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Dissecting Rectangles into Squares

JOE KINGSTON AND DES MACHALE

Abstract. Let n be a positive integer less than 100 which can be expressed as the
sum of two or more distinct squares of integers. We ask when a rectangle of area
n with sides of integer length can be dissected into different squares with just one
of the squares cut, and produce several examples. We also present some rectangular
dissections where the cut square satisfies the further constraint that the two pieces
are rectangular.

1. Introduction

A classical problem in combinatorial geometry asks if it is possible to dissect a non-
square rectangle into a finite number of integer-sided squares, no two of which have the
same size. This problem was solved by the Polish mathematician Zbigniew Moron [1]
in 1925, who gave an example of a 32×33 = 1056 rectangle which can be dissected into
nine squares of sides {18, 15, 14, 10, 9, 8, 7, 4, 1} like so:

14

10 9

8

1

7
4

18
15

He also showed that this is the smallest integer example and that, at least, nine
squares are necessary.

For smaller integer-sided rectangles and n < 9 squares, we ask when a rectangle can
be dissected into squares if we allow some of the squares to be cut. Clearly if we can
achieve our objective with just one square cut, then this is the best possible result.
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In this note we produce some examples of this situation, e.g. 30 = 42+32+22+12 =
6× 5 is the sum of four distinct squares and we achieve a 5 = 4+1 piece dissection of a
6× 5 rectangle so that the pieces can be reassembled to form four distinct squares. In
some cases the cut square consists of two rectangular pieces – this situation we refer to
as a rectangular dissection (R). It involves an extra constraint which is rarely satisfied.

Of course, there are some cases where our objectives cannot be realised. For example,
17 = 42 + 12, but a 17 × 1 rectangle needs at least a five piece dissection to form a 4-
square and a 1-square. Also, some integers, for example, 15, are not the sum of distinct
squares.

The situation we are looking at for small non-square rectangles appears to differ from
that of small squares. See [2]. For example, a dissection of a 5-square to form a 4-square
and a 3-square appears to need 4 = 2+ 2 pieces, based on 52 = 42 +32. Intuitively, the
unequal length and breadth of a non-square rectangle give more room for manoeuvre.
In addition, at least 21 squares are needed to dissect a square into unequal squares.

We include the integer equations for which we have failed to find one-cut dissections
and where it is not obvious, to us, that no such dissections exist. We would like to hear
from readers who have succeeded with some of these. We observe that outside of the
one-cut situation, proofs can be extremely difficult and tricky. In this note, we confine
ourselves to integer sided rectangles of area less than 100.

2. The Examples

5 = 22 + 12 = 5× 1
(R)
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10 = 32 + 12 = 5× 2
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14 = 32 + 22 + 12 = 7× 2
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20 = 42 + 22 = 10× 2
(R)

4a

4b 4a 4b 2

It may be objected that this is merely a ‘blow-up’ of the 5 × 1 case, but sometimes
increasing the scale leads to new possibilities.

20 = 42 + 22 = 5× 4
(R) 2a 2b
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21 = 42 + 22 + 12 = 7× 3
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21 = 42 + 22 + 12 = 7× 3
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2
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30 = 42 + 32 + 22 + 12

= 10× 3
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2
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30 = 42 +32 +22 +12 = 6× 5
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30 = 42 +32 +22 +12 = 6× 5
(R)
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30 = 52 + 22 + 12 = 6× 5 i
(R) 2a 2b

2a

2b

1

5

35 = 52 + 32 + 12 = 7× 5
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1

5

40 = 62 + 22 = 5× 8
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6b
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6b
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40 = 62 + 22 = 10× 4

6a

6b

6a

6b

2

42 = 52 + 42 + 12 = 6× 7 Not found

45 = 52+42+22 = 5×9
(R)

2a

2b 2a 2b

5
4

45 = 62 + 32 = 3× 15
(R)

6a

6b 6a 6b 3

45 = 62 + 32 = 3× 15
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6b
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3

50 = 72 + 12 = 5× 10 Not found

50 = 62 + 32 + 22 + 12 = 5× 10 Not found

50 = 52 + 42 + 32 = 5× 10 Not found

52 = 62 + 42 = 4× 13

6a

6b
6a

6b
4

54 = 72+22+12 = 6×9
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54 = 52 + 42 + 32 + 22 = 6× 9 Not found

55 = 52+42+32+22+12

= 5× 11 (R)
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55 = 52+42+32+22+12

= 5× 11 (R)
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55 = 52+42+32+22+12

= 5× 11
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56 = 62 + 42 + 22

= 4× 14
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6a

6b
2

4

63 = 72 +32 +22 +12 = 7× 9
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3b

3a

3b

1

2

7

65 = 62 + 52 + 22

= 5× 13

6a

6b

6a

6b

2

5



48 JOE KINGSTON AND DES MACHALE

65 = 62 + 42 + 32 + 22

= 5× 13

6a

6b

6a

6b
2

3
4

65 = 82 + 12 = 5× 13 Not found

65 = 72 + 42 = 5× 13 Not found

66 = 72 + 42 + 12 = 6× 11

7a

7b

7a

7b

1

4

66 = 62 + 52 + 22 + 12 = 6× 11
(R)
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66 = 62 +42 +32 +22 +12 = 6× 11
(R)
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66 = 62 +42 +32 +22 +12 = 6× 11
(R)
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70 = 72 + 42 + 22 + 12 = 7× 10
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70 = 72 + 42 + 22 + 12

= 7× 10
4a

4b

4a

4b 1

2

7

70 = 62+52+32

= 5× 14

6a

6b

6a

6b

3

5

75 = 72 + 52 + 12 = 5× 15 Not found

75 = 72 + 42 + 32 + 12 = 5× 15 Not found

75 = 62 + 52 + 32 + 22 + 12 = 5× 15 Not found

77 = 82 + 32 + 22 = 7× 11 Not found

77 = 62 + 52 + 42 = 7× 11 Not found

78 = 82 + 32 + 22 + 12 = 6× 13 Not found

78 = 72 + 52 + 22 = 6× 13 Not found

78 = 72 + 42 + 32 + 22 = 6× 13 Not found

78 = 62 + 52 + 42 + 12 = 6× 13 Not found

80 = 82 + 42 = 8× 10
(R)

4a 4b

4a

4b

8

84 = 72 + 52 + 32 + 12

= 7× 12

3a

3b
3a

3b

1

5

7



50 JOE KINGSTON AND DES MACHALE

84 = 82+42+22

= 6× 14

8a

8b

8a

8b

2

4

84 = 72 + 52 + 32 + 12 = 6× 14 Not found

85 = 92 + 22 = 5× 17 Not found

85 = 82 + 42 +2 2+ 12 = 5× 17 Not found

88 = 72+52+32+22+12

= 8× 11 (R)

7a

7b

7a

7b1

2
3

5

88 = 72+52+32+22+12

= 8× 11

7a

7b

7a

7b

1

2
3

5

90 = 92 + 32

= 6× 15

9a

9b

9a

9b
3

90 = 72+62+22+12

= 6× 15

7a

7b

7a

7b

1

2

6



Dissecting Rectangles into Squares 51

90 = 62 +52 +42 +32 +22 = 5× 18
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6b
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5

90 = 62+52+42+32+22

= 9× 10

6a

6b

6a

6b

2
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5

90 = 82 + 52 + 12 = 5× 18 Not found

90 = 82 + 42 + 32 + 12 = 5× 18 Not found

90 = 72 + 52 + 42 = 5× 18 Not found

90 = 82 + 52 + 12 = 6× 15 Not found

90 = 82 + 42 + 32 + 12 = 6× 15 Not found

90 = 72 + 52 + 42 = 6× 15 Not found

90 = 82 + 52 + 12 = 9× 10 Not found

90 = 82 + 42 + 32 + 12 = 9× 10 Not found

90 = 72 + 52 + 42 = 9× 10 Not found

90 = 62 + 52 + 42 + 32 + 22 = 6× 15 Not found

91 = 92+32+12

= 7× 13

9a

9b

9a

9b

1

3

91 = 72 + 52 + 42 + 12 = 7× 13 Not found

91 = 62 + 52 + 42 + 32 + 22 + 12 = 7× 13 Not found

95 = 92 + 32 + 22 + 12 = 5× 19 Not found

95 = 72 + 52 + 42 + 22 + 12 = 5× 19 Not found

98 = 92 + 42 + 12 = 7× 14 Not found

98 = 82 + 52 + 32 = 7× 14 Not found

98 = 72 + 62 + 32 + 22 = 7× 14 Not found
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99 = 72+62+32+22+12

= 9× 11

7a

7b

7a

7b

1

2
3

6

99 = 82 + 52 + 32 + 12 = 9× 11 Not found

99 = 72 + 52 + 42 + 32 = 9× 11 Not found
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