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Finding Small Solutions of Bivariate Linear Congruences

PETROULA DOSPRA

Abstract. In this note, we propose an algorithm for computing all solutions of small
size of a bivariate linear congruence.

1. Introduction

Let a1, . . . , ak, b, n ∈ Z with n ≥ 1. A linear congruence in the unknowns x1, . . . , xk
is an expression of the form

a1x1 + · · ·+ akxk ≡ b (mod n).

An ordered k-tuple of integers (x1, . . . , xk) that satisfies this congruence is called a
solution. These solutions are often considered under additional constraints, such as
gcd(xi, n) = ti for 1 ≤ i ≤ k, where t1, . . . , tk are given positive divisors of n. The
number of solutions subject to such conditions has been studied by several authors (see
[1]). Moreover, small solutions of linear homogeneous congruences and systems have
been analysed, with many results extended to number fields (see [2]).

In this note, we focus on solutions of small size to non-homogeneous bivariate linear
congruences and describe an algorithm for their computation. Notably, the private key
and ephemeral key in several digital signature schemes correspond to solutions of such
congruences (see [3, Section 11.5]). We prove the following result:

Theorem 1. Let q be an odd prime number, and let A,B ∈ {2, . . . , (q − 1)/2}. Let µ
and ν be positive integers such that µ ≤ A/2 and ν < q/(2A). Consider the bivariate

linear congruence

y +Ax+B ≡ 0 (mod q). (1)

Then, the number of solutions (x, y) satisfying the bounds

|x| ≤ µ
⌊ q

A

⌋

and |y| ≤ νA

is at most (2µ+ 1)(2µ+ 2ν + 1). Moreover, all such solutions can be computed in time

O
(

µ(µ+ ν)(log q)2
)

bit operations.

The idea of the proof is to find a “small” list of pairs and select those that satisfy the
given bounds. Note that the smaller the quantities µ and ν are, the more efficiently the
solutions of the linear congruence that satisfy the given constraints can be calculated.

Let a, n ∈ Z and n > 1. We denote the remainder when a is divided by n by
‘a mod n’.

The paper is organized as follows. Section 2 presents the proof of Theorem 1. In
Section 3, we describe an algorithm, based on Theorem 1, that computes efficiently all
”small-size” solutions of the congruence (1). Finally, Section 4 provides two examples
illustrating the application of this algorithm.
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2. Proof of Theorem 1

Let x0, y0 ∈ Z satisfy the bounds

|x0| ≤ µ
⌊ q

A

⌋

and |y0| ≤ νA,

and suppose they satisfy the congruence y0 +Ax0 +B ≡ 0 (mod q). Then, we have the
following bound on the absolute value:

|y0 +Ax0 +B| ≤ |y0|+A|x0|+B <
q

2
+ µq +

q

2
= (µ+ 1)q.

Since q divides y0 +Ax0 +B, it follows that

y0 +Ax0 +B = c1q, (2)

where c1 ∈ {0,±1,±2, . . . ,±µ}.
Next, by Euclidean division, we have q = Au+ v, where

u =
⌊ q

A

⌋

and 0 < v < A.

This implies the congruence −Au ≡ v (mod q).
Multiplying Equation (2) by −u yields

−uy0 + vx0 + C ≡ 0 (mod q),

where

− uB = −Kq + C and 0 ≤ C < q. (3)

Furthermore, we can bound the absolute value:

| − uy0 + vx0 + C| ≤ u|y0|+ v|x0|+ C < uAν + µq + q ≤ (ν + µ+ 1)q.

Since q divides −uy0 + vx0 + C, we deduce that

− uy0 + vx0 + C = c2q, (4)

with c2 ∈ {0,±1,±2, . . . ,±(ν + µ)}.
The Equations (2) and (4) constitute a linear system in the unknowns x0 and y0.

Solving this system, we obtain

x0 = c1u+ c2 −
uB + C

q
and y0 = c1v − c2A+

CA− vB

q
.

Since, by (3), −uB = −Kq + C, we have

K =
uB + C

q
= −

⌊

−uB

q

⌋

.

Using this fact, we rewrite the second fraction as

CA− vB

q
= AK −B.

Hence, the solutions can be expressed in the simpler form

x0 = c1u+ c2 −K, y0 = c1v − c2A+AK −B, (5)

where c1 ∈ {0,±1,±2, . . . ,±µ}, c2 ∈ {0,±1,±2, . . . ,±(ν+µ)}, u and v are the quotient
and the remainder of the division of q by A, and K = −⌊(−uB)/q⌋.

Conversely, one can verify that any pair (x0, y0) of this form satisfies the original
congruence (1). Since

c1 ∈ {−µ, . . . , 0, . . . , µ} and c2 ∈ {−(ν + µ), . . . , 0, . . . , ν + µ},

there are at most (2µ+1)(2µ+2ν +1) such solutions satisfying the prescribed bounds
on |x0| and |y0|.
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Finally, by [4, Section 3.3], the computation of u, v,K, and hence of the solutions
x0, y0, can be performed in O(µ(µ+ ν)(log q)2) bit operations.

3. The Algorithm

The proof of Theorem 1 leads to the following algorithm for computing solutions to the
congruence (1) that satisfy the given bounds.

Algorithm: SOLVE-CONGRUENCE
Input: An odd prime q, A, B ∈ {2, . . . , (q − 1)/2}, and positive integers µ, ν with
µ ≤ A/2 and ν < q/(2A).

Output: The solutions (x, y) of Congruence (1) with |x| ≤ µ⌊q/A⌋ and |y| < νA.

(1) Compute integers u and v satisfying q = Au+ v and 0 ≤ v < A.
(2) Compute positive integers K and C such that −uB = −Kq+C and 0 < C < q.
(3) For each i ∈ {0,±1, . . . ,±µ}, determine all j ∈ {0,±1, . . . ,±(µ+ ν)} such that

the quantities

xi,j = iu+ j −K and yi,j = iv − jA+AK −B

satisfy the inequalities

|xi,j | ≤ µ
⌊ q

A

⌋

and |yi,j | < νA.

(4) Output all pairs (xi,j , yi,j) that satisfy the inequalities specified in the previous
step.

Remark 1. If the integers µ and ν are sufficiently small – if, for instance, µ, ν are both
less than (log q)2 – then the above algorithm runs in polynomial time and is therefore
practical for computation.

4. Examples

In this section, we work through two examples illustrating the use of the algorithm
SOLVE-CONGRUENCE. We remark that, in these examples, the number of solutions
satisfying the given bounds is significantly smaller than the upper bound mentioned in
Theorem 1.

Example 1. Consider the prime q = 1073741827. We shall compute the solutions of
the congruence

y + 131073x+ 25277021 ≡ 0 (mod q) (6)

with

|x| ≤ 8100 and |y| ≤ 12000.

We have A = 131073, B = 25277021, and ⌊q/A⌋ = 8191. We choose parameters
µ = ν = 1. Thus, we find integers u = 8191 and v = 122884 such that q = Au+ v and
0 < v < A. Next, we compute K = 193 and C = 188093600 such that −uB = −Kq+C.
Finally, we compute AK −B = 20068.

We now consider solutions to the Congruence (6) of the form (xi,j , yi,j) (i = 0,±1, j =
0,±1,±2), where

xi,j = i8191 + j − 193, and yi,j = i122884− j131073 + 20068.

We check which of these pairs satisfy the required bounds. For i = −1, 0, the values yi,j
(j = −2,−1, 0, 1, 2) do not meet the given bound. For i = 1, only the pair (x1, y1) =
(7999, 11879) satisfies the bounds. Therefore, the only solution to the congruence (6)
within the specified bounds is (7999, 11879).
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Example 2. Consider the linear bivariate congruence

y + 149x+ 475 ≡ 0 (mod 1013). (7)

We shall compute the solutions of the above congruences (x, y) ∈ Z
2 with |x| ≤ 90 and

|y| ≤ 149.
The integer q = 1013 is a prime number. We are given A = 149, B = 475, and

observe that ⌊q/A⌋ = 6. We choose parameters µ = 15 and ν = 1. According to the
algorithm, we first determine integers u = 6 and v = 119 such that q = Au + v, with
0 ≤ v < A. Next, we compute integers K = 3 and C = 189 satisfying −uB = −Kq+C,
with 0 ≤ C < q. Then, we obtain the solutions

(xi,j , yi,j) (i = 0,±1, . . . ,±15, j = 0,±1, . . . ,±16)

of Congruence (7), where

xi,j = i6 + j − 3 and yi,j = i119− j149− 28.

For i = 0, we find that only j = 0 and j = −1 yield values of |y0,j | ≤ 149. Specifically,
the corresponding solutions are:

(x0,0, y0,0) = (−3,−28), (x0,−1, y0,−1) = (−4, 121),

both of which satisfy the imposed upper bounds.
For j = 0, we find that only i = 1 and i = −1, other than i = 0, yield values of

|yi,0| ≤ 149. Specifically, the corresponding solutions are:

(x1,0, y1,0) = (3, 91), (x
−1,0, y−1,0) = (−9,−147).

If i > 0 and j < 0, then

yi,j = 119i− 149j − 28 > 149,

violating the bound on yi,j . Similarly, if i < 0 and j > 0, then

yi,j = 119i− 149j − 28 < −149,

which also violates the bound. Therefore, for any i 6= 0 and j 6= 0, i and j must be of the
same sign. Accordingly, for each i = ±1, . . . ,±15, we examine values of j = ±1, . . . ,±16
with the same sign to determine whether the corresponding pairs (xi,j , yi,j) satisfy the
given bounds and solve Congruence (7). We have 59 such solutions that are listed in
the table overleaf. Note that this number is considerably smaller than the bound 1023
that is provided by Theorem 1.
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i j (xi,j , yi,j) i j (xi,j , yi,j)
−15 −12 (−105,−25) 0 −1 (−4, 121)
−15 −13 (−106, 124) 0 0 (−3,−28)
−14 −11 (−98,−55) 1 0 (3, 91)
−14 −12 (−99, 94) 1 1 (4,−58)
−13 −10 (−91,−85) 2 1 (10, 61)
−13 −11 (−92, 64) 2 2 (11,−88)
−12 −9 (−84,−115) 3 2 (17, 31)
−12 −10 (−85, 34) 3 3 (18,−118)
−11 −8 (−77,−145) 4 3 (24, 1)
−11 −9 (−78, 4) 4 4 (25,−148)
−10 −8 (−71,−26) 5 3 (30, 120)
−10 −9 (−72, 123) 5 4 (31,−29)
−9 −7 (−64, 56) 6 4 (37, 90)
−9 −8 (−65, 93) 6 5 (38,−59)
−8 −6 (−57,−86) 7 5 (44, 60)
−8 −7 (−58, 63) 7 6 (45,−89)
−7 −5 (−50,−116) 8 6 (51, 30)
−7 −6 (−51, 33) 8 7 (52,−119)
−6 −4 (−43,−146) 9 6 (57, 149)
−6 −5 (−44, 3) 9 7 (58, 0)
−5 −4 (−37,−27) 9 8 (59,−149)
−5 −5 (−38, 122) 10 7 (64, 119)
−4 −3 (−30, 57) 10 8 (65,−30)
−4 −4 (−31, 92) 11 8 (71, 89)
−3 −2 (−23,−87) 11 9 (72,−60)
−3 −3 (−24, 62) 12 9 (78, 59)
−2 −1 (−16,−117) 12 10 (79,−90)
−2 −2 (−17, 32) 13 10 (85, 29)
−1 0 (−9,−147) 13 11 (86,−120)
−1 −1 (−10, 2)
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