for some compact Hausdorff space Ω.

2.3.2. Replacing Mn and C with an arbitrary C∗-algebra and B(H ), respectively. A
linear map Φ : A → B is called tracial and positive if it takes positive elements of A to
those of B and fulfills the condition (1). A result due to Choi and Tsui [8, pp. 59-60]
states that if Φ : A → B(H ) is a tracial and positive linear map, then there exist a
commutative C∗-algebra C(X), where X is a compact Hausdorff space, and tracial and
positive linear maps φ1 : A→ C(X) and φ2 : C(X) → B(H ) such that Φ = φ2 ◦ φ1. In
particular, any tracial and positive linear map is completely positive.

2.3.3. Substituting Mn and C with a properly infinite von Neumann algebra M and a

unital C∗-algebra B, respectively. If Φ : M → B is a unital tracial positive linear map,
then Φ is identically zero. The reason is that we can “halve” projections. In particular,
there exists a projection P ∈ M such that P ∼ I ∼ I − P [31, Proposition V.1.36].
Hence, there are partial isometries U, V ∈ M such that U∗U = V ∗V = I, V V ∗ = P ,
and UU∗ = I − P . By the tracial property of Φ, we have Φ(I) = Φ(P ) = Φ(I − P ).
Therefore, Φ(I) = Φ(P )+Φ(I−P ) = 2Φ(I), whence Φ(I) = 0. Now given any positive
element A ∈ A , we have A ≤ ‖A‖ I. Therefore, 0 ≤ Φ(A) ≤ ‖A‖Φ(I) = 0, and hence,
Φ(A) = 0. As any element in A is a linear combination of four positive elements, it
follows that Φ = 0.

2.4. C∗-algebras and faithful tracial states.

2.4.1. A unital C∗-algebra with a faithful tracial state is finite. Let ϕ be a faithful
tracial state on a unital C∗-algebra A . We show that if I ∼ P , then P = I. To see
this, suppose U∗U = I. Then, ϕ(I − UU∗) = ϕ(U∗U − UU∗) = 0, and because ϕ is
faithful, we infer that UU∗ = I. This shows that every isometry is a unitary, and in
particular the identity I is finite.
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2.4.2. C∗-algebras and von Neumann algebras admitting a faithful tracial state. As op-
posed to the case of von Neumann algebras, it is not entirely clear how to characterize
a C∗-algebra as finite. The naive way is to use the same definition as for von Neumann
algebras. This is done for instance on [28], and it is the definition used in 2.4.1 above.
The problem with this is that a C∗-algebra may not have enough projections, or it may
even fail to have nonzero projections at all; see [18]. This would make C∗-algebras that
“feel” infinite be finite, for example C0(R,O2). A stronger definition is used in [29],
where the requirement for finiteness is that all projections are finite, together with the
existence of an approximate unit made entirely of projections. With this definition,
combining the results from [4] and [12] it is proven that every unital, stably finite, exact
C∗-algebra admits a tracial state. Here stably finite means that A ⊗K(H ) contains
no infinite projections. Another notion of finite was considered by Cuntz and Pedersen
in [9]. They consider, instead of equivalence of projections, equivalence of positive ele-
ments, where x ∼ y in A if there exists a sequence {zn} ⊂ A such that x =

∑
m z

∗
nzn

and y =
∑

n znz
∗
n. They say that A is finite if 0 ≤ y ≤ x and y ∼ x implies x = y.

With this definition of finite, they prove that a separable C∗-algebra A is finite if and
only if it admits a faithful tracial state.

For von Neumann algebras, the situation is simpler. If M is a finite von Neumann
algebra with separable predual, then it has a faithful tracial state. The von Neumann
algebra M is finite precisely when in the central decomposition of M there exist only
types In with n <∞ and II1.

There is a general form for tracial states on finite von Neumann algebras: if M is
a finite von Neumann algebra equipped with a center-valued tracial map trc : M →
Z(M ), then each tracial state ϕ on M is of the form ϕ = ρ ◦ trc, where ρ is a state
on Z(M ). The tracial state ϕ is normal on M if and only if the state ρ is normal on
Z(M ), as shown in [16, Theorems 8.2.8 and 8.3.6]; see also [5, Theorem 4.1].

2.4.3. A normal state on a von Neumann algebra gives a faithful normal tracial state

on a reduced von Neumann algebra. Let’s consider a similar construction. Let M be
a von Neumann algebra and let ϕ be a nonzero normal state on M with support P .
Then P M P is a von Neumann algebra with a faithful state ϕ. If τ denotes the unique
center-valued trace on M , then ψ = ϕ ◦τ is a faithful normal tracial state on P M P ;
see [16, Chapter 8] for more details.

2.4.4. Invertibility in the presence of a faithful tracial state. If a C∗-algebra A has a
faithful tracial state ϕ, then the one-sided invertibility of A ∈ A implies the two-sided
invertibility of A. Indeed, if BA = I, then

I = (BA)∗BA = A∗B∗BA ≤ ‖B‖2A∗A.

This implies that A∗A ≥ ‖B‖−2 I, so A∗A is invertible. Let V = A(A∗A)−1/2. Then

V ∗V = (A∗A)−1/2A∗A(A∗A)−1/2 = I.

We obtain that ‖V V ∗‖ = ‖V ‖2 = ‖V ∗V ‖ = 1; thus 0 ≤ V V ∗ ≤ I. In addition,

0 ≤ ϕ(I − V V ∗) = 1− ϕ(V V ∗) = 1− ϕ(V ∗V ) = 1− 1 = 0.

As ϕ is faithful, V V ∗ = I, so V is unitary (in particular, it is invertible). Thus,

A = V (A∗A)1/2 is invertible. An analog computation can be made when A is right-
invertible.

2.4.5. Factors with a faithful tracial state. It is notable that a faithful tracial state ϕ
on a factor M has the property

P ∼ Q⇐⇒ ϕ(P ) = ϕ(Q)
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for all projections P,Q ∈ M . Indeed, if two projections P,Q ∈ M are not equivalent,
then by the Comparison Theorem in factors [16, Theorem 6.2.7], we may assume P ≺ Q
(otherwise, we obtain Q ≺ P and we can reason the same). That is, P ∼ Q1 ≤ Q
for some projection Q1. Therefore, ϕ(P ) = ϕ(Q1) ≤ ϕ(Q). If ϕ(P ) = ϕ(Q), then
ϕ(Q−Q1) = 0 and faithfulness implies that Q1 = Q; this means P ∼ Q, a contradiction.
Thus, ϕ(P ) = ϕ(Q1) < ϕ(Q), and so ϕ(P ) and ϕ(Q) are distinct. The converse is clear
by the tracial property of ϕ.

2.4.6. Examples of nonfaithful tracial states. Given a unital C∗-algebra A with a faith-
ful tracial state ϕ, the extension ψ : A ⊕A → C defined by ψ(A,B) = ϕ(A) is a
nonfaithful tracial state. Furthermore, the restriction of a tracial state on a C∗-algebra
to a C∗-subalgebra may fail to be a state. For example, let A be a C∗-algebra and
consider the tracial state ϕ : A ⊕Mn → C defined by ϕ(A,B) = t̂r(B). Then, the
restriction of ϕ to A is identically 0, which is not even a state. Another example is to
consider a non-factor M with a faithful tracial state ϕ. Given a nontrivial projection
in the center of M , we have φ(P ) > 0 by the faithfulness of ϕ. Then ψ(A) = ϕ(AP )
provides a nonfaithful tracial state, since Ψ(I − P ) = 0. In this situation we can get
different faithful tracial states by weighting, in the following sense: for each t ∈ [0, 1],

ψt(A) =
t

ϕ(P )
ϕ(AP ) +

(1− t)

ϕ(P⊥)
ϕ(AP⊥),

where P⊥ = I − P , is a faithful tracial state.

2.4.7. GNS construction for a tracial state. Let us now describe a situation where one
extends a faithful tracial state on a unital C∗-algebra A to a faithful normal tracial
state on a certain von Neumann algebra. We use the notation in the GNS construction
(described in Appendix A). As ϕ is faithful, Nϕ = 0, so Hϕ is the completion of A with

respect to the norm ‖A‖2,ϕ = ϕ(A∗A)1/2 induced by the inner product 〈a, b〉 = ϕ(b∗a).
For instance, if A = L∞[0, 1] and ϕ is integration with respect to the Lebesgue measure,
then Hϕ = L2[0, 1].

In addition, the positive linear functional ϕ̃ : πϕ(A )
′′

→ C defined by ϕ̃(T ) :=

〈Txϕ, xϕ〉 is a faithful normal tracial state on the von Neumann algebra πϕ(A )
′′

gen-
erated by πϕ(A ), since ϕ̃(πϕ(A)) = ϕ(A) for all A ∈ A (see (5)) and πϕ(A ) is

dense in πϕ(A )
′′

in the strong operator topology. Therefore, πϕ(A )
′′

is a finite von
Neumann algebra; see [1, Lemma 2.2] for details. Furthermore, if f is a continu-
ous real-valued function on an interval containing the spectrum of A ∈ A , then
ϕ(f(A)) = ϕ̃(πϕ(f(A))) = ϕ̃(f(πϕ(A))). This property is employed in [25] to establish
that if f is a monotone (convex) function, then so is A 7→ ϕ(f(A)).

Since ϕ is a faithful tracial state, the representation πϕ : A → B(Hϕ) is one-to-one,
for if πϕ(A) = 0, then (5) implies that ϕ(A∗A) = 0, and so A = 0.

2.4.8. Constructing a von Neumann algebra with a faithful normal tracial state from a

family of C∗-algebras admitting tracial states. Let J be an infinite set equipped with a
nontrivial ultrafilter α, meaning that α is free and there exists a sequence (Jn) in α such
that ∩nJn = ∅. Suppose that for each i ∈ J there exists a unital C∗-algebra A i with a
tracial state ϕi. Then, the tracial ultraproduct

∏α
i∈J (A i, ϕi) is defined to be the C∗-

product
∏

i∈J A i modulo the ideal of all (Ai) in
∏

i∈J A i such that limi→α ‖Ai‖
2
2,ϕi

=

limi→α ϕi (A
∗
iAi) = 0. It is established in [13, Theorem 4.1] that a tracial ultraproduct

α∏

i∈J

(A i, ϕi) of C∗-algebras is a von Neumann algebra with the faithful normal tracial

state ψa ((Ai)) := limi→α ϕi (Ai).
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Appendix A. Basics of C∗ and von Neumann Algebras

A C∗-algebra is a complex Banach ∗-algebra A with an involution such that ‖A∗A‖ =
‖A‖2 for all A ∈ A . Every C∗-algebra can be realized as a C∗-subalgebra of B(H ) for
some Hilbert space H (Gel’fand–Naimark–Segal; see [22, Theorem 3.4.1]). On B(H )
we can consider the operator norm, defined as

‖T‖ = sup{‖Tx‖ : x ∈ H , ‖x‖ = 1}.

An element A ∈ A is selfadjoint if A∗ = A and positive if A = B∗B for some B ∈ A

(equivalently, if A = A∗ and σ(A) ⊂ [0,∞), where σ(A) denotes the spectrum of A).
We denote by A

+ and A
sa the subsets of positive and selfadjoint operators in A ,

respectively. For two self-adjoint operators (matrices) A and B, we say that A ≤ B
whenever B−A is positive (positive semidefinite). A rank-one projection is an operator
of the form e⊗ e for some unit vector e ∈ H , where (e⊗ e)(f) := 〈f, e〉e for all f ∈ H .

By the commutant of a set X ⊆ B(H ), we mean the set X ′ = {Y ∈ B(H ) : XY =
Y X, X ∈ X}. A non-degenerate ∗-subalgebra M of the algebra B(H ) is called a von

Neumann algebra acting in the Hilbert space H if M = M ′′. Von Neumann’s Double

Commutant Theorem states that for a non-degenerate ∗-algebra M we always have

M ′′ = M
sot

, where sot (“strong operator topology”) denotes pointwise convergence.
The commutative von Neumann algebra Z(M ) := M ∩M

′ is referred to as the center
of M , which in turn is always of the form L∞(Ω, µ) for some measure space (Ω, µ). A
factor is a von Neumann algebra with trivial center. If P ∈ M is a projection (that is,
P 2 = P and P ∗ = P ), the corresponding reduced von Neumann algebra is defined as
MP = {PX|PH : X ∈ M }.

For projections P,Q ∈ M , we denote P ∼ Q (Murray–von Neumann equivalence) if
P = U∗U and Q = UU∗ for some U ∈ M ; intuitively this says that both projections
have the same rank, but there is a dependence on the algebra for the existence of the
partial isometry U , so the notion of equivalentce is intrinsic to M . A von Neumann
algebra M is said to be finite if P = Q for any equivalent projections P,Q ∈ M with
P ≤ Q. Abelian von Neumann algebras are trivially finite. A non-finite projection
is said to be infinite, and properly infinite if it is nonzero and infinite, and for every
nonzero central projection Q ∈ M , either QP = 0 or QP is infinite. A von Neumann
algebra is said to be finite or properly infinite if its identity has the corresponding
property. It is known that there exists a unique projection P0 in the center Z(M ) of
M such that P0 is finite and I −P0 is properly infinite. Hence, we have the direct sum

M = MP0 ⊕ M (I − P0),

where MP0 is finite and M (I − P0) is properly infinite.
We say that a projection in M is abelian if the algebra PMP is commutative. A

von Neumann algebra M is said to be of type I if every projection in Z(M ) majorizes
a nonzero abelian projection in M . If there is no nonzero finite projection in M , then
it is said to be of type III. If M has no nonzero abelian projection and if each nonzero
projection in Z(M ) majorizes a nonzero finite projection in M , then it is said to be of
type II. If M is type II and finite, then it is said to be of type II1. If M is of type II
and properly infinite, then it is said to be of type II∞.

Every von Neumann algebra M has a unique central decomposition into a direct sum
of subalgebras of type I, type II1, type II∞, and type III [31, Chapter V, Theorem
1.19]. Thus, M = MPI

⊕MPII1
⊕MPII∞

⊕MPIII
, where projections PI , PII1 , PII∞ , and

PIII in Z(M ) are such that PI + PII1 + PII∞ + PIII = I; it is possible for one or more
of these to be zero.

A linear functional ϕ on A is said to be positive if ϕ(X) ≥ 0 for all positive elements
X ∈ A . It is referred to as a state if it is positive and its operator norm ‖ϕ ‖ is
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equal to one. The positivity-preserving property of a linear functional ϕ is equivalent
to ‖ϕ ‖ = ϕ(I); see [22, Corollary 3.3.5]. It is called faithful if it is one to one on
A

+. A positive linear functional ϕ on a von Neumann algebra M is said to be normal

if Xj ր X (that is, 〈Xjz, z〉 ր 〈Xz, z〉 for all z ∈ H ) with Xj , X ∈ M sa implies
ϕ(X) = supϕ(Xi).

We briefly introduce the GNS construction corresponding to a given state on a unital
C∗-algebra A . Suppose that ϕ is a state and let Nϕ = {A ∈ A : ϕ(A∗A) = 0}; this is
a norm-closed left ideal of A . An inner product on the quotient space A /Nϕ can be
defined by

〈A+Nϕ, B +Nϕ〉 := ϕ(B∗A)

The completion of this inner product space is denoted by Hϕ. The linear operator
πϕ : A /Nϕ → A /Nϕ defined as πϕ(A+Nϕ)(B +Nϕ) = AB +Nϕ can be extended to
a linear operator on Hϕ denoted by the same πϕ(A). Moreover, πϕ : A → B(Hϕ) is a
∗-homomorphism between C∗-algebras; that is, a representation. In addition, the unit
vector xϕ = I +Nϕ ∈ Hϕ is cyclic (meaning that πϕ(A )xϕ is dense in Hϕ) and

ϕ(A) = 〈πϕ(A)xϕ, xϕ〉. (5)

The triple (πϕ,Hϕ, xϕ) is called the GNS representation (from Gelfand–Naimark–
Segal).

The pair {π,H } =
⊕

ϕ∈S(A ) {πϕ,Hϕ} is known as the universal representation

of A . Here, S(A ) denotes the set of all states on A . The von Neumann algebra
M = π(A )′′ generated by π(A ) is said to be the universal enveloping von Neumann

algebra of the C∗-algebra A [31, Chap. III, Definition 2.3].
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