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On a certain double integral representation of Catalan’s constant and

other interesting integration formulae

JAMIL ABREU

Abstract. In this note, we discuss an almost certainly known but unfamiliar double
integral representation for Catalan’s constant, based on a classical trigonometric inte-
gral formula. From this foundation, we also derive some interesting integral identities
involving a combination of logarithmic and inverse tangent functions.

1. Catalan’s constant

Catalan’s constant, often denoted by G, is the alternating sum

G =
∞
∑

n=0

(−1)n

(2n+ 1)2
= 1−

1

32
+

1

52
−

1

72
+ · · · .

It is named after the Belgian mathematician Eugène Catalan (1814-1894), who under-
took a comprehensive study of it in 1865. There are many representations of Catalan’s
constant, both as series and integrals; see Bradley [3]. Many other formulae can be
found in classical references such as Gradshteyn and Ryzhik [4] and the three-volume
collection by Berndt [2].

The simplest integral representation ofG seems to be that coming from the arctangent
power series

arctanx =
∞
∑

n=0

(−1)nx2n+1

2n+ 1
.

In fact, if we divide by x and integrate from 0 to 1 then we obtain

G =

∫ 1

0

arctanx

x
dx. (1)

Arguably, the easiest way of justifying interchanging summation and integration above
is by writing

arctanx

x
=

N
∑

n=0

(−1)nx2n

2n+ 1
+ rN (x)

and noting that, since the series is alternating with terms decreasing in magnitude, we
have |rN (x)| 6 x2N+2/(2N + 3), so that

lim
N→∞

∫ 1

0

rN (x) dx = 0.

By substituting x = tanϕ into (1) and subsequently setting θ = 2ϕ, we obtain

G =

∫ π/4

0

ϕ

sinϕ cosϕ
dϕ =

1

2

∫ π/2

0

θ

sin θ
dθ. (2)
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Moreover, by noticing that

1

sinϕ cosϕ
=

sec2 ϕ

tanϕ
=

d

dϕ
ln(tanϕ),

integration by parts in the middle expression in (2) yields

G = −

∫ π/4

0

ln(tanϕ) dϕ. (3)

More generally, the following holds.

Lemma 1.1. For all p = 0, 1, 2, . . . ,
∫ π/2

0

θp+1

sin θ
dθ = −2p+1(p+ 1)

∫ π/4

0

ϕp ln(tanϕ) dϕ.

Proof. By starting with the integral on the right, perform integration by parts (with
u = ϕp ln(tanϕ) and dv = dϕ), using the derivative

d

dϕ
[ϕp ln(tanϕ)] = pϕp−1 ln(tanϕ) +

ϕp

sinϕ cosϕ
.

To conclude, make the change of variables θ = 2ϕ. �

For p = 0, Lemma 1.1 is just the equality between the right-hand integrals in (2) and
(3). For p = 1, 2, it well known that

∫ π/2

0

θ2

sin θ
dθ = 2πG−

7

2
ζ(3) (4)

and
∫ π/2

0

θ3

sin θ
dθ =

3π2

2
G− 12β(4), (5)

where ζ(3) is Apéry’s constant, namely, the value for s = 3 of the Riemann zeta function

ζ(s) =

∞
∑

n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · · ,

and β(4) is the value for s = 4 of the Dirichlet beta function

β(s) =

∞
∑

n=0

(−1)n

(2n+ 1)s
= 1−

1

3s
+

1

5s
−

1

7s
+ · · · . (6)

Note that β(2) = G. The standard way of deriving formulae (4) and (5) is by using the
Fourier series of ln(tanϕ) = ln(sin θ) − ln(cosϕ), see Tolstov [7, Sect. 3.14]. A more
general description of the corresponding indefinite integrals in Lemma 1.1 as certain
Fourier series can be found in Berndt [2, Part I: p. 261, Entry 14]. By using the Laurent
expansion of the co-secant function, one can also express the integrals in Lemma 1.1 as
a series involving powers of π and the Bernoulli numbers; see e.g. Sofo and Nimbran [6,
Lemma 2.2].

2. An interesting double integral representation of G

There are also some representations of G as double integrals, the most basic being
arguably

G =

∫ 1

0

∫ 1

0

dx dy

1 + x2y2
.
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This representation can be established directly from (1); see Bradley [3, Formula (40)].
Here, we will prove that

G =

∫ π/2

0

∫ 1

0

dθ dx

1 + 2x cos θ + x2
. (7)

The proof of (7) will be based on the following classical formula.

Proposition 2.1. For all 0 6 x < 1,
∫ π/2

0

dθ

1 + 2x cos θ + x2
=

2

1− x2
arctan

1− x

1 + x
. (8)

Proof. Using the rational parametrization cos θ = (1− t2)/(1 + t2), the integral on the
left in (8) equals

∫ 1

0

1

1 + 2x ·
1− t2

1 + t2
+ x2

2 dt

1 + t2
=

∫ 1

0

2 dt

(1 + x)2 + (1− x)2t2

=
2

(1− x)2

∫ 1

0

dt
(1 + x

1− x

)2

+ t2

=
2

1− x2
arctan

1− x

1 + x
,

where in the last equality we have used
∫

dt

a2 + t2
=

1

a
arctan

t

a
+ C. �

Now, to prove (7), we integrate (8) over x, from 0 to 1, which yields
∫ 1

0

[

∫ π/2

0

1

1 + 2x cos θ + x2
dθ

]

dx =

∫ 1

0

2

1− x2
arctan

1− x

1 + x
dx

=

∫ 1

0

arctan y

y
dy

= G,

where the second identity follows by the change of variables y = (1 − x)/(1 + x) and
the third follows by (1).

We might ask what happens if we interchange the order of integration in the iterated
integral above. The conclusion, in brief, is that nothing particularly interesting arises.
In fact,

∫ 1

0

dx

1 + 2x cos θ + x2
=

∫ 1

0

dx

sin2 θ + (x+ cos θ)2

=
1

sin θ
arctan

x+ cos θ

sin θ

∣

∣

∣

x=1

x=0

=
1

sin θ

[

arctan
1 + cos θ

sin θ
− arctan

cos θ

sin θ

]

=
1

sin θ
arctan

sin θ

1 + cos θ

=
θ

2 sin θ
,

and a further integration over θ, from 0 to π/2, simply yields (2).
Next, we explore identity (8) in other directions.
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3. An elegant integration formula

Consider the following classical formulae, both valid for 0 < θ < π,
∫

∞

0

lnx

1 + 2x cos θ + x2
dx = 0, (9)

and
∫ 1

0

ln2 x

1 + 2x cos θ + x2
dx =

θ(π2 − θ2)

6 sin θ
. (10)

Formula (9) appears in Gradshteyn and Ryzhik [4, (4.233-5)] and can be easily verified
by changing x to 1/x, which makes the integral equal to its negative, implying its value
is 0. Formula (10) appears in Gradshteyn and Ryzhik [4, (4.261-1)], without proof
but with a reference to the 1867 publication Nouvelles tables d’intégrales définies, by
Bierens de Haan, which in turn refers to an even earlier publication.

We will not try to prove (10) here, but we may notice that changing x to 1/x yields
∫ 1

0

ln2 x

1 + 2x cos θ + x2
dx =

∫

∞

1

ln2 x

1 + 2x cos θ + x2
dx,

which implies
∫

∞

0

ln2 x

1 + 2x cos θ + x2
dx =

θ(π2 − θ2)

3 sin θ
(0 < θ < π). (11)

If we multiply (8) by lnx, then integrate over x, from 0 to +∞, and interchange the
order of integration on the left side, we obtain (using (9)),

∫

∞

0

lnx

1− x2
arctan

1− x

1 + x
dx =

1

2

∫ π/2

0

[

∫

∞

0

lnx

1 + 2x cos θ + x2
dx

]

dθ = 0.

This is also derived by simply changing x to 1/x in the integral on the left, with no
need of formula (9). The same procedure, this time multiplying (8) by ln2 x, integrating
from 0 to 1, and using (10), yields

∫ 1

0

ln2 x

1− x2
arctan

1− x

1 + x
dx =

1

2

∫ π/2

0

[

∫ 1

0

ln2 x

1 + 2x cos θ + x2
dx

]

dθ

=
1

12

[

π2

∫ π/2

0

θ

sin θ
dθ −

∫ π/2

0

θ3

sin θ
dθ

]

.

On the right, the first integral inside brackets equals 2G, by (2). Combining this with
(4) we obtain the interesting formula

∫ 1

0

ln2 x

1− x2
arctan

1− x

1 + x
dx =

π2G

24
+ β(4). (12)

Note that, in light of (11), the corresponding integral from 0 to +∞ is twice that in
(12). Moreover, changing (1− x)/(1 + x) to x yields the equally interesting

∫ 1

0

ln2
(1− x

1 + x

)arctanx

x
dx =

π2G

12
+ 2β(4). (13)

4. Final thoughts: the Basel problem

It is in all likelihood an overstatement to assert that the identity (7) is new and has
never been highlighted before. It must be observed, however, that it does not appear,
for instance, in Bradley’s comprehensive list [3], and despite our best efforts, we were
unable to find any record of it in the literature. On the other hand, the computation
following the proof of (8), which shows that (7) is essentially (2), renders this double
integral representation of G quite natural.
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The same goes with formulae (12) and (13). There are some close relatives, for
instance, in Vălean’s books [8, 1.20, 1.21, 1.24, 1.26] and [9, 1.36, 1.37, 1.38, 1.57, 1.58].
By ‘close relative’ we mean any integral formula involving logarithms multiplied by
inverse tangents divided by polynomials. In the event that those identities are already
known, we believe and hope that, at least, the evaluations presented here may be a
novel and interesting contribution.

The integral in (8) is more often considered over the intervals [0, π] or [0, 2π]. There
are many such formulas in various sections of Gradshteyn and Ryzhik [4]. In particular,
Gradshteyn and Ryzhik [4, (3.792-1)] is essentially

∫ π

0

dθ

1 + 2x cos θ + x2
=

π

1− x2
, (14)

valid for −1 < x < 1. As with (8), this is easily obtained using rational parametrization.
Now, if we multiply (14) by lnx, then integrate over x, from 0 to 1, and interchange
the order of integration on the left side, we obtain

∫ π

0

[

∫ 1

0

lnx

1 + 2x cos θ + x2
dx

]

dθ = π

∫ 1

0

lnx

1− x2
dx. (15)

As it is well-known, the integral on the right-hand side is related to the so called
Basel problem, namely, the problem of numerically evaluating the series

ζ(2) =
∞
∑

n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
· · · .

This was first solved by Euler in 1734, who showed ζ(2) = π2/6. The connection
between (15) and the Basel problem is

∫ 1

0

lnx

x2 − 1
dx =

∞
∑

n=0

1

(2n+ 1)2
=

3

4

∞
∑

n=1

1

n2
=

3

4
ζ(2). (16)

In fact, the first identity above can be established by expanding (1−x2)−1 in geometric
series and using the formula (obtained with integration by parts)

∫ 1

0

x2n lnx dx = −
1

(2n+ 1)2
,

after interchanging integration with summation; the second identity comes from split-
ting

∑

n−2 into odd and even indices. The leftmost integral in (16) is known to be
π2/8, a result obtainable independently of the Basel problem. For more details, see e.g.
Abreu [1].

Unfortunately, despite (9), the innermost integral on the left side in (15) is not known
as a function of θ in terms of elementary functions; in fact,

∫ 1

0

lnx

1 + 2x cos θ + x2
dx = −

Cl2(π − θ)

sin θ
(0 < θ < π),

where Cl2 denotes the Clausen function of order two, see Moll and Posey [5]. Thus, the
Basel problem is equivalent to

∫ π

0

Cl2(θ)

sin θ
dθ =

π3

8
.

This connection, despite being possibly familiar to the experts in the field (Clausen
functions, polylogarithms, etc.), does not seem to be widely known. For those not
familiar with these special functions, or not wishing to delve deeper into these matters,
it suffices to say that any elementary evaluation of the double integral in (15), yielding
the value −π3/8, would constitute a genuinely new solution to the Basel problem.
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Finally, by an analogous reasoning, we have
∫ 1

0

ln2 x

x2 − 1
dx = −2

∞
∑

n=0

1

(2n+ 1)3
= −

7

4
ζ(3), (17)

this time using the formula
∫ 1

0

x2n ln2 x dx =
2

(2n+ 1)3
.

Then, using the elementary identity arctan(1/u) = π/2− arctan(u) (valid for u > 0) in
(12), combined with (17), yields the integration formula

∫ 1

0

ln2 x

1− x2
arctan

1 + x

1− x
dx =

7π

8
ζ(3)−

π2G

24
− β(4).
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