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EDITORIAL

The year 2026 marks the 50" anniversary of the founding of the Irish Mathematical
Society on 14" April 1976 in Trinity College Dublin. To mark the occasion, the Summer
2026 issue of this Bulletin will be a special one - see the email from Rachel Quinlan,
President, to the membership dated 215* August last. Quoting from her email: ‘Papers
are invited on all topics relevant to the Irish mathematical landscape in the last 50
years and into the future, including (but not limited to)

— research articles

— survey articles with an Irish context

— history of mathematics in Ireland (and of the IMS)

— interviews and biographies

— mathematics education (including student experiences)
— mathematical outreach and community engagement

— recreational mathematics

— student events (e.g. mathematical olympiads).

Submissions intended for this special issue should mention “Summer 2026 special issue”
in the subject line.” A deadline of 20" February 2026 is mentioned, though I can work
around this within reason (with the cooperation of reviewers). The submission process
can be found on the Bulletin webpage. Should you wish to discuss informally any ideas
you may have for this special issue, feel free to email me at ims.bulletin@gmail . com.

This editor is always keen to receive articles ‘written in an expository style and likely
to be of interest to the members of the Society and the wider mathematical community’.
It is natural to think of the Mathematical Proceedings of the Royal Irish Academy
(MPRIA) as a sister publication to this Bulletin: indeed, these two are the only regular
mathematics journals published in Ireland. Publication in MPRIA has recently become
more attractive. Over and above being listed on Scopus, all articles published in MPRIA
during 2026 will be published open access (without author fees), regardless of author
affiliation. This development is made possible by the RIA’s participation in Project
MUSE’s Subscribe to Open (S20) initiative. I would encourage members to consider if
this Bulletin or MPRIA might be a suitable forum in which to publicise their work.

Finbarr Holland (UCC) informed me of the sad news that Jim Chadwick, a former
UCC student from Tralee who would have been known to many of the more established
readers of this Bulletin, passed away on 23'¢ November 2025. He was an outstanding
student who wrote textbook-style answers to exam questions. He won the Travelling
Studentship in 1968 and wrote his Ph.D. at the Australian National University under
Ronald William Cross (according to the Mathematics Genealogy Project). He taught
in UCC and TCD for brief periods before emigrating to South Africa where he headed a
Computer Science Department in Grahamstown. Jim’s regular visits home were a sum-
mer highlight for his many old friends: he was, by all accounts, a great conversationalist
with a witty sense of humour and fun (rip.ie).

The variety of contributions to this issue is noteworthy. We have two particularly
interesting reviews, one by Zhenwei Lyu of a book on AI by Susskind and one by Peter
Lynch on a bird’s eye view of mathematics by Thomas Waters. The latter author was
born and grew up in Dublin, attended DCU where he earned his PhD under Brien
Nolan and, inter alia, lectured at the University of Galway for three years. He has
been a lecturer at the University of Portsmouth since 2010. Tony O’Farrell takes us
through many diverse approaches to, and perspectives on, the Fundamental Theorem
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of Algebra. In a similar vein, Argerami and Moslehian take us on a tour of the trace
operator in a variety of contexts. Des MacHale, who is a loyal long-term supporter of
both this Bulletin and MPRIA, is co-author on two articles: one with Joe Kingston on
dissections of rectangles into squares and a second with Michael Kinyon on providing
equational proofs of commutativity theorems in rings. Dospra describes an algorithm
for finding small solutions of bivariate linear congruences while Abreu presents some
new representations of Catalan’s Constant G = 1 — 1/3% + 1/5%2 — 1/7? + .... Every
issue of the Bulletin closes with the Problem Page, ably curated by J.P. McCarthy, who
is always on the lookout for interesting problems.

EDITOR, BULLETIN IMS, SCHOOL OF MATHEMATICAL SCIENCES, WESTERN GATEWAY BUILDING,
UNIVERSITY COLLEGE CORK, CORK, IRELAND.
E-mail address: ims.bulletin@gmail.com



LINKS FOR POSTGRADUATE STUDY

The following are the links provided by Irish Schools for prospective research students
in Mathematics:

DCU: mailto://maths@dcu.ie

TUD: mailto://chris.hills@tudublin.ie

ATU: mailto://leo.creedon@atu.ie

MTU: http://mathematics.mtu.ie/datascience

UG: mailto://james.cruickshank@universityofgalway.ie

MU: mailto://mathsstatspg@mu.ie

QUB:
https://www.qub.ac.uk/schools/SchoolofMathematicsandPhysics/Research/culture-environment/
PostgraduateResearch/

TCD: http://www.maths.tcd.ie/postgraduate/

UCC: https://www.ucc.ie/en/matsci/study-maths/postgraduate/#d.en.1274864
UCD: mailto://nuria.garcia@ucd.ie

UL: mailto://macsi@ul.ie

The remaining schools with Ph.D. programmes in Mathematics are invited to send their
preferred link to the editor.

E-mail address: ims.bulletin@gmail.com
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NOTICES FROM THE SOCIETY

Officers and Committee Members 2025

President Dr Rachel Quinlan UG
Vice-President Prof. David Malone MU
Secretary Dr Derek Kitson MIC
Treasurer Dr Cénall Kelly ucCcC

Assoc. Prof. C. Boyd, Dr R. Flatley, Dr R. Gaburro, Dr T. Huettemann,
Dr P. O Cathdin, Prof. A. O’Shea, Assoc. Prof. H. Smigoc, Dr N. Snigireva.

Officers and Committee Members 2026

President Dr Rachel Quinlan UG
Vice-President Prof. David Malone MU
Secretary Dr Derek Kitson MIC
Treasurer Dr Dana Mackey TUD

Assoc. Prof. C. Boyd, Dr S. Dendrinos, Dr R. Gaburro, Dr T. Huettemann,
Dr A. Krishnan, Dr P. O Cathdin, Prof. A. O’Shea, Prof. K. Wendland.

Local Representatives

Belfast QUB Prof. M. Mathieu
Carlow SETU Dr D. O Sé
Cork MTU Dr J. P. McCarthy
UCC Dr S. Wills
Dublin DIAS Prof. T. Dorlas
TUD, City Dr D. Mackey
TUD, Tallaght Dr C. Stack
DCU Prof. B. Nolan
TCD Prof. K. Soodhalter
UCD Dr R. Levene
Dundalk DKIT Mr S. Bellew
Galway UG Dr J. Cruickshank
Limerick MIC Dr B. Kreussler
UL Dr R. Gaburro
Maynooth MU Prof. S. Buckley
Sligo ATU Dr L. Creedon
Tralee MTU Prof. B. Guilfoyle

Waterford SETU Dr P. Kirwan




Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements with the American
Mathematical Society, the Deutsche Mathematiker Vereinigung, the Irish Mathematics
Teachers’ Association, the London Mathematical Society, the Moscow Mathematical
Society, the New Zealand Mathematical Society and the Real Sociedad Matematica
Espaiiola.

(2) The current subscription fees are given below:

Institutional member ........ .. ... L €250
Ordinary member ........ ... . i €40
Lifetime member ........ ... .. .. .. i €400
Student member ........ .. €20
DMV, IMTA, NZMS, MMS or RSME reciprocity member €20
AMS reciprocity member ........... .. $25
LMS reciprocity member (paying in Euro) ............... €20
LMS reciprocity member (paying in Sterling) ............ £20

(3) The subscription fees listed above should be paid in euro by means of electronic
transfer, a cheque drawn on a bank in the Irish Republic, or an international money-
order.

The subscription fee for ordinary membership can also be paid in a currency other
than euro using a cheque drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is US$40.

If paid in sterling then the subscription is £30.

If paid in any other currency then the subscription fee is the amount in that currency
equivalent to US$40.

The amounts given in the table above have been set for the current year to allow for
bank charges and possible changes in exchange rates.

(4) Any member with a bank account in the Irish Republic may pay his or her sub-
scription by a bank standing order using the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years and has been a fully
paid up member for the previous five years may pay at the student membership rate.

(6) Those members who have reached 75 years of age, and who have been members in
good financial standing with the Society for the previous 15 years, are entitled upon
notification to the Treasurer to have their subscription rate reduced to €0.

(7) Subscriptions normally fall due on 1 February each year.
(8) Cheques should be made payable to the Irish Mathematical Society.

(9) Any application for membership must be presented to the Committee of the I.M.S.
before it can be accepted. This Committee meets three times each year.

(10) Please send the completed application form, available at
https://www.irishmathsoc.org/business/imsapplicn_2024.pdf
with one year’s subscription, either by post or by email, to:

Dr Dana Mackey

School of Mathematics and Statistics
Technological University of Dublin
Central Quad, Grangegorman
Dublin DO7 ADY7

subscriptions.ims@gmail.com



Honorary Members

The Irish Mathematical Society is pleased to announce that it has the fol-
lowing new Honorary Member:

Professor David Conlon (California Institute of Technology).




PRESIDENT’S REPORT 2025

The Irish Mathematical Society is now in its 50" year, having been founded on 14" April
1976 in Trinity College Dublin. The society exists and continues to flourish because
of the goodwill, energy and commitment of its members, who have maintained it and
grown it as a community where people gather to do mathematics, and as a visible locus
of mathematical scholarship in the island of Ireland.

A focus of attention for the Society at present is the celebration of its 50" birthday
in 2026. This occasion will bring opportunities to reflect on the vision and initiative
of the founding members, and of everyone who has built over the years on those first
steps. It also brings a chance to look to the future, at a time when higher education
faces opportunities and challenges that were unimaginable in 1976. The argument
for preserving and valuing and communicating the human experience of mathematical
discovery is more urgent and more compelling than ever. The task of making that
argument loudly and clearly is in the hands of communities like ours. I was three when
the IMS was founded. There are little children around the world now who will benefit
from and cherish the work of the IMS in 2076 and in the years until then. We have a
moment in 2026 to look to their future and at our evolution to date, and to be proud
of all that has been achieved through collective effort.

The year 2025 has been another eventful one for the IMS. Our 15 new (ordinary, life-
time, student and reciprocity) members are warmly welcome. The Society supported
seven conferences and workshops across a wide range of mathematical activities. These
included the meeting of the European Mathematical Society Committee for Develop-
ing Countries, which was hosted in April at University College Cork. Members are
encouraged to respond to the biannual calls for applications to the IMS Conference
Support Fund. The level of support on offer is modest but it can make a difference,
and the Committee tries to be as flexible and inclusive as possible in supporting diverse
actitvies, in terms of location and subject matter.

The RIA-ICEDIM Women in the Mathematical Sciences Day took place at the Uni-
versity of Galway on May 12", which is International Women in Mathematics Day.
The event was co-organised by the Irish Committee for Equality, Diversity and Inclu-
sion in Mathematics (an IMS committee) and the Royal Irish Academy. We welcome
this partnership and thank the RIA for their financial support of the meeting, which
had over 50 participants and a fascinating and diverse programme of talks including a
public lecture. Thanks and congratulations to the local organisers Niall Madden and
Nina Snigireva, and to all the members of ICEDIM and the organising team.

The annual meeting of the IMS took place over two days at the end of August,
organised by Steve Buckley, Galatia Cleanthous, Christian Ketterer and Ollie Mason.
It was a scientifically and socially stimulating event, with an extensive programme of
excellent talks across a wide range of specialisms. A huge thank you to the organisers of
both the Women in the Mathematical Sciences Day and and the IMS annual meeting,
and to everyone who contributed to both events by giving talks or presenting posters,
or by taking the time and making the effort to attend and participate.
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President’s Report 5

The IMS Christmas Lecture was delivered on December 15 by Robert Osburn, who
was recently appointed to the George Boole Chair of Mathematics at University Col-
lege Cork. The lecture, on Unimodal sequences and mixed modularity, was warmly
appreciated by the audience. Thanks to Robert and to all who attended.

The nomination of David Conlon, Professor of Mathematics at the California In-
stitute of Technology, for honorary membership was approved at the Annual General
Meeting. David is a graduate of Trinity College Dublin and the University of Cam-
bridge, and a world leading expert in combinatorics, particularly in Ramsey theory. He
has maintained his mathematical links to Ireland throughout his international career.
We welcome David to the IMS. Members are reminded that nominations for honorary
membership are welcome at all times. A nomination requires a proposal to the IMS
Committee from three members.

The Fergus Gaines Cup was presented to Justin Ang Yang Li for the highest per-
formace in the Irish Mathematical Olympiad (IrMO) in 2025. The IMS congratulates
Justin and all participants in the IrMO.

The IMS has established a new award for Distinguished Service, as a mechanism for
recognizing and celebrating extraordinary contributions. The award will be presented
once every three years, for the first time in 2026. The nomination process will open on
the IMS website in January 2026, with a deadline of 15 March. The awardee will be
announced at the 2026 annual meeting.

The IMS has enthusiastically endorsed the Glasgow ICM2030 bid to hold the 2030
International Congress of Mathematicians (ICM) in Glasgow and to hold the General
Assembly (GA) of the International Mathematical Union in Dublin a few days before
the Congress. The bid was formally submitted to the IMU in November 2025. The IMS
commits to supporting the bidding process and the organisational effort (should the bid
be successful) in all feasible ways. The decision on the venue for the 2030 ICM and GA
will be made at the 2026 GA in New York City. The Glasgow/Dublin bid team is led
by Professor Michael Wemyss of the University of Glasgow, and the Irish element is led
by Professor David Wraith of Maynooth University.

The Summer 2026 issue of the IMS Bulletin will be a special one, dedicated to the
50t anniversary. Submissions are welcome on all topics relevant to the mathematical
landscape in Ireland. These include articles on current research, history and biogra-
phy, interviews, mathematical education, public engagement, student activities and the
cultural role of mathematics. All members are strongly encouraged to submit articles
on their interests to the special issue. The hope is that the issue will represent the di-
versity of mathematical activity in Ireland and showcase a scientifically and culturally
engaged community that is open to interactions and active in all forms of mathematical
expression.

The 2026 annual meeting will be hosted at Trinity College Dublin from 26 to
28t August. It will be the main focal point for the 50" anniversary celebration.
Many thanks to local organisers Tommaso Cremaschi, Marvin Anas Hahn, Nicolas
Maschot, Tristan McLoughlin and Katrin Wendland for their commitment to this highly
anticipated event. Please save the dates! It will be great to see as many members as
possible on some or all of the three days of the meeting.

Finally, a note of appreciation to everyone who has contributed to the activities of the
IMS in 2025. Thanks to all the committee members, especially to Ronan Flatley, Helena
Smigoc and Nina Snigireva whose terms conclude in December this year. Particular
thanks to Cénall Kelly who leaves the committee at the end of 2025 after six years of
outstanding service in the role of treasurer. Thanks to Tom Carroll and all the editorial
team of the IMS Bulletin. Thanks to Romina Gaburro and Ann O’Shea for chairing the



6 PRESIDENT’S REPORT

ICEDIM and ICME respectively, and to all the members of those committees. Thanks
to Michael Mackey for his dedication and initiative in maintaining the IMS website.
Welcome to the new committee members, and to Ronan Flatley as the new chairperson
of ICME from January 2026.
Rachel Quinlan
December 2025

E-mail address: president@irishmathsoc.org and rachel.quinlan@universityofgalway.ie



Draft minutes of the Irish Mathematical Society Annual General Meeting

held on 29" August 2025 at Maynooth University

Present: A. Baykalov, C. Boyd, P. Browne, S. Buckley, L. Creedon, J. Dillon, R. Flatley,
R. Gaburro, F. Hegarty, M. Ibrahim, C. Kelly, D. Kitson, B. Kreussler, A. Krishnan
J. Lansdown, P. Lynch, D. Mackey, M. Mackey, D. Malone, M. Manolaki, M. Mathieu,
P. Mellon, P. O Cathain, A. O’Farrell, G. Pfeiffer, K. Pfeiffer, R. Quinlan, H. émigoc,
N. Snigireva, W. Tang, S. Wills.

Apologies: T. Huettemann, J.P. McCarthy, A. O’Shea.

Agenda / Conflicts of interest
The agenda was accepted and no conflicts of interest were declared.

Minutes
The minutes of the AGM held on 30th August 2024 at Queen’s University Belfast
were accepted.

Matters Arising
None.

Correspondence

e The International Mathematical Union (IMU) is seeking nominations to three
committees: the IMU Executive Committee, the Commission for Developing
Countries (CDC) and the International Commission on the History of Mathe-
matics. The deadline for nominations is 15th November. Interested members
should contact the IMS committee.

e Registration for the International Congress of Mathematicians (ICM) 2026 is
now open. The ICM will take place in Philadelphia, USA, from 23-30 July.

e The IMU has circulated a statement from the International Science Council
(ISC) titled “International scientific collaboration: Vital yet vulnerable". ISC
statements are available at council.science/statements,/.

President’s Report

R. Quinlan highlighted several activities of the Society during the year including
the Women in the Mathematical Sciences Day in May, the Annual Meeting in
August and the seven conferences which received support from the Society. A full
report will appear in the Bulletin. Romina Gaburro and the local organisers of
the RIA-ICEDIM Women in the Mathematical Sciences Day, Nina Snigireva and
Niall Madden, were thanked. As were the local organisers of the Annual Meeting
in Maynooth: Stephen Buckley, Galatia Cleanthous, Christian Ketterer and Oliver
Mason. Next year’s annual meeting will take place at Trinity College Dublin with
thanks to Katrin Wendland and Tristan McLoughlin. Committee members Helena
Smigoc, Ronan Flatley and Nina Snigireva and Treasurer Cénall Kelly have reached
their final year on the committee and were thanked for their excellent service to the
Society. The Editor of the Bulletin, Tom Carroll, and webmaster Michael Mackey
were thanked for their continued service.

New members

Nine membership applications were approved since the last AGM. The new mem-
bers are: Hassan Alkhayuon, David Barnes, Jason Curran, Indranil Ghosh, Jesse
Lansdown, Tristan McLoughlan, Jack McNicholl, Donald Laurence McQuillan, Ais-
ling Twohill.

Nomination for honorary membership

Professor David Conlon (California Institute of Technology) was nominated for

honorary membership of the Society by D. Wilkins, A. O’Farrell and D. Kitson.
7



(1)

D. Malone outlined Professor Conlon’s mathematical career: Professor Conlon is
an Irish mathematician working in combinatorics, particularly Ramsey theory. He
was an undergraduate in Trinity College Dublin and his Ph.D. at the University of
Cambridge in 2009 was supervised by Tim Gowers. Following a Junior Research
Fellowship at Cambridge, he moved to the University of Oxford and became a
Professor in 2016. Since 2019, he has been a Professor at the California Institute
of Technology. Prof Conlon represented Ireland at the International Mathematical
Olympiad in 1998 and 1999. He has won a range of prizes, including the European
Prize in Combinatorics (2011) and the LMS Whitehead Prize (2019). In 2014 he
was a sectional speaker at the International Congress of Mathematicians. He is
currently a Simons Visiting Professor at the Simons Laufer Mathematical Sciences
Institute (formerly MSRI). Prof Conlon is a regular visitor to Ireland, delivering
seminars, colloquia and Maths Week talks. The nomination was approved by the
meeting.

Treasurer’s Report

Accounts for 2024 were presented. The amount of funding allocated to conferences
has increased this year. Savings certificates have been purchased as a rainy day
fund. Membership fees for 2025 have been paid to the EMS and IMU. The report
was approved and the Treasurer, C. Kelly, was thanked.

Conference support fund
The following workshops were supported this year:
elrish STAM student chapter conference (UL), 24" January 2025.
e¢EMS-CDC meeting (UCC), 10-12 April 2025.
eLayer Phenomena 2025 (Galway), 24-25 April 2025.
e4th Irish Linear Algebra and Matrix Theory Meeting (MIC), 29" April 2025.
eIMS Women in Maths (Galway), 12% May 2025.
eGroups in Galway, 15-16 May 2025.
eLLMS Harmonic Analysis and PDE’s (UCC), 15" May 2025.
Applications to the conference support fund are encouraged.

Bulletin

Issue 95 of the Bulletin is now available. Members are encouraged to submit articles
to the Bulletin, particularly items with a connection to the Society. A special issue
of the Bulletin will be published to mark the 50th anniversary of the Society.
Members can contact the Editor, T. Carroll, with any questions.

Report from Irish Committee for Mathematics Education (ICME)
R. Flatley gave a report on behalf of A. O’Shea (Chair). A full report will be
published on the IMS website.

M. Hanly, R. Flatley and J. Grannell are finalising reports on second-level math-
ematics textbook quality and have made preliminary contact with a publisher. The
Chief Examiner has not yet responded to a report prepared by R. Quinlan, J. Crow-
ley and K. Pfeiffer on the 2023 Higher Level Leaving Cert exam paper. The IMS
President wrote to the NCCA in September 2024 to ask that the society have rep-
resentation on the NCCA committee which is reviewing the Leaving Certificate
Mathematics Curriculum. The NCCA responded that they were not able to facili-
tate this. An ICME survey on the proposed curriculum changes has been submitted
to the NCCA and circulated to members of the Mathematics Development Group.

J. Crowley organised a webinar on 13th May where the article "A Scoping Survey
of ChatGPT in Mathematics Education" was discussed.

The ICME plans to write to the Minister of Education to raise concerns about
the secondary school examinations, syllabi and textbooks.
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(13)

(14)

(15)
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Feedback and suggestions from members are welcome. Contact the ICME sec-
retary K. Pfeiffer.

Report from Irish Committee for Equality, Diversity and Inclusion in
Mathematics (ICEDIM)
R. Gaburro (Chair) reported on ICEDIM activities.

The committee currently has nine members. In Autumn the committee ran an
online seminar series. For next year the committee is considering holding an in-
person event in Autumn. The RIA-ICEDIM Women in the Mathematical Sciences
Day 2025 took place on 12th May at the University of Galway as part of the inter-
national May12 celebrations. Nina Snigireva and Niall Madden were thanked for
organising the meeting. The RIA Physical, Chemical and Mathematical Sciences
Committee was also thanked for supporting the meeting.

Organisers are being sought for future meetings. Interested members should
contact the ICEDIM secretary N. Madden.

Elections

The current terms of the following committee members come to an end this year:
Conall Kelly; Derek Kitson; Christopher Boyd; Ronan Flatley; Thomas Huette-
mann; Helena Smigoc; Nina Snigireva.

C. Kelly, R. Flatley, H. Smigoc and N. Snigireva have reached the end of three
consecutive terms and are consequently not eligible for re-election to the committee.
The remaining committee members are eligible for re-election.

The following nominations were received and election to these positions was
approved by the meeting:

] Candidate \ Role \ Nominated by \ Seconded by ‘
Dana Mackey Treasurer Conall Kelly Helena Smigoc
Derek Kitson Secretary | Nina Snigireva | Romina Gaburro

Christopher Boyd Member Peter Lynch Nina Snigireva
Spyridon Dendrinos | Member | Romina Gaburro Derek Kitson
Thomas Huettemann | Member | Nina Snigireva | Romina Gaburro
Arundhathi Krishnan | Member Ronan Flatley Derek Kitson

Katrin Wendland Member | Rachel Quinlan Conall Kelly

Proposal for a statement of solidarity with scholars in Gaza
A proposal from a member that the Society issue a statement in relation to Gaza
was presented for discussion. It was expressed that a statement should aim to
highlight matters specific to mathematics and call for academic activity to continue
unhindered. The practicality of issuing statements was raised and a general ethics
statement was suggested. It was agreed that the committee would seek further
views and suggestions from the membership.
AOB
e M. Mathieu announced that the Mathematical Proceedings of the Royal Irish
Academy is adopting an open access model and submissions are encouraged.
e E. Gill encouraged members to get involved in events for Maths Week and to
register events on the Maths Week website.

Derek Kitson (MIC)
derek.kitson@mic.ul.ie



IMS Annual Scientific Meeting 2025
Maynooth University
28 — 29 AvuqgusTt, 2025

The 38" Annual Scientific Meeting of the Irish Mathematical Society took place at
Maynooth University on Thursday 28" and Friday 29'" August 2025 in the Rye Hall
Lecture Theatre. The local organising team in 2025 consisted of Stephen Buckley,
Galatia Cleanthous, Christian Ketterer, and Ollie Mason.

We would like to gratefully acknowledge the financial support received from the Irish
Mathematical Society, the Department of Mathematics and Statistics at Maynooth
University, as well as the sponsorship of the UKIE section of STAM for the poster
competition.

The meeting had a mixture of 45 minute talks given by invited speakers, shorter
contributed talks, and a poster session. The nine invited talks covered a diverse range
of topics across pure and applied mathematics, statistics, and mathematics education.
Details on the titles and speakers for these are given below.

e David Barnes (Queen’s University Belfast):
Global dimension of incomplete Mackey Functors and incidence algebras.
e Niamh Cahill (Maynooth University):
A Bayesian hierarchical spatio-temporal model for extreme sea-level prediction
i Ireland.
e Stephen Coombes (University of Nottingham):
Mathematical Neuroscience: Large-scale brain modelling.
e Aoife Hennessy (South East Technological University):
A Riordan array framework for enumerating and transforming lattice paths.
e Elise Lockwood (Oregon State University):
Integrating Computing into Mathematics Education: A Case of Python Pro-
gramming in Combinatorial Contexts.
o Gotz Pfeiffer (University of Galway):
Reflection Groups in the Light of Formal Concept Analysis.
e Melanie Rupflin (University of Oxford):
Quantitative estimates for geometric variational problems: Does almost solving
a problem almost give you a solution?
e Tan Short (Open University):
Integer tilings and hypertilings.
e Stephen Wills (University College Cork):
Construction of quantum Markov processes.

The Society’s AGM was held during the lunch break on the 29*" of August. There was
also a conference dinner for participants held on the previous evening at a restaurant
in Maynooth.

In addition to the invited talks, there were five shorter, 25-minute contributed talks,
covering topics in algebra, dynamical systems, and the history of mathematics. The list
of shorter contributed talks is given below.

e Mariam Al-Hawaj (Trinity College Dublin):
Generalized pseudo-Anosov maps and Hubbard trees.
e Anton Baykalov (University of Galway):
Computing zeta functions of groups and algebras.
e Patrick Browne (Technological University of the Shannon)
Chord Diagrams and Weight systems.
e Ted Hurley (University of Galway):
Units and zero-divisors: Building blocks for required communications’ systems.
10
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Siobhdn McGarry and Ciardn Mac an Bhaird (Maynooth University):
Fuclid’s Elements as Gaeilge — Beginnings.
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Maynooth University.

There was also a poster session which ran during coffee breaks on the 28" and 29*" of
August. During these breaks, participants had an opportunity to mingle and discuss
the posters with their presenters. The UKIE Section of STAM sponsored a prize of €100
for the best poster, which was awarded to Michael Joyce Maher (University of Galway).
The poster titles and their presenters are listed below.

David Cormican (University of Galway):

Ask Zeta Functions of Unitary Lie Algebras.

Conor Curtin (Technological University Dublin):

Hamiltonian & Lagrangian Models for Waves and Currents.

Joseph Dillon:

Properties of the square of the modulus of the xi function along the real line.
Niamh Fennelly (University College Dublin):

Synaptic Plasticity and Spatial Patterning in the Next-Generation Neural Field
Model.

Ramen Ghosh (Atlantic Technological University):

Learning Criticality: Statistical Limits of Predicting Phase Transitions in Ran-
dom Networks.

Maniru Ibrahim (University of Limerick):

Modeling Drug Release from Drug-Eluting Devices with Finite Dissolution Rates.
Michael Joyce Maher (University of Galway):

0dd inversion sets and their associated Turdn graphs.

David Malone (Maynooth University):

Pollard’s Rho Method.

Brian Skelly (University College Dublin):

A biophysical model of AMPA receptor Dynamics.
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Abstracts of Invited and Contributed Talks

Generalized pseudo-Anosov maps and Hubbard trees

Mariam Al-Hawaj
Trinity College Dublin

In this talk, I will present a result from my PhD thesis where I develop a new con-
nection between the dynamics of quadratic polynomials on the complex plane and the
dynamics of homeomorphisms of surfaces. In particular, given a quadratic polynomial,
we show that one can construct an extension of it which is a generalized pseudo-Anosov
homeomorphism. Generalized pseudo-Anosov means the foliations have infinite singu-
larities that accumulate on finitely many points. We determine for which quadratic
polynomials such an extension exists. My construction is related to the dynamics on
the Hubbard tree, which is a forward invariant subset of the filled Julia set that contains
the critical orbit.

Computing zeta functions of groups and algebras

Anton Baykalov
University of Galway

In this talk, I will report on ongoing work on explicit computations of zeta functions
associated with various types of counting problems attached to groups, algebras, and
related algebraic structures. The goal of this project is to combine systematic meth-
ods (which can be very computationally involved and limited in scope) and ad hoc
approaches driven by human insight intuition.

Global dimension of incomplete Mackey Functors and incidence
algebras

David Barnes
Queen’s University Belfast

The representation ring R(G) of a finite group G encodes rich structural information
about G. To gain deeper insight, one can consider the collection R(H) for each subgroup
H of G, along with the natural operations of restriction and induction between them.
This leads to the framework of Mackey functors, with further examples such as the
Burnside Mackey functor (based on finite H-sets) and the stable equivariant homotopy
groups of a topological space with a continuous G-action.

Recent developments in equivariant stable homotopy theory have motivated a gen-
eralisation: incomplete Mackey functors, where only a subset of the induction maps
is available. These arise naturally in computations and constructions within the field,
making it important to understand the algebraic complexity of their categories. One
such measure is global dimension, a generalisation of the notion of global dimension for
rings, where dimension 0 corresponds to semi-simple rings and dimension 1 to hereditary
rings.

In this talk, I will present a somewhat unexpected connection between this modern
question (in the case of rational coefficients) and classical work from the 1990s on
incidence algebras of partially ordered sets. These algebras, a type of path (or quiver)
algebra that received significant attention in the 1970s and 1980s, have well-understood
global dimensions. This connection provides insight on the algebraic complexity of
categories of rational incomplete Mackey functors.
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Chord Diagrams and Weight systems

Patrick Browne
Technological University of the Shannon

In this talk, we explore weight systems in knot theory, i.e. linear functionals on chord
diagrams. Chord diagrams, while motivated by singular knots, can be viewed as purely
combinatorial objects with rich mathematical structure. The significance of weight
systems stems from the fundamental result that every Vassiliev knot invariant deter-
mines and is determined by a weight system. Moreover, Lie algebras provide a powerful
framework for constructing these weight systems.

This presentation will introduce the connection between chord diagrams, weight sys-
tems, and Lie theory. We'll explore this interplay as preliminary research that may
reveal new insights into both knot theory and combinatorial structures. The talk will
be accessible to those without specialized background in knot theory or Lie algebras,
focusing on the connections between these objects.

A Bayesian hierarchical spatio-temporal model for extreme sea-level
prediction in Ireland

Niamh Cahill
Maynooth University

Rising sea levels increase the risk of flooding, coastal erosion, and extreme sea-level
events. Coastal communities in Ireland are particularly vulnerable due to a combination
of long, varied shorelines, low-lying urban areas, and exposure to both Atlantic storm
systems and surges propagating from the Irish Sea. Accurate risk assessment depends
on understanding the drivers of extreme sea levels, especially storm surges. A Bayesian
hierarchical spatio-temporal model is developed to estimate extreme sea-level surges at
both gauged and ungauged locations, drawing on tide-gauge records from Ireland and
the west coast of Great Britain in the Global Extreme Sea Level Analysis (GESLA)
database. Data from Great Britain are incorporated to compensate for the relatively
short record lengths at most Irish tide gauges. Annual maxima of sea-level surges
are modelled using the Generalised Extreme Value (GEV) distribution, incorporating
both spatial and temporal dependencies. A barrier model captures complex spatial
correlations along irregular coastlines.

Model evaluation shows that combining spatial and temporal components improves
predictive skill. This is particularly valuable for Ireland, where short records limit
site-specific analysis; the model’s ability to share information across locations enhances
estimates for data-sparse areas. The analysis reveals key patterns in extreme sea-
level variability and detects an upward trend in surge annual maxima, with the east
coast emerging as a higher-risk region. By explicitly integrating spatio-temporal depen-
dencies, the framework offers a flexible, data-driven approach to representing extreme
sea-level behaviour, supporting risk management and coastal planning in Ireland and
similar coastal settings.

Mathematical Neuroscience: Large-scale brain modelling

Stephen Coombes
University of Nottingham
Neural mass models have been actively used since the 1970s to model the coarse-grained

activity of large populations of neurons and synapses. They have proven especially fruit-
ful for understanding brain rhythms. Although inspired by neurobiological principles,
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these models are largely phenomenological and often fall short of reproducing the com-
plex dynamical repertoire observed in real neural tissue. In this talk I will discuss a
simple integrate-and-fire spiking neuron network model that has recently been shown
to admit to an exact mean-field description for synaptic interactions. This has many of
the features of a neural mass model coupled to an additional dynamical equation that
describes the evolution of population synchrony. I will show that this next generation
neural mass model is ideally suited to understanding the patterns of brain activity that
are ubiquitously seen in whole brain non-invasive neuroimaging recordings. Addition-
ally, I will outline key mathematical challenges in linking structural and functional brain
connectivity and discuss how phase-amplitude reduction techniques may provide a path
forward. Time permitting, I will also describe the Haken model — a spiking network that
can be analysed without mean-field approximations — highlighting its relevance in the
era of high-resolution neural recordings from hundreds to thousands of simultaneously
monitored neurons.

A Riordan array framework for enumerating and transforming lattice
paths

Aoife Hennessy
South East Technological University

This talk explores how Riordan arrays can be used to enumerate and transform families
of lattice paths. We introduce a promotion framework that takes classical Dyck paths
to more general Motzkin and Schroder paths via two key transformations: the Binomial
and Chebyshev transforms. The framework is further extended to study grand paths,
which are not restricted by the x-axis. By uncovering patterns within this framework,
we construct explicit bijections linking different path families. The Riordan transform
approach provides new combinatorial insights and a fresh perspective on lattice paths.

Units and zero-divisors: Building blocks for required communications’
systems
Ted Hurley
University of Galway
The talk is about how units and zero-divisors in abstract algebra are used, and can be

used, in building required types of structures for communications’ systems, such as for
Coding Theory, Cryptography, Filter Banks and others.

Integrating Computing into Mathematics Education: A Case of
Python Programming in Combinatorial Contexts

Elise Lockwood
Oregon State University

Computational activity, and programming in particular, comprise an increasingly es-
sential aspect of scientific activity, and engaging in computing is as accessible as it
ever has been. In mathematics education, there is a need to investigate the ways in
which students’ computational activity can support their reasoning about mathemati-
cal concepts. In this talk, I will present results from a study in which undergraduate
students engaged with Python programming tasks designed to support combinatorial
thinking. I highlight noteworthy aspects of students’ experiences with computing in this
mathematical context, including benefits and drawbacks of working in a computational
environment. I suggest that even for students with little programming experience, the
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computational environment supported their combinatorial reasoning in valuable ways.
Overall, I seek to frame these specific findings about Python programming in com-
binatorics as an instance of a broader phenomenon, namely highlighting the ways in
which computing may be leveraged to support students’ engagement with mathematical
concepts and practices.

Euclid’s Elements as Gaeilge — Beginnings

Siobhdan McGarry & Ciaran Mac an Bhaird
Maynooth University

The title ‘Additional Irish ms 2a’ in UCD Special Collections reveals nothing of its re-
markable mathematical content. The first 16 pages of this manuscript are a translation
in Irish of the start of Euclid’s Elements from around 1850 by the famous Irish language
scholar John O’Donovan (1806 —1861). In this talk, we will provide some background
on O’Donovan, including his work for the Ordnance Survey. We will present evidence
that suggests that O’Donovan’s original source was Robert Simson’s Elements, and that
O’Donovan may have been aware of the controversy around the parallel postulate. Re-
garding the translation itself, the terminology that O’Donovan employed is particularly
interesting. It attracted a commentary from the leading Irish language expert Eoin
MacNeill (1867-1945) and included the repurposing and combination of existing Irish
words, and references to original Greek terms. We will close with a brief overview of how
the manuscript ended up at UCD and mention other partial Irish language translations
of the Elements that have thus far been uncovered.

Reflection Groups in the Light of Formal Concept Analysis

Gotz Pfeiffer
University of Galway

Formal Concept Analysis (FCA) is a branch of applied lattice theory, concerned with
the study of concept hierarchies derived from collections of objects and their attributes.
Introduced by R. Wille in the 1980s, FCA now has found applications in machine learn-
ing and related fields. An application of FCA to hyperplane arrangements yields a new
Galois connection on the (conjugacy classes of) parabolic subgroups of a finite reflection
group. Combined with methods from Serre’s recent work on involution centralizers, we
obtain a refinement of Howlett’s description of the normalizers of parabolic subgroups
of a finite Coxeter group. This is joint work G. Roehrle and J.M. Douglass.

Quantitative estimates for geometric variational problems: Does
almost solving a problem almost give you a solution?

Melanie Rupflin
University of Oxford

Many interesting geometric objects are characterised as minimisers or critical points of
natural geometric quantities such as the length of a curve, the area of a surface or the
energy of a map.

For the corresponding variational problems it is important to not only understand
the properties of potential minimisers, but to obtain a more general understanding of
the energy landscape.

It is in particular natural to ask whether an object with almost minimal energy
must essentially “look like” a minimiser, and if so whether this holds in a quantitative
sense, i.e. whether one can bound the distance to a minimiser in terms of the energy
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defect. In this talk we will discuss this and related questions concerning the behaviour of
almost critical points and the convergence of gradient flows for some classical geometric
problems, including the Dirichlet energy of maps between spheres whose minimisers
correspond to meromorphic functions.

Integer tilings and hypertilings

Ian Short
Open University

We begin by discussing frieze patterns, which are periodic arrays of integers introduced
by Coxeter in the 1970s. Conway and Coxeter discovered an elegant way of classifying
frieze patterns of positive integers using triangulated polygons. Frieze patterns are
closely related to certain integer tilings of the plane known as n-tilings. Motivated
by Conway and Coxeter’s triangulated polygons, we describe geometric models in the
hyperbolic plane for n-tilings and their three-dimensional counterparts. These models
allow us to construct all rigid integer tilings and hypertilings explicitly. This is joint
work with Karpenkov, Van Son, and Zabolotskii.

Construction of quantum Markov processes

Stephen Wills
University College Cork

After giving a brief introduction to the idea and uses of quantum probability spaces
and noncommutative random variables, I will discuss the various methods for the con-
struction of continuous-time quantum Markov processes, in particular considering these
as dilations of an underlying quantum Markov semigroup. My aim will be to give a
flavour of what goes on, explaining some of the challenges that come when working in
noncommutative analysis, but without with getting bogged down in technical detail.

Report by Stephen Buckley, Galatia Cleanthous, Christian Ketterer, Oliver Mason
stephen.m.buckley@mu.ie



Reports of Sponsored Meetings

SPRING 2025 MEETING OF THE EMS COMMITTEE FOR DEVELOPING COUNTRIES
10-12 AprIiL 2025, UCC

The Spring 2025 meeting of the European Mathematical Society Committee for Devel-
oping Countries (EMS-CDC) was hosted by University College Cork (UCC) over 10-12
April 2025. This event had a hybrid format, with 14 participants on-site and 20 more
online. The local organisers were Cénall Kelly (currently vice-chair of the EMS-CDC)
and Tom Carroll.

The EMS-CDC has a mandate to assist countries in the Global South in ways that
include the development of mathematics curricula, libraries, and financial support.
Recent major projects of the committee include the Emerging Regional Centres of
Excellence (ERCE) programme, which recognises and supports centres of mathematics
in the Global South that have achieved a substantial level of research activity and that
play a key role in training students in their region.

The IMS President, Dr. Rachel Quinlan, gave welcoming remarks to open the meeting,
which started with a session on academic publication practices and their implications
for researchers in the Global South. The agenda also included reports from associate
members of the committee representing organizations such as Centre International de
Mathématiques Pures et Appliquées (CIMPA), the International Centre for Mathematical
Sciences (ICMS), and the African Institute for Mathematical Sciences (AIMS).

Please see the committee’s webpage for more about the work of the EMS-CDC.
The meeting received funding from the IMS; UCC College of Science, Engineering,
and Food Science; and UCC School of Mathematical Sciences.

Report by Cénall Kelly, University College Cork
conall.kelly@ucc.ie
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GROUPS IN GALWAY 2025
15-16 MAY 2025, UNIVERSITY OF GALWAY

Groups in Galway 2025 took place at the University of Galway during 15-16 May 2025.
The meeting was organised by Joshua Maglione and Rachel Quinlan. It was supported
by the de Brin Centre for Mathematics, the Irish Mathematical Society, and Research
Ireland. There were 7 invited speakers and nearly 40 participants. We also held a poster
session with about 10 posters on display next to the University of Galway’s Women in
Mathematics poster exhibit.

The conference featured a total of seven invited talks covering a wide range of topics
in contemporary group theory and related fields. The speakers were:

Anton Baykalov (University of Galway):

Imprimitive partial linear spaces and groups of rank 3

Abstract: A partial linear space (PLS) is a point-line incidence structure such that each
line is incident with at least two points and each pair of points is incident with at most
one line. We say that a PLS is proper if there exists at least one non-collinear point
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pair, and at least one line incident with more than two points. The highest degree of
symmetry for a proper PLS occurs when the automorphism group G is transitive on
ordered pairs of collinear points, and on ordered pairs of non-collinear points. In this
case, (G is a transitive rank 3 group on the points. While the primitive rank 3 PLSs
are essentially classified, we present the first substantial classification of a family of
imprimitive rank 3 examples. We classify all imprimitive rank 3 proper partial linear
spaces such that the rank 3 group is innately transitive (including quasiprimitive cases)
or semiprimitive and induces an almost simple group on the unique nontrivial system
of imprimitivity. We construct several infinite families of examples and ten individual
examples. The examples admit a rank 3 action of a linear or unitary group, and to our
knowledge most of our examples have not appeared before in the literature. This is a
joint work with Alice Devillers and Cheryl Praeger.

Iker de las Heras (University of the Basque Country):

Strong conciseness and equationally Noetherian groups

Abstract: The notion of strong conciseness of a group-word extends the classical concept
of conciseness from abstract groups to the profinite setting. A word w is said to be
strongly concise in a class C of profinite groups if, for any G € G, the cardinality of the
set of values taken by w in G being strictly smaller than 2% implies that the verbal
subgroup of G is finite. In this talk we will study the relation between this notion
and the notion of equationally Noetherian groups. These groups arise from the theory
of algebraic geometry over groups, which we will develop throughout the talk. As a
consequence, we will see that every word is strongly concise in the class of profinite linear
groups, as well as in the class of profinite completions of virtually abelian-by-polycyclic
groups. This is joint work with Andoni Zozaya.

Brita Nucinkis (Royal Holloway, University of London):

Cohomological finiteness conditions for topological groups

Abstract: 1 will give a quick introduction into the classical finiteness conditions F'P,
and F), for a discrete group and then explain how to extend these to certain topological
groups. The search for discrete groups that are of type F'P, but not of type F' P,y has
a very interesting and rich history. In this talk will present a new family of discrete
and topological groups with this property. This is joint work with I. Castellano, B.
Marchionna, and Y. Santos-Rego.

Gotz Pfeiffer (University of Galway):

Reflection groups in the light of formal concept analysis

Abstract: Formal Concept Analysis (FCA) is a branch of applied lattice theory, concerned
with the study of concept hierarchies derived from collections of objects and their
attributes. Introduced by R. Wille in the 1980s, FCA now has found applications in
machine learning and related fields. An application of FCA to hyperplane arrangements
yields a new Galois connection on the (conjugacy classes of) parabolic subgroups of a
finite reflection group. Combined with methods from Serre’s recent work on involution
centralizers, we obtain a refinement of Howlett’s description of the normalizers of
parabolic subgroups of a finite Coxeter group. This is joint work G. Roehrle and J.M.
Douglass.

Margherita Piccolo (University of Hagen):

Representation zeta functions of subgroups and split extensions of SLy'(O)

Abstract: The representation growth of a group G measures the asymptotic distribution
of its irreducible representations. Whenever the growth is polynomial, a suitable vehicle
for studying it is a Dirichlet generating series called the representation zeta function
of G. One of the key invariants in this context is the abscissa of convergence of the
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representation zeta function. The spectrum of all abscissae arising across a given class of
groups is of considerable interest and has been studied in some cases. In the realm of p-
adic analytic groups (with perfect Lie algebra), the abscissae of convergence are explicitly
known only for groups of small dimensions. But there are interesting asymptotic results
for ”simple” p-adic analytic groups of increasing dimension. In this talk, I will give an
overview of the main tools and ingredients in this area and I will report on recent work
joint with Moritz Petschick to enlarge the class of groups.

Anitha Thillaisundaram (Lund University):

Normal subgroups of non-torsion multi-EGS groups

Abstract: The family of multi-EGS groups form a natural generalisation of the Grigorchuk-
Gupta-Sidki groups, which in turn are well-studied groups acting on rooted trees. Groups
acting on rooted trees provided the first explicit examples of infinite finitely generated
torsion groups, and since then have established themselves as important infinite groups,
with numerous applications within group theory and beyond. Among these groups
with the most interesting properties are the so-called regular branch groups. In this
talk we investigate the normal subgroups in non-torsion regular branch multi-EGS
groups, and we show that the congruence completion of these multi-EGS groups have
bounded finite central width. In particular, we prove that the profinite completion of a
Fabrykowski-Gupta group has width 2. This is joint work with Benjamin Klopsch.

Gareth Tracey (University of Warwick):

How many subgroups are there in a finite group?

Abstract: Counting the number of subgroups in a finite group has numerous applications,
ranging from enumerating certain classes of finite graphs (up to isomorphism), to
counting how many isomorphism classes of finite groups there are of a given order. In
this talk, I will discuss the history behind the question; why it is important; and what
we currently know.

The conference website contains abstracts of the talks and further information.

Report by Joshua Maglione and Rachel Quinlan, University of Galway
joshua.maglione@universityofgalway.ie, rachel.quinlan@universityofgalway.ie

4TH IRISH LINEAR ALGEBRA AND MATRIX THEORY MEETING
29 APRIL 2025, MARY IMMACULATE COLLEGE

The 4" Irish Linear Algebra and Matrix Theory Meeting was organised by Cian O’Brien,
and took place over one day in Mary Immaculate College. This meeting has previously
taken place in University College Dublin, Maynooth University, and University of Galway,
with the aim of bringing together and stimulating the community of linear algebra and
matrix theory researchers in Ireland. More than 20 people registered to attend the
meeting, and 18 actively participated on the day.

The conference featured nine invited talks, from colleagues across all career stages,
covering a wide range of topics in linear algebra and matrix theory:

Patrick Browne (Technological University of the Shannon: Midwest):

Chord Diagrams and Weight systems

Abstract: In this talk, we explore weight systems in knot theory, i.e. linear functionals
on chord diagrams. Chord diagrams, while motivated by singular knots, can be viewed
as purely combinatorial objects with rich mathematical structure. The significance of
weight systems stems from the fundamental result that every Vassiliev knot invariant
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determines and is determined by a weight system. Moreover, Lie algebras provide a
powerful framework for constructing these weight systems.

This presentation will introduce the connection between chord diagrams, weight
systems, and Lie theory. We'll explore this interplay as preliminary research that may
reveal new insights into both knot theory and combinatorial structures. The talk will
be accessible to those without specialized background in knot theory or Lie algebras,
focusing on the connections between these objects.

2f

S ol 1

X

3 S
%
43

. 5 w0 %s

e

Niall Madden (University of Galway):

Enriched FEMs: Stability and Fast Solvers

Abstract: Finite Element Methods produce linear systems of equations which, when
solved, yield numerical solutions to differential equations. The stability and efficiency of
the FEMs depend on properties of the system matrix.

In this talk I'll outline a strategy for enriching the finite dimensional space on which
the FEM is posed in order to improve accuracy, but the main focus will be on the
surreptitious impact this has on the system matrix in terms of stability (in an M-matrix
type way) and factorizabilty of the system matrix.

Arani Paul (University College Dublin):
Code Equivalence and Conductors
Abstract: Code Equivalence Problems (CEPs) have been discussed and studied for a
long time not only for their importance in cryptography and cyber-security, but also
because they connect to different areas of mathematics such as the Graph Isomorphism
Problems and the Tensor Isomorphism Problems. This talk is particularly focused on the
CEP for vector rank metric codes. Although rank metric codes have not been studied
as extensively as Hamming metric codes, it has become an important topic of research
in recent decades because of its applications in numerous sectors of modern-day digital
technology.

Here we give a brief introduction to CEP in vector rank metric codes and discuss
a way to classify all the equivalence classes of codes for given parameters. The key
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concepts are classical objects from linear and abstract algebra, namely conductors and
idealisers. We will discuss practical implementations of classification algorithms, and
discuss possible future directions.

Rachel Quinlan (University of Galway):

Idempotent Alternating Sign Matrices

Abstract: An alternating sign matrix (ASM) is a square (0,1, —1)-matrix in which
the nonzero entries alternate between 1 and —1 and sum to 1, within each row and
column. Permutation matrices are examples of ASMs, and ASMs generalize permutation
matrices in several apparently natural but unexpected ways. Every multiplicative group
of nonsingular ASMs is a group of permutation matrices, but the set of all ASMs of size
n X n also contains multiplicative groups of singular matrices. The identity element F
of such a group is an idempotent ASM, it is equal to its own square. In this talk we will
discuss some methods for construction of idempotent ASMs, and identify the minimum
rank of an idempotent ASM of specified size.

Padraig O Cathéin (Dublin City University):

Matrices with Specified Automorphisms

Abstract: Combinatorial structures such as strongly regular graphs and projective
planes are encoded as incidence matrices, which often have interesting linear algebraic
properties. Non-existence results are obtained via algebraic arguments. E.g. the Bruck-
Ryser-Chowla theorem gives non-obvious necessary conditions for existence of symmetric
designs based on equivalence of quadratic forms, and many non-existence results for
difference sets boil down to showing that the eigenvalues of an associated matrix must
be norms in a suitable number field.

In this talk, T will discuss (constructive) existence of such matrices, under the as-
sumption of a suitable group of automorphisms. This theory is well known for graphs
(i.e. symmetric {0, 1}-matrices) but rather more subtle when the matrix contains k'
roots of unity. In fact, one can construct an explicit basis for the set of all matrices
invariant under a given group representation, and construct the eigenvalues of a given
invariant matrix in terms of character sums. Time permitting, I will show how to use
these methods to build new complex Hadamard matrices.

Helena Smigoc (University College Dublin):

Arbitrarily Finely Divisible Stochastic Matrices

Abstract: We will consider the class arbitrarily finely divisible stochastic matrices
(AF D, -matrices): stochastic matrices that have a stochastic ¢ root for infinitely many
natural numbers c. This notion generalises the class of embeddable stochastic matrices.
In particular, if A is a transition matrix for a Markov process over some time period,
then arbitrary finely divisibility of A inside the set of stochastic matrices is the necessary
and sufficient condition for the existence of a transition matrix corresponding to this
Markov process over infinitesimally short periods.

We will explore the connection between the spectral properties of an AF D,-matrix A
and the spectral properties of a limit point L of its stochastic roots. We will demonstrate
a construction of a class of AF D -matrices with a given limit point L from embeddable
matrices, and examine specific cases, including 2 x 2 matrices, 3 x 3 circulant matrices,
and offer a complete characterisation of AF D -matrices of rank-two.

Badriah Safarji (University of Galway):

Rank Distributions of Matriz Representations of Graphs Over Fb

Abstract: Over a finite field, the number of n x n matrices of rank r typically increases
as r increases, 0 < r < n. However, over the field of two elements F', the most frequently
occurring rank is not n but n — 1. The numbers of symmetric F-matrices of rank n and
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n — 1 coincide if n is odd and differ marginally if n is even. This opens the door to a
more thorough investigation of the distribution of the matrix ranks over the field of two
elements.

Let I' be a simple undirected graph. A symmetric matrix M with entries in a field
represents I if the off-diagonal entries of M correspond to edges of I' in the sense that
the (i,7)-entry of M is non-zero if and only if vertex ¢ and vertex j are adjacent in
I'. The diagonal entries of M are not subject to any constraints, and therefore there
are many matrices representing I' over the field. This project aims to identify and
characterize simple connected graphs of order n with more F-matrix representations of
rank n — 1 than rank n, a property rare over other finite fields. We restrict our attention
to graphs of order n > 3 with an induced subgraph isomorphic to the path on n — 1
vertices. This talk will present results on the rank distributions of matrix representations
of such graphs over F'.

Bernard Hanzon (University College Cork):

Parametrization of Stable Multivariable Systems: Pivot Structures and Numbered Young
Diagrams

Abstract: In this presentation we show how stable linear multivariable systems can
be parametrized using orthogonal m-upper (m + n) x (m + n) Hessenberg matrices,
where m stands for the number of inputs and n for the order of the system. To make
sure all systems are covered by the parametrization certain column permutations of
the Hessenberg matrix will be utilized. The lower part of the permuted (m-upper)
Hessenberg matrix will given the pair [B; A]; where (A; B) is the controllable pair of the
system in state space form. Advantages of this approach to parametrization of stable
linear systems will be discussed.

Cian O’Brien (Mary Immaculate College):

The Bruhat Order for Latin Squares

Abstract: Alternating sign matrices arise naturally as a generalisation of permutation
matrices in a number of different contexts. For example, they are the unique minimal
lattice extension of the permutation matrices under the Bruhat order. In 2018, Brualdi
and Dahl defined alternating sign hypermatrices, a 3-dimensional analogue of alternating
sign matrices. Latin squares can be thought of as the 3-dimensional analogue of
permutation matrices, since the positions of each of the n symbols in an n x n Latin
square correspond to the non-zero entries in some n X n permutation matrix.

We have extended this idea further, by defining the Bruhat order for Latin squares
and studying the resulting poset. This talk presents current work relating to this
poset, including 3-dimensional analogues of related combinatorial objects, and a lattice
extension of the Latin square poset.

The conference website contains further information.

Report by Cian O’Brien, Mary Immaculate College
cian.obrien@mic.ul.ie

WORKSHOP ON NUMERICAL METHODS FOR PROBLEMS WITH LAYER PHENOMENA
24—-25 APRIL 2025, UNIVERSITY OF GALWAY

The Workshop on Numerical Methods for Problems with Layer Phenomena is an annual
international workshop focusing on mathematical and numerical aspects of differential
equations whose solutions feature boundary or interior layers, such as singularly perturbed
problems. Though commonly called ‘The Limerick Workshop’, recent iterations have
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been hosted in University of Cyprus (twice), Universidad de Sevilla, University of
Limerick (online), Fern Universitit in Hagen, and Charles University.

The

215" instance of the workshop was hosted at the University of Galway on 24-25

April 2025. It was organised by Niall Madden, Nanda Poddar, Jekaterina Mosalska,
and Sean Tobin. There were twenty in-person participants, with another twenty joining
for a special online session. Financial and organisational support was provided by the
Irish Mathematical Society, and the School of Mathematical and Statistical Sciences,
University of Galway.

workshop featured fourteen research talks:

Christos Xenophontos (Cyprus). On the decomposition of the solution to reaction-
diffusion two-point boundary value problems with data of finite reqularity.

Alex Trenam (Heriot-Watt). Nodally bound-preserving discontinuous Galerkin
methods for charge transport.

Sean Kelly (Limerick). Pointwise-in-time error bounds for a fractional-derivative
parabolic problem on quasi-graded meshes.

Neofytos Neofytou (Cyprus). rp-DG FEM for fourth order singularly perturbed
problems with two small parameters.

Christos Pervolianakis (Jena). A Stabilized Scheme for an Optimal Control
Problem Governed by Convection-Diffusion-Reaction Equation.

Nanda Poddar (Galway). Interplay of Dynamic Boundary Absorption and Layer-
like Phenomena in Reactive Solute Transport: A Dual Numerical Approach.
Jenny Power (Bath). Adaptive Regularisation for PDE-Constrained Optimal
Control.

Niall Madden (Galway). A tutorial on solving singularly perturbedproblems in
Firedrake.

Marwa Zainelabdeen (Berlin). Gradient-robust finite element—finite volume
scheme for the compressible Stokes equations.

Alan F. Hegarty (Limerick). Novel meshes for the solution of a problem with
interior parabolic layers.

Katherine MacKenzie (Strathclyde). The Bound Preserving Method applied to
the 2D Induction Heating Problem.

Natalia Kopteva (Limerick). A posteriori error estimation for convection-
diffusion equations.

Sebastian Franz (Dresden). On a posteriori estimation in the energy norm for
convection-diffusion problems.
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In addition, Martin Stynes (Beijing) gave a short talk, on Zoom, remembering Lutz
Tobiska (Magdeburg), a major figure in the numerical analysis of singularly perturbed
problems, who passed away a few weeks earlier.

The conference website contains abstracts of the talks and further information.

Report by Niall Madden, University of Galway
Niall. Madden@University OfGalway.ie

LMS HARMONIC ANALYSIS AND PDE NETWORK MEETING
1 MAy 2025, UNIVERSITY COLLEGE CORK

The meeting was organised by Tom Carroll and Spyros Dendrinos (both from University
College Cork). The meeting took place fully in person.

The meeting featured a total of four invited talks covering a range of topics in harmonic
analysis, complex analysis and differential equations:

Joaquim Ortega-Cerda (Universitat de Barcelona):
The Hormander-Bernhardsson extremal function
Abstract: We characterize the function ¢ of minimal L! norm among all functions f of
exponential type at most 7 for which f(0) = 1. This function, studied by Hérmander
and Bernhardsson in 1993, has only real zeros +7,,n = 1,2,.... We identify ¢ in
the following way. We factor p(z) as ®(z)®(—=z), and show that ® satisfies a certain
second order linear differential equation along with a functional equation, either of
which characterizes ®. Furthermore, we use these facts to establish a series expansion
for the zeros and a power series expansion of the Fourier transform of ¢, as suggested
by the numerical work of Hormander and Bernhardsson. The dual characterization of
® arises from a commutation relation that holds more generally for a two-parameter
family of differential operators, a fact that is used to perform high precision numerical
computations.

This is joint work with Andriy Bondarenko, Danylo Radchenko and Kristian Seip.
Link to arXiv

Stefan Buschenhenke (Universitét zu Kiel):

Mazimal operators for two-dimensional surfaces of finite type and FIO-cone multipliers
Abstract: We report on joint work with Spyros Dendrinos, Isroil Ikromov and Detlef
Miiller on a new class of ‘FIO-cone multipliers’. In previous work, we studied the
boundedness range of the maximal average of any smooth compact hypersurface in
three-dimensional space, up to a certain ”exceptional class”, which is linked to the
cone multiplier. We encounter a convolution operator, being the composition of two
operators: the classic cone multiplier and additionally a certain translation invariant
Fourier integral operator (FIO) with non-standard phase functions with singularities
near the light cone. We develop a new theory for a class of these ” FIO-cone multipliers”,
that allows phase functions that are in a particular way adapted to the geometry of the
cone. Our approach uses the recent breakthrough for the cone multiplier conjecture by
Guth, Wang and Zhang.

Myrto Manolaki (University College Dublin):

Boundary behaviour of holomorphic and harmonic functions

Abstract: The study of the boundary behaviour of holomorphic and harmonic functions
is of significant importance in many areas in Analysis. In this talk I will present an
overview of my research on this topic, focusing on two theorems which complement and
strengthen some classical results. The first one concerns Abel’s Limit Theorem, which
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connects the behaviour of a Taylor series as we approach the boundary from the interior
with its behaviour on the boundary itself. The second one strengthens Plessner’s and
Spencer’s theorems about the angular behaviour of holomorphic functions on the unit
disc. Moreover, its harmonic analogue in higher dimensions improves classical results of
Stein and Carleson. As we will see, these two theorems, which are based on a variety of
tools from potential theory, find applications to certain classes of holomorphic functions
with wild boundary behaviour. (Based on joint works with Stephen Gardiner, Stéphane
Charpentier and Konstantinos Maronikolakis.)

Itamar Oliveira (University of Birmingham):

A phase-space approach to weighted Fourier extension inequalities

Abstract: The goal of the talk is to present a certain ray bundle representation of the
Fourier extension operator in terms of the Wigner transform to investigate weighted
estimates in restriction theory and their connections to time-frequency analysis and
geometric combinatorics.

In joint work with Bennett, Gutierrez and Nakamura, we show how Sobolev estimates
for the Wigner transform can be converted into certain tomographic bounds for the
Fourier extension operator, which implies a variant of the (recently shown by H. Cairo
to be false) Mizohata-Takeuchi conjecture. Together with Bez and the previous three
authors, we employed of our phase-space approach in the context of Strichartz inequalities
for orthonormal systems in the spirit of the work of Frank and Sabin. If time allows,
we will make a further connection between our results and Flandrin’s conjecture in
signal processing through the study of certain singular integral operators similar to those
studied by Lacey, Lie, Muscalu, Tao and Thiele.

The meeting website contains further information. The meeting was also funded by
Scheme 3 of the London Mathematical Society and the School of Mathematical Sciences
(UCCO).

Report by Spyros Dendrinos, University College Cork
sd@Qucc.ie

IMS & IrisH SIAM STUDENT CHAPTER CONFERENCE 2025
9 MAY 2025, UNIVERSITY OF LIMERICK

On 9*" May, the University of Limerick hosted the IMS & Irish SIAM Student Chapter
Conference, welcoming over 40 applied mathematicians from industry and academia alike.
Originally scheduled to take place in January 2025, the 10" edition of the conference
had to be postponed on account of Storm Eowyn. Thankfully, the delay did not dampen
the enthusiasm of the participants, who filled the large lecture hall in the Analog Devices
Building to listen to two keynote lectures and 11 contributed presentations. A poster
session also took place, providing students with an opportunity to present their research
to an audience of their peers in a friendly, relaxed atmosphere.

The day opened with remarks from Dr. Doireann O’Kiely, followed by a keynote
lecture by Dr. Niall Madden. In his presentation, Dr. Madden described the use of
numerical methods in disparate fields such as tidal modelling and preventing aortic
aneurysms. The variety of his work drew several thought-provoking questions from a rapt
audience. After lunch, the second keynote lecture was delivered by Orla Fitzmaurice, a
recent Mathematical Sciences graduate of UL, now working with Analog Devices. Her
presentation gave an insight into the various ways large language models were being
implemented into Analog Devices’ engineering workflows. In addition to outlining the
various advantages of large language models, Orla also gave an overview of the challenges
in benchmarking the performance of these models.
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Following a full conference programme, the organising committee had the difficult
decision of choosing the best speaker. After much deliberation, the award was presented
to Emmet Lawless for his presentation “A variational approach to portfolio choice”,
applying methods in control theory to a financial planning problem. Once the conference
was brought to a close, a dinner was held in the Pavilion on the UL North Campus.
Here, the conference participants had a chance to mix and mingle, forging connections
and fostering collaborations among a promising group of early-career researchers.

The conference was a resounding success from start to finish, showcasing the impressive
breadth and depth of applied mathematics research taking place at Irish universities. The
organising committee are very grateful to SIAM, Analog Devices, the Irish Mathematical
Society and also the UL Department of Mathematics and Statistics for their generous
financial support. Going forward, the conference will hopefully continue to be a mainstay
of the Irish mathematical calendar as an event run by students, for students.

The following speakers contributed talks to the conference programme:

(1) Dr. Anthony Bonfils (University of Limerick)
2) Lorenzo Pisani (Dublin City University)

) Lyudmila Ivanova (Technological University Dublin)
) Daire O’Donovan (University College Dublin)
) TJ O’Brien (University College Dublin)

) Evan Murphy (Dublin City University)

) Emmet Lawless (Dublin City University)

) Jack Cromwell (Dublin City University)

) Ole Canadas (Dublin City University)

(10) Julius Busse (University College Dublin)

(11) Daniel Devine (Trinity College Dublin)

(
(3
(4
(5
(6
(7
(8
9
10

Titles and abstracts of keynote lectures and contributed talks:
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Dr. Niall Madden:

Numerical modelling of solute transport in oscillatory flow, and other things

Abstract: In this talk I’ll discuss some recent work on numerical modelling of solute
transport in an oscillatory flow. The physical system features particles that are released
at a point in a channel bounded above and below by plates. Particles encountering the
plates may be either reflected or absorbed. The main focus on the talk will be on how
the scenario can be modelled numerically, including

e comparison between numerical models based on classical finite differences and
Brownian Dynamic Simulation;

e a discussion on how numerical results might be validated;

e how the numerical modelling process can inform the mathematical model.

Along the way, there will be discussion of how numerical computing (and numerical
analysis) can be of value in projects as diverse as modelling Galway Bay, predicting
aortic aneurysms, and reducing the reliance on animal testing in testing therapies in
ICU settings.

Orla Fitzmaurice:

Generative Al in Practice: Retrieval Augmented Generation and FEvaluation Challenges
Abstract: Orla Fitzmaurice graduated from the University of Limerick with a Bachelor
of Science in Mathematical Sciences with Statistics in August 2024 and works at Analog
Devices in Limerick as a graduate Machine Learning Engineer. Her current work focuses
on evaluating application specific Generative Al systems being developed by her team.

Generative Al has revolutionized numerous domains, enabling applications ranging
from creative writing to technical problem-solving. Large Language Models (LLMs), a
subset of generative Al, are designed to produce natural language output by learning
patterns and structures from massive datasets of unlabelled text. Generative Pre-trained
Transformers (GPTs) power widely used systems like OpenAI’s ChatGPT and Microsoft’s
Copilot. However, retraining these models to incorporate up-to-date information is time
and resource intensive. Retrieval-Augmented Generation (RAG) offers an innovative
solution by integrating LLMs with external, domain-specific datasets. RAG can be used
as a question-answering based system, it employs prompt engineering and vector search
to deliver tailored answers, grounded in truth, without exhaustive retraining.

Despite significant progress in LLM capabilities, the field suffers from notable defi-
ciencies in standardised model evaluation and reporting practices. Ragas is one example
of a framework designed to evaluate RAG systems. Ragas employs an evaluation LLM
to assess a target model’s performance against a dataset of human-verified ground
truths. Ragas provides several metrics that allow the user to determine areas where
the LLM is not performing as expected. Model evaluation is often conducted without
leveraging robust experimental methodologies that have been well established in other
scientific disciplines. Current literature frequently reports with a ”highest number is
best” approach rather than testing for significant results. This presentation will explore
the foundational technologies of LLMs and RAG, while examining limitations in LLM
evaluation practices.

Dr. Anthony Bonfils:

Finite length and boundary effects in the mode selection of a floating elastic sheet
Abstract: Leave me free, I buckle.

Give me a support, I wrinkle.

Pinned, I am trigonometric.

Clamped, I am eclectic.

My asymptotic analysis will make you tumble.
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Lorenzo Pisani:

Quantum effects in black holes

Abstract: The search for a quantum gravity theory is widely regarded as one of the most
significant challenges in fundamental physics. While several candidate theories have
been proposed, there is no consensus amongst theorists. There are, however, robust
and uncontroversial approximations to quantum gravity. One such approximation is
semiclassical gravity, which describes the interaction of quantum fields with a classical
spacetime metric.

In this framework, the stress-energy tensor, which accounts for the presence of matter
in the classical equations, is replaced by its quantum equivalent: a (formally) divergent
operator known as the expectation value of the stress-energy tensor of a quantum field
in a quantum state. The process of renormalization involves systematically removing
the divergence to isolate the physical state-dependent component, which is known as
the renormalized stress-energy tensor (RSET). The renormalization procedure is very
complicated in black holes spacetimes and practical schemes were only developed in
recent years.

We present a mode-sum prescription to directly compute the RSET for scalar fields
in the Boulware vacuum state. The method generalizes the recently developed extended
coordinate method which was previously only applicable to Hartle-Hawking states and
enables the study of semiclassical effects in spacetimes without such states, including
extremal black holes and stellar spacetimes.

We demonstrate the accuracy and efficiency of the method by calculating the RSET
in both sub-extremal and extremal Reissner-Nordstrém spacetimes, finding numerical
evidence for the regularity of the RSET at the extremal horizon regardless of the
field mass or coupling. In addition, we compute the semiclassical backreaction on
the background metric by employing the numerical results obtained for the RSET to
source the static semiclassical Einstein equations. Our results indicate that extremal
horizons are unstable under quantum perturbations: if the RSET is considered as a
static perturbation, it will either de-extremalize the black hole or convert it into a
horizonless object.

The development of this methodology opens a window to computing semiclassical
backreaction in previously unexplored scenarios, particularly in stellar spacetimes.

This talk is based on:

J. Arrechea et al., PhysRevD.111.085009

Lyudmila Ivanova:

Nonlinear Hamiltonian Models for Propagation of Intermediate Internal Ocean Waves
in the Presence of Currents

Abstract: A two-dimensional water wave system is examined with two layers separated
by a free common interface. The fluids are incompressible and inviscid. The system
consists of a lower medium, bounded below by a flatbed, and an upper medium with
a free surface, where wind-generated surface waves occur. However, we consider the
flat surface approximation, based on the assumption that surface waves have negligible
amplitude. In a geophysical context, this represents a model of an internal wave formed
within a pycnocline or thermocline in the ocean. In addition, a current profile with
depth-dependent currents in each domain is considered. An example of the physical
situation described above is clearly illustrated by the equatorial internal waves in the
presence of the Equatorial Undercurrent (EUC). We consider wave propagation in the
so-called intermediate long wave approximation, where the wavelength is comparable to
the depth of the lower layer, which in turn is much shallower than the upper layer. The
study is based on the Hamiltonian approach. The equations of motion are formulated
as a Hamiltonian system, and the Hamiltonian is determined and expressed in terms of
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canonical wave-related variables. A specific scaling is chosen, which leads to the integrable
Intermediate Long Wave Equation (ILWE). The limiting behavior is investigated, and
connections with other known models are established.

Daire O’Donovan:

Achieving Optimal Locomotion using Self-Generated Waves

Abstract: Horizontal locomotion of a body on the fluid surface can be achieved by
interacting with self-generated waves via a vertical bobbing motion. Mathematically,
this can be interpreted as a pressure source acting on the surface. To study the conditions
for maximal thrust in a chosen direction, an optimal control problem can be posed,
where the pressure source is the control and the thrust force is the objective. A bound
is then applied to the control to regularise the problem. The work is split into two parts
given two different bounds, firstly the norm of the control function, and secondly the
power, which is derived from the rate of change of the energy. To begin this work, the
problem is reduced to the shallow limit. Given the assumption that the pressure source
is periodic, an analytical approach can be taken with variational calculus. Numerical
optimisation can be carried out to calculate the optimal pressure given a constraint and
can be shown to match the analytical solution, which corresponds with emitting a wave
purely in the direction opposite to movement.

TJ O’Brien:

Shell Spacing in GOY-Like Shell Models of Turbulence

Abstract: The Gledzer-Ohkitani-Yamada (GOY) model and its improvement by L’vov
et al., the Sabra model, have proved useful in modelling energy cascades in two and
three dimensional turbulence. These models are widely used in the literature. However,
they are not the only model equations that can be constructed as “improvements” of
the GOY model.

First, by revisiting the derivation of the Sabra model, we propose two new model
equations based on the GOY and Sabra modelling paradigm. Two heuristic approaches
to generate the new equations are presented. These new equations satisfy the same
properties of conservation of two quadratic invariants and of phase symmetries, with only
slight variations in structure and behaviour. Collectively, these four model equations
form what could be considered the class of ‘GOY-Like’ shell models.
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Second, we explore the differences within the class under the assumptions of three
dimensional helicity-preserving turbulence. We begin with a review of the phase sym-
metries and their implication. Next, a general form for the flux formula is analysed.
Then, recalling that the shell wavenumber is given in terms of the shell spacing A by
kn = koA™, we compare the models with A = g and A = 1/p, with g > 1 fixed. This
leads to mappings between our GOY-Like models. Certain mappings go from one model
to another in the class with reciprocal spacing, indicating that a projection from the
typical spacing regime used in literature A € (1,00) to the bounded interval A € (0,1) is
possible. This amounts to ‘flipping’ the shell index, where the model then starts with a
defined smallest spatial scale at index 0 and grows to large scales as index increases.

Finally, an exploration of the class’ behaviour under various shell spacings is conducted.
Due to the role of the triangle inequality with respect to a shell model’s relation to
Navier-Stokes turbulence we focus on the Golden Ratio ® ~ 1.618 and its reciprocal
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®~! ~ 0.618. Discussion of other spacings, such as the literature standard ratio A\ = 2,
is done in comparison to the former. Additionally, the behaviour of the equations in the
limit A — 1 is briefly explored.

Evan Murphy:

A Stochastic Birth-and-Death Approach for Street Furniture Detection in Urban Envi-
ronments

Abstract: Urban environments are evolving rapidly, and efficient city planning requires
accurate and up-to-date information about public spaces. Comprehensive mapping of
street assets role in shaping the urban landscape, and enhancing quality-of-life and
accessibility in cities. This work aims to contribute to the problem of autonomously
maintaining up-to-date data regarding the location, condition, and distribution of these
assets.

Existing segmentation modules (such as those discussed in [1]) have proven effective
for the extraction of objects from street-view imagery, and providing estimates for
camera-to-object distance, bearing, and a measure of confidence. This new work builds
upon the model described in [1], wherein pairwise intersections between rays originating
from camera positions are considered as favourable candidates for object positions, and
form the solution space for a boolean optimisation problem (OP). The solution of the OP
is subject to clustering, giving a good prediction for the ground truth object locations.

The alternative strategy considered in this work is to build a configuration of objects
by considering a stochastic birth and death (SBD) process [2] led by an energy function
that will be constructed from static data terms, and an interaction term. This process
models objects as a 2D-coordinate, with a radius r, defining an area of exclusivity. To
each pixel in a rendering of the target area, a data energy is assigned, comprising of
four terms. The first two terms relate to the detection confidence and depth consistency
of nearby pairwise intersections, while the third term penalises clashes with existing
infrastructure. The final data energy term is proportional to the radius of the point,
penalising “greedy” objects. The data energy of a spawned object is then the sum of all
pixels covered by a disc of radius r around the chosen coordinate. An object interaction
term is also included, introducing a penalty proportional to the area of overlap between
two generated objects. The goal of this approach is to find a configuration of minimal
energy, representing the most favourable object locations. Joint work with Vladimir
Krylov and Marco Viola.

References

(1) Krylov, V.A., Kenny, E. and Dahyot, R., 2018. Automatic discovery and
geotagging of objects from street view imagery. Remote Sensing, 10(5), p. 661.

(2) Descombes, X., Minlos, R. and Zhizhina, E., 2009. Object extraction using a
stochastic birth-and-death dynamics in continuum. Journal of Mathematical
Imaging and Vision, 33 (3), pp.347-359.

Emmet Lawless:

A wvariational approach to portfolio choice

Abstract: In this talk we propose a calculus of variations approach to a popular stochastic
control problem in finance. Stochastic control can be summarised as a field wherein one
tries to solve an optimisation problem that depends on an underlying stochastic process
which you can partially control. We focus on the financial planning problem which
consists of a single economic agent who has to choose an investment and consumption
policy which maximises her expected utility from consumption subject to certain risk
preferences. The agent may choose to invest in risky assets (for example the stock market)
or a safe asset (for instance a government bond or a bank account) and simultaneously
choose a consumption policy which covers required spending. This is the classical
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problem faced by pension schemes and financial planners to ensure future financial
security for their policy holders.

The main tool used to solve this problem is the so called dynamic programming
approach which reduces the infinite dimensional stochastic problem to the study of a (in
general) non linear differential equation (DE). This approach although very useful can
often times be unsatisfactory as the resulting DE is difficult to analyse. We propose a
novel approach to this problem by proving it can be solved by considering a deterministic
calculus of variations problem. This circumvents the need to analytically (or numerically)
solve the associated DE. This method provides a new set of mathematical tools to analyse
such problems and highlights how certain stationary stochastic control problems can be
solved via deterministic methods.

This work is part of a joint project with Paolo Guasoni and Ho Man Tai.

Jack Cromwell:

Central Limit Theorem for Random Variables Under Constraints

Abstract: We study sequences of random variables whose joint distribution is supported
on constrained surfaces defined by relations >, V;(X;) = na, with general functions
V;. These include hard constraints, such as confining vectors to spheres or ellipsoids.
These constraints induce dependency among the random variables and cause them to be
non-identically distributed. We develop Central Limit Theorem results on these random
variables under Lindeberg conditions tailored to the geometry of the constraint.

Ole Canadas:

A Class of Mathematical Models for Highly Fluctuating and Random Real World Phe-
nomena

Abstract: Modelling real-world phenomena using mathematical methods and addressing
related questions, such as optimal strategies or asymptotic behaviour, has been the focus
of mathematicians for decades. Examples include population growth/decline, the optimal
route for a salesman, and the efficient distribution of goods in containers. Additionally,
the mathematical community has agreed that certain events, like stock prices or weather
patterns, should be modelled using methods that incorporate randomness. This is
typically done using Itd’s classical stochastic calculus, a tool that is nowadays well
understood.

However, recent empirical studies of financial and commodity market data suggest that
volatility (i.e., price fluctuations) varies more than can be captured by It6’s stochastic
calculus. As a result, there has been growing interest in tools that go beyond this
classical machinery, such as the theory of rough paths and stochastic Volterra processes.
Unfortunately, these tools are thus far not fully understood, leaving many theoretical
questions unanswered, such as those regarding monotonicity and long-term behaviour
which are essential for developing a robust statistical framework. In this talk, we focus
on particular dynamics given in terms of stochastic Volterra processes and present
recent results such as comparison principles, limiting distributions, law-of-large numbers,
central limit theorem and cut-off phenomena.

This talk is based on joint works in progress with Mohamed Ben Alaya (Rouen
University), Luigi Amedeo Bianchi, Stefano Bonaccorsi (both Trento University) and
Martin Friesen (DCU).

Julius Busse:

Modelling the spread of particulate pollution in the ocean

Abstract: We explore the influence of the Stokes number, the Stokes drift, and noise
(diffusion) on the advection of particles advected by irrotational water waves. We follow
a Lagrangian model of particle dynamics, describing the positions of individual particles
as governed by a randomly perturbed advection equation.
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We ask if adding small-scale turbulence in the finite depth water column increases
the transport distance of particles and quantify it. We consider multiple models for
turbulence in order to quantify the distance travelled from the initial position where a
particle is released to the point where it settles on the seabed.

Simulating the stochastic differential equation (SDE)
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with x(t = 0) = v(t = 0) = 0 shows that with increased diffusion (realised as an
increased noise coefficient a), the mean advection of the particles increases. We seek to
quantify this relationship and provide an analytical framework for it by transforming it
into a deterministic advection-diffusion like equation using the Fokker—Planck equation.
This allows considering diffusion coefficients that depend on the concentration.

Daniel Devine:

Ezxistence and Convergence Results for a System of PDEs

Abstract: In this talk, we will discuss a nonlinear elliptic system of PDEs which has
its origins in the study of the dynamics of viscous, heat-conducting fluids. To model
viscous heating effects, the system of interest contains source terms with a nonlinear
gradient dependence, which presents considerable theoretical challenges. By restricting
our attention to solutions which are radially symmetric, the problem becomes far more
mathematically tractable. To begin, we will outline some of the progress made since
the early 2000s, and then move onto some more recent results. In particular, we will
see that all solutions converge monotonically to an explicit solution which we can easily
calculate. This talk is based on results jointly obtained with Paschalis Karageorgis, and
results jointly obtained with Gurpreet Singh.

The following University of Limerick students presented posters:

(1) Tiernan Brosnan: Microlocal Analysis of ISAR Imaging

(2) Jessica Crosse: Stable local determination of a complex anisotropic conductivity
of a medium at the boundary

(3) Niall Donlon: Stable Reconstruction of Anisotropic Conductivity in Biological
Tissue

(4) Attiq Igbal: Mathematical modelling of drug release from tablets

(5) Eamonn Organ: Learning from the weather — A spatial statistics viewpoint

(6) Mitchell Rae: Comprehensive Machine Learning Approaches to Modelling State
of Charge for LiBs

The conference website hosts a digital copy of the conference booklet and further
information about the event programme and sponsors.

Report by Ben McKeon, University of Limerick
mckeon.ben@ul.ie

RIA-ICEDIM WOMEN IN THE MATHEMATICAL SCIENCES DAY
12 MAY 2025, UNIVERSITY OF GALWAY

The 2025 Women in The Mathematical Sciences Day Conference was hosted by the
School of Mathematical and Statistical Sciences, University of Galway, on May 12th.
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It was organised by the Royal Irish Academy’s Physical, Chemical and Mathematical
Sciences committee, and the Irish Committee for Equality, Diversity, and Inclusion in
Mathematics (ICEDIM). The event included plenary talks, a poster session, and public
talks.

Just over 60 participants attended the conference. They were welcomed by Prof.
Cathal Seoighe, Head of the School of Mathematical and Statistical Sciences, University
of Galway. Opening remarks were provided by Dr Helen Maher (Vice-President for
Equality Diversity and Inclusion, University of Galway), and Prof. Louise Allcock
(Member of the Royal Irish Academy, and Professor in Zoology).

FIGURE 1. Participants at the 2025 RIA-ICEDIM Women in The Math-
ematical Sciences Day Conference

The conference speakers were Nicola Fitz-Simon (University of Galway), Réisin Neu-
rurer (University College Dublin), Doireann O’Kiely (University of Limerick), Margherita
Piccolo (University of Hagen, Germany), and Myrto Manolaki (University College
Dublin); abstracts are provided below.

A novel aspect of the 2025 edition of the conference was the inclusion of public
talks, which were given by Victoria Sdnchez Muiioz (Université Libre de Bruxelles), and
attended by over 100 second-level students.

The local organisers were Nina Snigireva and Niall Madden. Financial and organ-
isational support was provided by the Royal Irish Academy, the Irish Mathematical
Society, The School of Mathematical and Statistical Sciences of University of Galway,
the University of Limerick and, in particular, by Fionnuala Parfrey (RIA) and Romina
Gaburro (University of Limierick, Vice-Chair, RTA Physical, Chemical and Mathematical
Sciences committee).

Titles and Abstracts

Nicola Fitz-Simon:

Using Statistical Models for Small Area Estimation

Abstract: As an applied statistician, I have worked on many studies that combine data
and statistical models to aid decision making, especially in the area of human health. I
am currently working on a project for the World Health Organization to estimate risk
factors related to diabetes at small area level — for example high blood pressure, smoking,
diet, physical activity, overweight and alcohol. The WHO collects data that are designed
to provide national estimates of the prevalences of these risk factors. However they also
want to use the data to help them see the spatial patterns of risk across the country to
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FIGURE 2. Speakers and Organisers. Front Row L-R: Nina Snigireva,
Louise Alcock MRIA, Niall Madden, Réisin Neururer, Cathal Seoighe,
Helen Maher, Margherita Piccolo Middle Row L-R: Myrto Manolaki,
Victoria Sanchez Munoz, Nicola Fitz-Simon Back Row L-R: Leo Creedon,
Doireann O’Kiely Not included: Romina Gaburro.

help them target interventions. The data for each small area on its own are too small
to make reliable estimates, but using hierarchical Bayesian statistical models we can
borrow statistical strength across areas to make more accurate and precise estimates. A
substantial part of this project is on communicating the results to stakeholders, where
data visualisation has an important role.

Myrto Manolaki:

The Irish success at the Furopean Girls’ Mathematical Olympiad 2025

Abstract: The European Girls’ Mathematical Olympiad (EGMO) is the most prestigious
mathematical competition for girls, which started in 2012 (Cambridge, UK) and since
then is held in April each year. In this talk, after presenting the structure and the
historical context of the competition, I will focus on the recent success of the Irish team
in Kosovo (one Bronze Medal and three Honourable Mentions, Ireland’s second best
performance ever).

Ro6isin Neururer:

The problem of problem-solving in post-primary classrooms: What are the challenges
and how might we address them?

Abstract: Successive curriculum reforms in Ireland have led to an increased emphasis on
problem-solving within the post-primary mathematics curriculum. However, there is
little evidence to suggest classroom practices have significantly changed. In this talk I
will share teachers’ perspectives on and experiences with these reforms and highlight
some of the underlying issues which may be hindering teachers from incorporating
problem-solving into their classrooms in a meaningful way. Structured Problem Solving,
an approach to teaching mathematics through problem-solving, will be described along
with the challenge it poses to teachers. Finally, I will discuss possible supports that
might enable teachers to engage more fully with problem-solving in their classrooms.
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Doireann O’Kiely:

Three research projects led by University of Limerick women

Abstract: The MACSI research group at the University of Limerick uses mathematical
and statistical techniques to solve problems in society, healthcare and industry. In this
talk I will outline three very different projects, where mathematics and statistics were
used for under-sea imaging, cancer treatment assessment and structural deformation,
and profile the University of Limerick women involved in these projects.

Margherita Piccolo:

A Wander into the World of Prime Numbers and Groups

Abstract: Prime numbers have fascinated mathematicians and curious minds for centuries
— mysterious, fundamental, and endlessly surprising. In this talk, we’ll take a journey
through some of the most intriguing ideas in mathematics, starting with prime numbers
and the Riemann zeta function - a powerful object that reveals hidden patterns in the
distribution of primes. Then, we’ll enter the world of groups, the mathematical language
of symmetry. Just as integers are built from primes, many groups are built from simple
groups — atomic components in the algebraic universe. We’ll explore how we study
groups through their representations, and how these give rise to zeta functions that help
us uncover deep structural patterns. Join me in this exploration of hidden connections,
elegant abstractions, and the surprising unity of mathematical ideas.

Victoria Sanchez Munoz:

Why maths?

Abstract: What’s the best route to go home? How to fit best everything inside the
backpack? How can we hide messages so that only your friends can read them? Maths
has all the answers to these questions! I'll give many (daily life) examples of some of the
cool things you can do with maths, and I'll show you that escaping maths is impossible!
Because it’s everywhere! Even in literature, in videogames, and in art! T will also explain
how I used maths to challenge my insurance company, and if the students are interested
on knowing what I do now, I'll briefly explain why randomness is super important and
my current research on how to generate randomness with quantum stuff. This talk will
be non-technical (and hopefully fun), thus suitable for any secondary school student.
I’ll try to keep it highly interactive, so come along with ideas, with questions, and with
some answers to “why maths?”.

Further details about the event, including the full programme, list of poster presentations,
and photos, can be found at this website.

Report by Nina Snigireva and Niall Madden, University of Galway
nina.snigireva@universityofgalway.ie, Niall. Madden@UniversityOfGalway.ie
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On a certain double integral representation of Catalan’s constant and
other interesting integration formulae

JAMIL ABREU

ABSTRACT. In this note, we discuss an almost certainly known but unfamiliar double
integral representation for Catalan’s constant, based on a classical trigonometric inte-
gral formula. From this foundation, we also derive some interesting integral identities
involving a combination of logarithmic and inverse tangent functions.

1. CATALAN’S CONSTANT

Catalan’s constant, often denoted by G, is the alternating sum

= (=) 11 1
;%@n+m2 riE 7T

It is named after the Belgian mathematician Eugéne Catalan (1814-1894), who under-
took a comprehensive study of it in 1865. There are many representations of Catalan’s
constant, both as series and integrals; see Bradley [3]. Many other formulae can be
found in classical references such as Gradshteyn and Ryzhik [4] and the three-volume
collection by Berndt [2].
The simplest integral representation of G seems to be that coming from the arctangent
power series
o (_1)n x2n+1
arctanx = Z 1

n=0
In fact, if we divide by x and integrate from 0 to 1 then we obtain
G /1 arctan x d. (1)
0 x

Arguably, the easiest way of justifying interchanging summation and integration above
is by writing

arctanz XN: (—1)g?n
r N =0

i1 TV
and noting that, since the series is alternating with terms decreasing in magnitude, we
have |ry(z)| < 22VN*+2/(2N + 3), so that
1
lim ry(x)dz = 0.
N—o0 0

By substituting = tan ¢ into (1) and subsequently setting 6 = 2¢, we obtain

m/4 1 /2 9
'
= ————dp = df. 2
¢ /0 sin ¢ cos @ ¢ 2/0 sin 6 (2)
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Moreover, by noticing that

1 sec? e d
- = — In(tan ¢),
sinpcosg  tang  dp

integration by parts in the middle expression in (2) yields

w/4
G= —/ In(tan ¢) dep. (3)
0
More generally, the following holds.
Lemma 1.1. For allp=0,1,2,...,

w/2 pr+1 w/4
/ - df = —2P 1 (p + 1)/ ©P In(tan ) dep.
0 0

sin @

Proof. By starting with the integral on the right, perform integration by parts (with
u = ¢PIn(tan ) and dv = dy), using the derivative
d P
[ In(tan )] = p P In(tan @) + ———.
©® sin ¢ cos
To conclude, make the change of variables 8 = 2. |

For p = 0, Lemma 1.1 is just the equality between the right-hand integrals in (2) and
(3). For p = 1,2, it well known that

w/2 92 7
do =27G — =((3 4
and
w/2 93 37I'
do = —G —12 5
- 5(4), o)
where ((3) is Apéry’s constant, namely, the value for s = 3 of the Riemann zeta function
oo
1 1 1 1
¢(s) = E:1+§+§+4§+ ;
n=1
and ((4) is the value for s = 4 of the Dirichlet beta function
o
(—1)n 1 1 1
= — =] — 4 — — — 4. 6
Bls) 1;)(2n+1)5 3 5 ()

Note that 5(2) = G. The standard way of deriving formulae (4) and (5) is by using the
Fourier series of In(tan ) = In(sin @) — In(cos ¢), see Tolstov [7, Sect. 3.14]. A more
general description of the corresponding indefinite integrals in Lemma 1.1 as certain
Fourier series can be found in Berndt [2, Part I: p. 261, Entry 14]. By using the Laurent
expansion of the co-secant function, one can also express the integrals in Lemma 1.1 as
a series involving powers of 7 and the Bernoulli numbers; see e.g. Sofo and Nimbran [6,
Lemma 2.2].

2. AN INTERESTING DOUBLE INTEGRAL REPRESENTATION OF GG

There are also some representations of G as double integrals, the most basic being

arguably
G / / dx dy
1+ 222
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This representation can be established directly from (1); see Bradley [3, Formula (40)].

Here, we will prove that
w/2 pl do d
G = / / LA (M)
o Jo 1+2xcosf+ x?

The proof of (7) will be based on the following classical formula.

Proposition 2.1. Forall0 <z <1,

/”/2 do 2 o LT ®
= arctan :
o l+4+2xcosf+az2?2 1—2a2 1+

Proof. Using the rational parametrization cosf = (1 — ¢2)/(1 + t?), the integral on the
left in (8) equals

/1 1 2dt _/1 2dt
0 1—12 1482 Jy (I+2)?2+ (1 —2)%?
+x

142z
+$1+t2

2 /1 dt
_(1_$)2 0 (HJ>2_}_7§2

1—2z
2 11—z
A s
where in the last equality we have used
/2dtQ:1arctant+C. O
a®+t a a

Now, to prove (7), we integrate (8) over z, from 0 to 1, which yields

1 w/2 1 1 2 1—
/ { / dﬁ} dx = / ——— arctan L da
o LJo 142zcosf+ a2 o 1—2a2 14z

1
t
:/ arc anydy
0 Y

-G,

where the second identity follows by the change of variables y = (1 — z)/(1 + z) and
the third follows by (1).

We might ask what happens if we interchange the order of integration in the iterated
integral above. The conclusion, in brief, is that nothing particularly interesting arises.
In fact,

/1 dzx /1 dz
o 1+2wcosf+22 Jy sin®0+ (z+ cosh)?

1 T + cos 0 |z=1
= — arctan ————
sin 0 sinf lz=0
1 1+ cosf cosf
= — [arctan ——— — arctan —
sin 0 sin 0 sin 0
¢ sin 0
= arctan ————
sin 0 1+ cosf
R
2sin 6’

and a further integration over €, from 0 to 7/2, simply yields (2).
Next, we explore identity (8) in other directions.
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3. AN ELEGANT INTEGRATION FORMULA

Consider the following classical formulae, both valid for 0 < 8 < 7,

o Inz
dx =0 9
/0 1+ 2xcosf+a2 " )
and 1 2 2 p2
1 O(m — 0
/ ne g = T =0 (10)
o 14 2xcost + x? 6sin 0

Formula (9) appears in Gradshteyn and Ryzhik [4, (4.233-5)] and can be easily verified
by changing = to 1/z, which makes the integral equal to its negative, implying its value
is 0. Formula (10) appears in Gradshteyn and Ryzhik [4, (4.261-1)], without proof
but with a reference to the 1867 publication Nouwvelles tables d’intégrales définies, by
Bierens de Haan, which in turn refers to an even earlier publication.

We will not try to prove (10) here, but we may notice that changing z to 1/x yields

! In? 2 o In? 2z
dr = dzx,
o 1+2xcosf+ 2?2 1 14+2zcosf+ 2?2

o In?z 9(772 _92)
dr = —0—7p—= (0 <O <m). 11
/o 1+ 2zcosf+a2 " 3sin 0 (0<0<m) (11)

If we multiply (8) by Inz, then integrate over z, from 0 to +oc, and interchange the
order of integration on the left side, we obtain (using (9)),

S| 1— 1 w/2 %) 1
/ ni‘rQarctan v dr = / [/ ne dm} df = 0.
0 1—=x 1+ 2 Jo o 142zcos+ 2?2

This is also derived by simply changing x to 1/z in the integral on the left, with no
need of formula (9). The same procedure, this time multiplying (8) by In? 2, integrating
from 0 to 1, and using (10), yields

17,2 /2 1 2

1 1— 1 1
/nanrctan xda::/ [/ s da:]d@
o 1—=z 1+z 2 Jo o 14 2zcosf+ a2

B 1 ) w/2 6 w/2 93
_E[Tr /0 sin@da_/o sin@de}'

On the right, the first integral inside brackets equals 2G, by (2). Combining this with
(4) we obtain the interesting formula

/1 In?z 1—x G
0

which implies

.2 arctan1+xd1:: o + B(4). (12)

Note that, in light of (11), the corresponding integral from 0 to +oo is twice that in
(12). Moreover, changing (1 — z)/(1 + z) to x yields the equally interesting

1 2
1 —x\ arctanzx ™G
In? = 253(4). 1
/0 n(l—i—x) e dr= g 280 (13)

4. FINAL THOUGHTS: THE BASEL PROBLEM

It is in all likelihood an overstatement to assert that the identity (7) is new and has
never been highlighted before. It must be observed, however, that it does not appear,
for instance, in Bradley’s comprehensive list [3], and despite our best efforts, we were
unable to find any record of it in the literature. On the other hand, the computation
following the proof of (8), which shows that (7) is essentially (2), renders this double
integral representation of G quite natural.
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The same goes with formulae (12) and (13). There are some close relatives, for
instance, in Valean’s books [8, 1.20, 1.21, 1.24, 1.26] and [9, 1.36, 1.37, 1.38, 1.57, 1.58].
By ‘close relative’ we mean any integral formula involving logarithms multiplied by
inverse tangents divided by polynomials. In the event that those identities are already
known, we believe and hope that, at least, the evaluations presented here may be a
novel and interesting contribution.

The integral in (8) is more often considered over the intervals [0, 7] or [0, 27]. There
are many such formulas in various sections of Gradshteyn and Ryzhik [4]. In particular,
Gradshteyn and Ryzhik [4, (3.792-1)] is essentially

T do T
= 14
/0 1+2xcos@+22 1—a2’ (14)

valid for —1 < & < 1. As with (8), this is easily obtained using rational parametrization.
Now, if we multiply (14) by Inz, then integrate over x, from 0 to 1, and interchange
the order of integration on the left side, we obtain

4 ! Inz U ng
dx|df = dx. 15
/0 [/0 1+ 2z cos + z2 x} ﬂ/o 1- 2% (15)

As it is well-known, the integral on the right-hand side is related to the so called
Basel problem, namely, the problem of numerically evaluating the series

oo
1 1 1 1

)= S =1+ gtogt .

C() n:1n2 +22+32+42

This was first solved by Euler in 1734, who showed ((2) = 72/6. The connection
between (15) and the Basel problem is

I lnz > 1 3 e 1 3
/0x2—1 v ;(2n+1)2 4;712 1@ (16)

In fact, the first identity above can be established by expanding (1 —22)~! in geometric
series and using the formula (obtained with integration by parts)

1
1
/ m2nlnxd$277,
0 (2n—|—1)2

after interchanging integration with summation; the second identity comes from split-
ting >-n~2 into odd and even indices. The leftmost integral in (16) is known to be
72 /8, a result obtainable independently of the Basel problem. For more details, see e.g.
Abreu [1].

Unfortunately, despite (9), the innermost integral on the left side in (15) is not known
as a function of # in terms of elementary functions; in fact,

L Inx Cla(m — )
/0 1+2xcos€+a:2d$__ sin 6 (0<6<m),

where Cly denotes the Clausen function of order two, see Moll and Posey [5]. Thus, the
Basel problem is equivalent to
T (C15(6 3
/ L) gg- "
0

sin 6 8

This connection, despite being possibly familiar to the experts in the field (Clausen
functions, polylogarithms, etc.), does not seem to be widely known. For those not
familiar with these special functions, or not wishing to delve deeper into these matters,
it suffices to say that any elementary evaluation of the double integral in (15), yielding
the value —73/8, would constitute a genuinely new solution to the Basel problem.
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Finally, by an analogous reasoning, we have

U n?z > 1 7
dor=-2% —— =" 1
/0 221 nz:%(znﬂ)?’ 166 (17)

this time using the formula

1 2
/ 2 In’rde = ————.
0 (2n + 1)3

Then, using the elementary identity arctan(1l/u) = m/2 — arctan(u) (valid for u > 0) in
(12), combined with (17), yields the integration formula

UnZz 14+ T G
BT aret de = T¢3) - T2 _ pa).
/0 —3 arctan T =2 ¢(3) 54 B(4)

1—2x
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Dissecting Rectangles into Squares

JOE KINGSTON AND DES MACHALE

ABSTRACT. Let n be a positive integer less than 100 which can be expressed as the
sum of two or more distinct squares of integers. We ask when a rectangle of area
n with sides of integer length can be dissected into different squares with just one
of the squares cut, and produce several examples. We also present some rectangular
dissections where the cut square satisfies the further constraint that the two pieces
are rectangular.

1. INTRODUCTION

A classical problem in combinatorial geometry asks if it is possible to dissect a non-
square rectangle into a finite number of integer-sided squares, no two of which have the
same size. This problem was solved by the Polish mathematician Zbigniew Moron [1]
in 1925, who gave an example of a 32 x 33 = 1056 rectangle which can be dissected into
nine squares of sides {18,15,14,10,9,8,7,4, 1} like so:

15
18

14
10 9

He also showed that this is the smallest integer example and that, at least, nine
squares are necessary.

For smaller integer-sided rectangles and n < 9 squares, we ask when a rectangle can
be dissected into squares if we allow some of the squares to be cut. Clearly if we can
achieve our objective with just one square cut, then this is the best possible result.

Received on 06-09-2025.
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In this note we produce some examples of this situation, e.g. 30 = 42+ 32 +22 412 =
6 x 5 is the sum of four distinct squares and we achieve a 5 = 44 1 piece dissection of a
6 x b rectangle so that the pieces can be reassembled to form four distinct squares. In
some cases the cut square consists of two rectangular pieces — this situation we refer to
as a rectangular dissection (R). It involves an extra constraint which is rarely satisfied.

Of course, there are some cases where our objectives cannot be realised. For example,
17 = 42 + 12, but a 17 x 1 rectangle needs at least a five piece dissection to form a 4-
square and a 1-square. Also, some integers, for example, 15, are not the sum of distinct
squares.

The situation we are looking at for small non-square rectangles appears to differ from
that of small squares. See [2]. For example, a dissection of a 5-square to form a 4-square
and a 3-square appears to need 4 = 2+ 2 pieces, based on 5% = 42 4 32. Intuitively, the
unequal length and breadth of a non-square rectangle give more room for manoeuvre.
In addition, at least 21 squares are needed to dissect a square into unequal squares.

We include the integer equations for which we have failed to find one-cut dissections
and where it is not obvious, to us, that no such dissections exist. We would like to hear
from readers who have succeeded with some of these. We observe that outside of the
one-cut situation, proofs can be extremely difficult and tricky. In this note, we confine
ourselves to integer sided rectangles of area less than 100.

2. THE EXAMPLES

2a

5=t 412 =5 x 1 2

(R)

3a
e gy 1

10=32412=5x2 3b 3b

3a
J 3a L 2

14=324+922112=7%x2 3b 3b

4a

20=42+22=10x2
(R) 4b 4& 4b 2

It may be objected that this is merely a ‘blow-up’ of the 5 x 1 case, but sometimes
increasing the scale leads to new possibilities.

2a
20 =42 1922 =5 x4 4
4a 1
2 I
4a
21 =42 4922 412=-7%x3 4b 4b
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21=4+22+12=7x3

30 =42 + 32+ 22 412
=10 x 3 (R)

30=42+324+22412=6x5

30=42+324+22412=6x5
(R)

30=524+224+12=6x51
(R)

35=5+324+12=7x5

40=62+22=5x%x8

4a
4a 1] 2
4b 4b
4a,
4a 2 3
4b 4b
2
4
1‘ 3a ‘
2
3a 4
3b
3b 1 3a
2a
o 2b
2a(2b T
_Sb
1
K ’
b 3a
6a 2
6a

45
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40=624+22=10x4
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42=524+424+12=6x7

45 = 52442492 = 5%x9
(R)

45 =624+32=3x15
(R)

45 =62432=3x15

50=T72+12=5x10

50=62+32+224+12=5x%x10

50=5%2+424+32=5x10

52 =62 +42=4x 13

54 = 72422412 =6x9

6a
2
6a
6b 6b
Not found
4
5
2a
2b 2a | 2b
6a
6b 6a 6b
6a 3
6a
Not found
Not found
Not found
6a
6b ba 6b
7a 2
7a i‘
) 7b
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54 =524+424+324+22_-6x9

55 = 524+424324922412

=5x11 (R)

55 = 5244243249224 12

=5x11 (R)

55 = 5244243249224 12

=5 x 11 (R)

56 = 62 + 42 + 22
=4 x 14 (R)

63 =T7T"+324+22412=7x9

65 = 62 + 52 + 22
=5x 13 (R)

Not found
3
Ao 4a
1
4b 2 4b
4 3a
3a |3b
1 3b 2
2
4
n
3a 1‘ 3b ‘ 3&
6a
b6a
6b 6b 4
2
7 sary
Ja
3b 3b
6a 2
6a

Ml
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6a 3
ba 4
65 =62 442 + 32 422 )
=5x13 (R) 6b 6b
65=8%2+12=5x13 Not found
656 =T72+42=5x%x13 Not found
7a 4
7a
1]
66=724+42+12=6x 11 7b 7b
6 5
66 =624+52+22+12=6x11 2a
(R) 2b 1] 2a | 2b
2
3
6 1
44, b
66 =62+42+32+224+12=6x11 da,
(R) 4b
3b A
3 Y
66 =62+42+324+22112=6x11 a X )
(R) 3b &
4b
2
4h 7 1
44, 4a,
T0=T24+424+224+12=7x10
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4 |1
2
4b | ]
T0="724424+22 412 4a, 4a
=7x10 (R)
b6a 3
5 6a
70 = 62+ 52432
=5x 14 (R) 6b 17 6b
75 =72+524+12=5x15 Not found
75 =T724+424+324+12=5x15 Not found
75=6%2+52+3%24+224+12=5x15 Not found
77T =82+324+22=7x11 Not found
7T7T=62+524+42="7x11 Not found
78 =82 +324+221+12=6x13 Not found
78 =72+524+22=-6x13 Not found
78 =72 4+424+321+22=-6x13 Not found
78 =62 +52+42+1%2=6x13 Not found
4a,
S0=82+42=8x10 | d& |4 b
(R)
5

84—=T2 452432412 | 8

=7x12 (R) 3b

49
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84 = 82442422
=6 x 14 (R)
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84=72+524+324+12=-6x14
85=9%24+22=5x17
85 =8%24+424224+12=5x%x17

88 = 72452432422 412

=8 x 11 (R)

88 = 724524324224 12

=8 x 11 (R)

90 = 9% + 32
=6x15 (R)

90 = 72 +62422+12

=6 x 15 (R)

8a
4
8a

8b 8b
Not found
Not found
Not found

b

3
7a a
™
3
Ta
Ta
b 7b
9a
9a
9b 9b
Ta 2
6 Ta 1
b b
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90 =62 +52+42+324+22=5x18

51

6a
4
5 6a
6b 6b
6a
6a
90 = 6245244232422 6b
=9x 10 (R) @ )
90 =82+524+12=5x18 Not found
90 =82+42+324+12=5x18 Not found
90 =7%2+524+42=5x18 Not found
90=82+524+12=-6x15 Not found
90 =82+42+324+12=6x15 Not found
90=72+524+42=-6x15 Not found
90 =82+524+12=9x10 Not found
90 =82+42+324+12=9x10 Not found
90 =72+524+42=-9x10 Not found
90 =62+52+421+324+22=-6x15 Not found
9 I
& 3
9a
91 = 9 43% 412
—7x 13 (R) 9b 9b
91 =72 +524+424+12=7x13 Not found
91 =62+524+424+324+224112=-7%x13 Not found
95=9021324+22112=-5x%x19 Not found
95 =72 4+524+424+224+12=5x19 Not found
98 =92 4+424+12=7x14 Not found
98 =82 +524+32=-7x14 Not found
98 =72 +62+324+22=-7x14 Not found
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1
3
2
Ta
7a
99 = 72462432422412 b 0 b
—9x11 (R) 7 7
99 =82 +524+321+12=9x11 Not found
99 =72 1+52442132=9x11 Not found
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Elementary Proofs of Ring Commutativity Theorems

MICHAEL KINYON AND DES MACHALE

ABSTRACT. Jacobson’s commutativity theorem says that a ring is commutative if,
for each x, ™ = x for some n > 1. Herstein’s generalization says that the condition
can be weakened to " — x being central. In both theorems, n may depend on z. In
this paper, in certain cases where n is a fixed constant, we find equational proofs of
each theorem. For the odd exponent cases n = 2k + 1 of Jacobson’s theorem, our
main tool is a lemma stating that for each z, z* is central. For Herstein’s theorem,
we consider the cases n = 4 and n = 8, obtaining proofs with the assistance of the
automated theorem prover PROVER9.

1. INTRODUCTION

N. Jacobson’s celebrated commutativity theorem for rings [14] and its generalization by
I. N. Herstein [12] state:

Jacobson’s Theorem. Let R be a ring such that, for each x € R, there exists an
integer n = n(x) > 1 such that ™ = x. Then R is commutative.

Herstein’s Theorem. Let R be a ring such that, for each x € R, there exists an
integer n = n(x) > 1 such that [z" — x,y] =0 for ally € R. Then R is commutative.

Jacobson’s Theorem is a generalization of Wedderburn’s “Little” Theorem that ev-
ery finite division ring is commutative. Rings satisfying the hypothesis of Jacobson’s
Theorem have been given various names, such as potent rings [2, 23|, J-rings [13], and
probably others of which we are unaware. Choosing the first one, Jacobson’s Theorem
can be stated succinctly as potent rings are commutative. Rings satisfying the hypoth-
esis of Herstein’s Theorem seem to have never been given a separate name as far as we
know, probably because the hypothesis is both necessary and sufficient for a ring to be
commutative.

As noted in the statements, both theorems allow the exponent n of the power x"
to depend on x. For Jacobson’s, there are various proofs in the literature; perhaps
the nicest was given independently by J. W. Wamsley [25] and T. Nagahara and H.
Tominaga [22].

In this paper we are interested in both theorems in the case where n is a fixed integer
not depending on x, that is, rings R for which there exists an integer n > 2 such that
2™ = x for all x € R. There have been various names suggested for such rings: J-rings
[17, 18] (also used, as noted, for potent rings [13]), Jacobson rings [10], n-rings [6],
n-potent rings [1], and, again, probably others of which we are unaware. Since elements
x satisfying ™ = x for some n are often called n-potent elements, we choose the name
n-potent rings. We will primarily use the name in the interest of simplifying theorem
statements.
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The well known class of Boolean rings coincides with what we are calling 2-potent
rings. Jacobson’s Theorem for such rings is a standard exercise with an easy equational
proof (see the first alternative proof to Theorem 2.6 below). Indeed, it is a consequence
of Birkhoff’s Completeness Theorem for Equational Logic [5] that, for each fixed n, an
equational proof of Jacobson’s Theorem exists.

Among the papers devoted to proofs of Jacobson’s Theorem for particular fixed n
[8, 11, 26, 27], we would particularly like to single out the tour de force of Y. Morita [21],
who gave human equational proofs for most even numbers < 50 and all odd numbers
< 25.

There is certainly similar interest in equational proofs of Herstein’s Theorem for fixed
n, although the literature is not as extensive; see, e.g., [7, 19].

It is natural to try to use computer assistance to generate equational proofs of either
theorem in the case of fixed n [24, 26, 27]. For Jacobson’s Theorem, M. Brandenburg
[6] has recently done some very exciting work along these lines.

This paper is in two parts. In §2, we discuss Jacobson’s Theorem for certain cases
of small n. For n odd, our main tool is a useful result we think is new (Lemma 2.4):
if R is a (2k + 1)-potent ring then, for all x € R, ¥ is central. This result was first
found by Stephen Buckley (unpublished); our proof differs from his. We illustrate how
helpful the lemma is for n = 3,5, and 7. We also give some (we believe) new proofs for
various even n. All but one of the proofs in §2 were originally human generated; the
proof of Lemma 2.2 was first found by an automated theorem prover and subsequently
humanized.

In §3, we turn to Herstein’s Theorem for the specific cases of n = 2, 4, and 8.
The proofs were found with the assistance of Prover9, the automated theorem prover
developed by W. McCune [20]. In fact, the beginning of the authors’ collaboration was
an email suggestion by the second author to the first that it would be interesting to
find automated proofs of Herstein’s Theorem for n = 4 and 8, and then to see if such
proofs could be suitably humanized.

We would judge the humanization effort to be quite successful for n = 4 (Theorem
3.7) and somewhat successful for n = 8 (Theorem 3.8). For the latter proof, although
it is certainly possible for a patient human to follow the individual steps, the overall
pattern is difficult to see. We have no idea how, or even if, a general idea can be
extracted from the proof which could be applied to higher powers of 2.

We conclude this introduction by discussing conventions. Rings are assumed to be
associative but not assumed to have a unity; that is they are what some, following a
suggestion of Jacobson ([15], pp. 155-156), would call a “rng”.

The centre of a ring R is the subring Z(R) = {a € R : ar = ra, Vr € R}. Elements
of Z(R) are said to be central.

In our proofs, especially in §3, we will make heavy use of the commutator [z,y] =
xy — yx. This is an interesting binary operation in its own right, but here we mainly
use it as a computational tool. It turns out that introducing commutators into Prover9
input files and feeding the program basic facts about commutators helps quite a bit
in finding proofs. We will discuss the commutator identities we need at the beginning
of §3.

2. JACOBSON’S THEOREM FOR n-POTENT RINGS

Our main interest in this section is giving equational proofs that n-potent rings are
commutative for various values of n. However, for some preliminary results, there is
essentially no extra work involved in giving proofs for reduced rings. A ring R is said
to be reduced if it has no nilpotent elements. This can be equivalently described by the
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condition

22=0 = 2 =0, forall z € R. (1)
Every potent ring R is reduced: if € R satisfies 22 = 0, let n = n(x) > 1 be such
that 2" = z. Then = = 2" = 222" "2 = 0. Every reduced ring is a subdirect product

of domains [3, 16], but it would breach the spirit of this paper to use this rather deep
structural result.
Every reduced ring R satisfies the condition

zy=0 = yxr=20, (2)

for all z € R. Indeed, if zy = 0, then (yz)? = y(2y)x = 0 and so yx = 0 by (1). Rings
satisfying (2) are said to be reversible [9].

Reduced rings are neither defined nor characterized by identities. Thus even elemen-
tary proofs in reduced rings unavoidably use (1) and hence are not, strictly speaking,
equational. However, it is straightforward to convert such proofs to equational ones
in n-potent rings. For example, to prove directly that an n-potent ring (n > 1) is
reversible, note that if xy = 0, then yzr = (yz)" = y(zy)" 'z = 0.

An idempotent e (that is, an element satisfying e? = e) of a reduced ring R is central.
This is well known and has a short, standard proof: check that (ex — exe)? = 0 and
(re — exe)? = 0, so R being reduced implies ex — exze = 0 and ze — exe = 0, hence
ex = exe = xe. In fact, the same expressions occur in a mild generalization.

Lemma 2.1. In reversible rings, idempotents are central.

Proof. If e is an idempotent in a ring R, then for all z € R, e(x — ex) = 0 and
(x —xe)e = 0. If R is reversible, then (2) implies (z — ex)e = xe — exe = 0 and
e(z — we) = ex — exe = 0. Thus ze = exe = ex, that is, e is central. O

In the reduced case, the proof of the following useful generalization is only a bit more
involved than the classic proof and is based on the same idea.

Lemma 2.2. Let R be a reduced ring. If ¢ € R satisfies ¢* = tc for some integer t,
then c is central.

Proof. Firstly, for all x € R, c?>zc = te-xc = cx-tc = cxc®. Thus cle, x]c = c(cx —zc)c =
0. In particular, (c[e,z])?> = 0 and ([c,z]c)? = 0. Since R is reduced, (1) yields both
cle,x] = 0 and [¢, z]c = 0. These imply, respectively,

zcle,x] =0 and (3)
[e,z]ex =0. (4)

Applying (2) to (3), we get
[e,z]zc =0. (5)
Subtracting (5) from (4), we obtain [c,z]?> = 0. Since R is reduced, [c,z] = 0 for all
x € R, that is, c € Z(R). O

Lemma 2.3. Let R be a reduced ring and let n > 1 be an integer. If ¢ € R satisfies
" = ¢, then ¢! is a central idempotent.

Proof. If n = 2, then ¢"~! = ¢, while if n > 2, then ¢* 1¢" 1 = "¢ 2 =2 = L.
In either case, ¢*! is an idempotent and so Lemma 2.2 applies. O
We now specialize from reduced rings to n-potent rings, our real interest. The fol-

lowing result will turn out to be crucial, and can be viewed as improving Lemma 2.3 in
the case of odd n.

Lemma 2.4. Let k > 1 be an integer and let R be a (2k + 1)-potent ring. Then
z* € Z(R) for all v € R.
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Proof. Firstly, ¥ is a central idempotent by Lemma 2.3. Next we show z3¥ = 2*. The

claim is clear if k = 1, while if k£ > 1, then 3% = 22k+1gF=1 = g2~ = 2% Finally,

(2% 4+ 2F)2 = (22F)2 4 223 + 2% = 2(2% + 2¥). By Lemma 2.2 (with ¢ = 22 + 2F,
t =2), 22 + 2F € Z(R) and so ¥ = (22 + 2%) — 2?* ¢ Z(R) for all 2 € R, as
claimed. ]

For n even, we have the following.

Lemma 2.5. Let n > 1 be an even integer and let R be an n-potent ring. Then 2z =0
for all x € R.

Proof. For all x € R, —x = (—z)" = 2" = x. O

For the remainder of this section, we establish commutativity theorems for n-potent
rings for various n. We start with a classic, recalling that 2-potent rings are the same
as Boolean rings.

Theorem 2.6. Every 2-potent ring is commutative.
Proof. This is the case n = 2 of Lemma 2.3. U
As an alternative, here is the classic proof.

Alternative proof 1. Let R be 2-potent. For all z,y € R,z +y = (v +y)? = 2> + zy +
yxr +y> = x + a2y + yx +y. Cancelling, we have zy + yz = 0, and so zy = —yz = yz
by Lemma 2.5. O

We also present here the stunning proof of Brandenburg [6].
Alternative proof 2. For all x, y in a ring R,
vy —yr =[x +y)?* — (@ +y)] (@ —2) (¥ —y)
+[(y2)? = ya] — [(~yz)® — (~y2)].
If R is 2-potent, then the right hand side equals 0. O
For a plethora of proofs and variations of our next result, see [8].
Theorem 2.7. Fvery 3-potent ring is commutative.

Proof. This is the case k = 1 of Lemma 2.4. O

Alternative proof. Let R be 3-potent. By Lemma 2.3, 22 is central for all € R, so
22 = 223 = (22 + 2)? — 2* — 22 is central. Next,

=2+ =243+ 3 + ¥ =2t + 32+ 322+ 2 =222 +2) € Z(R).
Finally, z = (22 + 2) — 22 € Z(R) for all x € R, that is, R is commutative. O

Lemma 2.8. Let k be an integer and let R be a ring in which k(zy + yx) € Z(R) for
all z,y € R. Then kx? € Z(R) for all z € R.

Proof. We have kxz? -y + kxyx = x - k(zy + yx) = k(zy + yz) - v = kxyx + y - kz? and
so the desired result follows from canceling kxyz. O

Lemma 2.9. If R is a ring in which x>+x € Z(R) for allz € R, then R is commutative.

Proof. For all z,y € R, we have (z+vy)?+z+y € Z(R), that is, (22 +x)+ (y?+y) +xy+
yr € Z(R). Tt follows that zy + yx € Z(R), and thus 22 € Z(R) by Lemma 2.8 (with
k = 1). Therefore v = (2? + z) — 22 € Z(R) for all z € R, i.e., R is commutative. [J

Lemma 2.10. If n is a power of 2, then each binomial coefficient (Z) s even except

for k=0 and k =n.
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Proof. This is easily established by induction. U
Theorem 2.11. Every 4-potent ring is commutative.

Proof. Let R be 4-potent. By Lemma 2.5, 2z = 0 for all z € R. Thus (2? + z)? =
r* + 22 = 22 4+ 2 using Lemma 2.10. By Lemma 2.2, 22 + z is central for all 2 € R, and
so R is commutative by Lemma 2.9. ]

Theorem 2.12. FEvery 5-potent ring is commutative.

Proof. Let R be 5-potent. By Lemma 2.4, 22 € Z(R) for all x € R. Thus (22 + )% —
x* — 22 = 223 is central for all z € R. Next 2z = 22° = 223 - 2% € Z(R) for all x.
Finally,
22 +x=(2?+2)°

= 210 4+ 527 + 1028 + 1027 4 525 + 2°

= 22 + 52 4 10z? + 1023 + 52% + 2

= 2(52% + 523 + 322 + 3z) € Z(R).
By Lemma 2.9, R is commutative. U

We will postpone the case n = 6 for now.

Theorem 2.13. FEvery 7-potent ring is commutative.

Proof. Let R be T-potent. By Lemma 2.4, 23 € Z(R) for all z € R. Thus (22 + x)3 —
28 — 23 = 3(2° + 21) € Z(R). Multiplying by 23, we get 3(x? + x) € Z(R). It follows
that
3((z +9)* + o +y) =3 +2) = 3" +y) = 3(ay +yz) € Z(R).
By Lemma 2.8 (with k& = 3), 322 € Z(R). Thus 3z = 3(2% + z) — 322 € Z(R) for all
r € R.
Next, we have

2+ = (2 +2)
= oM 4 72 4 21212 4 3521 + 35210 + 2120 + 72® 4 27
= 2% + Tz + 212% + 352° + 352" + 212° + T2® + x.
Cancelling 22 + = from both sides and separating terms, we get
0=3(2z 4 725 + 112° + 112* + 723 + 22%) + = + 22° 4 22 + 22,

Thus 22° +2x*+22+2 € Z(R). Replacing x in this last expression with —z and adding
gives 4z* + 222 € Z(R). Thus 2* — 22 = 42* + 222 — 3(2* + 2?) € Z(R)

Since both 2? and z* — 2% are central, so is (2% — 22)? +2(2?)? = 28 + 2% = 22 4+ 2.
Therefore 222 = (2% + 2%) — (2* — 2%) € Z(R), and so 2?2 = 322 — 222 € Z(R).

Finally, z = 27 = 22 - 22 - 23 € Z(R) for all x € R, and we are finished. O

Many other cases of ™ = z for small n can be handled by these methods, the more
difficult cases being when n is odd (although Lemma 2.4 certainly helps) or a power of
2. We believe our proofs are close to being best possible (in some sense) and would be
pleased to hear from any reader who can shorten or improve an any of them.

We conclude this section with one more example, covering the cases n = 6, 10, 18,
34, ... in a single theorem.

Theorem 2.14. Let j > 1 be an integer and assume that every 2+ _potent ring is
commutative. Let i > j be an integer and let R be a 2' 4+ 27 -potent ring. Then R is
commutative.
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Proof. We have 2x = 0 for all z € R by Lemma 2.5. Now
2+ o= (2 + a:)Qi”j = (¢ + ﬂf)T (2® + x)zj

it+1 i G+1 j iy o] iy o+l i+1_ 0] iy o]

= @ + 2@ 42 e T
1419J 497 49ty 9] J i

=22 4 ¥ TVAY L gAY g = p? p T T g

using Lemma 2.10 in the third equality. Cancelling, we have P4 g2 = 0, that is,
22 *1 = 22 +1, Finally, we have

iy i i i i J+1
o= g2 Y 21,271 2941, 271 2

for all x € R. By assumption, R is commutative. O

Corollary 2.15. Let R be an (2° +2)-potent ring where i > 1. Then R is commutative.
Proof. Take j =1 in Theorem 2.14 and apply Theorem 2.11. g

3. HERSTEIN’S THEOREM FOR n = 2,4, 8

In a ring R, we have already used ring commutators [x,y] = xy — yz and will do so
quite heavily in this section. Among the properties satisfied by commutators, we will
need the following:

[l’,$]:0, [:E,y]:—[y,x], [m,y+z]:[x,y]—|—[x,z]

for all x,y,z € R. To improve readability, it is useful to introduce, for each x € R, the
mapping ad(z) : R — R defined by ad(z)(y) = [z,y] for all y € R. Properties satisfied
by this mapping include:
ad(z)(y + z) = ad(z)(y) + ad(z)(z)

ad(z +y) = ad(z) + ad(y)

ad([z, y]) = ad(x)ad(y) — ad(y)ad(z) .
for all z,y,z € R. The first identity says that ad(x) is an endomorphism of the un-
derlying abelian group (R,+). The second says that ad: (R,+) — End(R,+) is a
homomorphism of abelian groups. The third is where the symbol “ad” comes from; the
identity says that ad: (R,[,-]) — End(R,+) is the adjoint representation of the Lie
ring associated to R. However, for us, ad is just a notational shorthand; nothing about
a ring’s Lie ring plays a role outside of just using the identities above in calculations.

As discussed in §1, we are interested in rings R satisfying [z — x,y] = 0 for some

integer n > 1 and all z,y € R. We are specifically interested in n = 2,4 or 8, so we will
start with the broader assumption that

[p(x) —x,y] =0 forallz,y € R (E)
where p(t) is a polynomial with integer coefficients such that p(t) = q(t?)t?, where
q(t) € Z[t].

Lemma 3.1. Let R be a ring satisfying (E). Then 2ad(x) =0 for all x € R.
Proof. For all x € R, —ad(z) = ad(—x) = ad(p(—=z)) = ad(p(x)) = ad(x). O

Roughly speaking, the conclusion of Lemma 3.1 is, in the present setting, what
replaces R having characteristic 2 in the n-potent setting for even n. The conclusion
can be stated in various equivalent ways, such as [z,y] = [y, z] for all x,y € R.

Lemma 3.2. Let R be a ring such that 2ad(x) = 0 for all x € R. Then for each
nonnegative integer n,
ad(z)?" = ad(«?").
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Proof. For n =0, there is nothing to prove. Assume the goal holds for some n > 0. For

z,y € R, set u=2%", so that ad(u) = ad(z)?". Then

ad(u?)(y) = [u*,y] = vy — yu’
= u2y — UYU + uYu — yu2
= [u, uy] + [u, yu]

Thus

ad(z?"")(y) = ad(u?) = ad(w)? = (ad(z)*")?(y) = ad(2)*"" (y).

By induction, we have the desired result.

Lemma 3.3. Let R be a ring satisfying (E). Then for all z,y € R,

[x7 [w,y]] =0 = [x,y] =0,

or equivalently,

ad(z)*(y) =0 = ad(z)(y) = 0.

Proof. Assume [z, [z,y]] = ad(z)?
ad(z) = ad(p(x)) = p(ad(a)). Sin

).
ad(z)(y) = gq(ad(x)?)ad(z)*(y)

U)H

Lemma 3.4. Let R be a ring satisfying (E). Then for all x,y € R,

[z, [z, y]] = [z,y] = [2,y] =0,
or equivalently,
ad(z)*(y) = ad(z)(y) = ad(z)(y) =0.
Proof. Let x,y € R satisfy [z, [z,y]] = [z,y]. Then
[z, ), [z, 9, 2] = —[[2, 4] [z, [z, 9]]] = —[[=, ], [», y]]

By Lemma 3.3, [[z,y],2] = 0. Thus [z,y] = [z, [z,y]] = 0.

=0.

(y) = 0 for some z,y € R. By Lemmas 3.1 and 3.2,
ce p(t) = q(t?)t? for some q(t) € Z[t], it follows that
0.

O

O

Theorem 3.5. Let R be a ring satisfying [z — x,y] = 0 for all z,y € R. Then R is

commutative.

Proof. Since (E) holds, Lemmas 3.1 and 3.2 give ad(z)(y) = ad(2?)(y) = ad(z)?(y) for
all z,y € R. By Lemma 3.4, ad(z)(y) = 0 for all x,y € R, that is, R is commutative.

(See also Lemma 2.9.)

Lemma 3.6. Let R be a ring, let n be a positive integer and assume [x2"

for all xz,y € R. Then [xyhl +-ot 22 +z,y] =0 for all z,y € R.

O

=0
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Proof. For all x € R, ad(z)?" = ad(2?") = ad(z), using Lemmas 3.1 and 3.2. Now for
all x € R (and using Lemma 3.1),

ad(z?" ™+ + 22 +2)2 = (ad(@® ) + - + ad(2?) + ad(2))?
= (ad(z)®" 4+ + ad(az) ad(z))?
2 4t ad(a)* + ad(z)?

— ad(z) + ad(2)?" +-- +ad(z)* + ad(z)?

= ad(z®" ) + - +ad(2?) + ad(z)
—ad(z®" +--‘+x2+x)
By Lemma 3.4, ad(22" +--- + 22 + ) = 0. This proves the desired result. O

Theorem 3.7. Let R be a ring satisfying [x* — x,y] = 0 for all z,y € R. Then R is
commutative.

Proof. This follows from taking n = 2 in Lemma 3.6 and using Theorem 3.5. U

We conclude with the result that began this whole endeavor. We are well aware that
of all the proofs in this paper, this is the one that most seems like it was generated
by an automated deduction tool. We have simplified the proof to the point where it is
possible to follow each individual step, but we would certainly agree that it is difficult
to see how a human would have found the proof.

Theorem 3.8. Let R be a ring satisfying [2® — x,y] = 0 for all z,y € R. Then R is
commutative.

Proof. We will freely use Lemma 3.1 without explicit reference. By Lemma 3.6, [z* +
22+ z,y] = 0 for all 2,y € R, that is, ad(z)* + ad(z)? + ad(x) =
First, for all u,v € R,

(ad(u)? + ad(v)?)([u, v]) = (ad(w)”

Thus

ad(u + v)(ad(u)? 4 ad(v)?)([u, v]) = ad(u + v)*

(u+v)*(
= ad(u + v)?(v) + ad(u + v)(v)
= ad(u + v)([u + v,v] + v)
=ad(u + v)(v + [u,v]).

v)

P;earranging this, we have ad(u +v)ad(v)?([u, v]) = ad(u+v)(v+ [u, v] +ad(u)?([u, v])),
that is,

ad(u + v)ad(v)?(u) = ad(u + v)(v + ad(u)(v) + ad(u)®(v)).

In this last equation, replace v with [u,v] to get

[u + [u,v], ad([u, v])?(w)] = [u+ [u,v], ad(u)(v) + ad(u)?(v) + ad(u)tv] = 0. (6)
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Now let u = [2%,y% +y] and v = y* +y. Then
[u, 0] = ad(y® + y)*(z°)
= (ad(y)? + ad(y))*(«?)
= (ad(y)" + ad(y)*)(«?)
ad(y)(z?)
2%y,

and u + [u,v] = [z%,y?]. Plugging all this into (6), we have

(2%, y%], ad([2%, y])* ([z%, v* + y])] = 0. (7)
Now
ad([z*,y])*([2*, v + y]) = ad([2*,y])*([[«*, ], [=°, ¥*] + [2%, 9]))
= ad([2*,y))*([z%,4°])
= ad([z?, y])*ad(y)*(«?)
= ad([a?, y])%ad(y) ([2%, y])
= ad([+*,4])*[[z%, 9], 4])
= ad([2*,y])* ()
= ad([2®,y])*(y) + ad([z*, y])(v)
ad([z%, y))ad(y)*(2”) + ad(y)* (%)
= [[2*,y], [, *]] + [2%, ]

Thus the left side of (7) simplifies to

(22,57, [l ), 22, )] + [, 92)) = (22, y°), [[22, ), [, 2] = ad (22, %)) (2%, 1)) -
Therefore (7) reduces to
ad([2?, y*])*([2*,4]) = 0
for all x,y € R. By Lemma 3.3,

0 = ad([2%,y°])([z%,y]) = ad([2*, y])ad(y)*(2*) = ad([z*, y])* (¢) -
By Lemma 3.3 again, ad([z%,y])(y) = 0, that is, ad(y)?(2?) = 0. By Lemma 3.3 again,
ad(y)(2?) = [2%,y] = ad(z)?(y) = 0. Applying Lemma 3.3 one last time, [z,y] = 0.
Therefore R is commutative. d
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Finding Small Solutions of Bivariate Linear Congruences

PETROULA DOSPRA

ABSTRACT. In this note, we propose an algorithm for computing all solutions of small
size of a bivariate linear congruence.

1. INTRODUCTION

Let ay,...,ak,b,n € Z with n > 1. A linear congruence in the unknowns x1, ...,y
is an expression of the form

aixry + -+ + aprr = b (mod n).

An ordered k-tuple of integers (x1,...,xx) that satisfies this congruence is called a
solution. These solutions are often considered under additional constraints, such as
ged(zi,n) = t; for 1 < ¢ < k, where t1,...,t; are given positive divisors of n. The
number of solutions subject to such conditions has been studied by several authors (see
[1]). Moreover, small solutions of linear homogeneous congruences and systems have
been analysed, with many results extended to number fields (see [2]).

In this note, we focus on solutions of small size to non-homogeneous bivariate linear
congruences and describe an algorithm for their computation. Notably, the private key
and ephemeral key in several digital signature schemes correspond to solutions of such
congruences (see [3, Section 11.5]). We prove the following result:

Theorem 1. Let g be an odd prime number, and let A,B € {2,...,(q —1)/2}. Let u
and v be positive integers such that p < A/2 and v < q/(2A). Consider the bivariate
linear congruence
y+ Az + B =0 (mod q). (1)

Then, the number of solutions (x,y) satisfying the bounds

al<u|S| and lyl<va
is at most (2u+1)(2u+ 2v + 1). Moreover, all such solutions can be computed in time
O(u(p + v)(log q)?) bit operations.

The idea of the proof is to find a “small” list of pairs and select those that satisfy the
given bounds. Note that the smaller the quantities ;1 and v are, the more efficiently the
solutions of the linear congruence that satisfy the given constraints can be calculated.

Let a, n € Z and n > 1. We denote the remainder when a is divided by n by
‘a mod n’.

The paper is organized as follows. Section 2 presents the proof of Theorem 1. In
Section 3, we describe an algorithm, based on Theorem 1, that computes efficiently all
”small-size” solutions of the congruence (1). Finally, Section 4 provides two examples
illustrating the application of this algorithm.
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2. PROOF OF THEOREM 1

Let xg, yo € Z satisfy the bounds

q
< — <
lzo| < L J and |yo| < VA,

and suppose they satisfy the congruence yo + Azg+ B = 0 (mod ¢). Then, we have the
following bound on the absolute value:

[vo + Az + B < Jyo| + Alao] + B < &+ pg+ & = (u+ e
Since ¢ divides yg + Axg + B, it follows that
Yo + Azg + B = c1g, (2)
where ¢; € {0,+1,+2,...,+u}.
Next, by Euclidean division, we have ¢ = Au + v, where
u= L%J and 0<ov<A.
This implies the congruence —Au = v (mod q).
Multiplying Equation (2) by —u yields
—uyo + vxg + C = 0 (mod q),
where
—uB=—-Kq+Cand 0 <C <gq. (3)

Furthermore, we can bound the absolute value:
| — uyo + vxo + C| < ulyo| + v|zo| + C < uAv + pug+q < (v+ p+ 1)q.
Since q divides —uyg + vag + C, we deduce that
—uyo +vzo + C = caq, (4)

with ¢g € {0, £1,+£2,..., (v +p)}.
The Equations (2) and (4) constitute a linear system in the unknowns xy and yp.
Solving this system, we obtain

B A—vB
uB+C and y():Cl’U—CQA‘i‘iC Y .

To = C1U + Cy —

q
Since, by (3), —uB = —Kq + C, we have
= uB + C _ \‘UBJ
q q
Using this fact, we rewrite the second fraction as
A—vB
CA—vB_ 4k _B.
q
Hence, the solutions can be expressed in the simpler form
ro=ciut+co— K, y=cv—cA+AK — B, (5)

where ¢; € {0,+1,£2,...,+u}, e € {0,£1,£2,...,+£(v+u)}, v and v are the quotient
and the remainder of the division of ¢ by A, and K = —[(—uB)/q].

Conversely, one can verify that any pair (zg, ) of this form satisfies the original
congruence (1). Since

ca€{—p,...,0,...,u} and coe{—-(w+up),...,0,...,v+pu},

there are at most (2u + 1)(2p + 2v + 1) such solutions satisfying the prescribed bounds
on |xg| and |yo|.
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Finally, by [4, Section 3.3], the computation of u,v, K, and hence of the solutions
70, %0, can be performed in O(u(p + v)(log ¢)?) bit operations.

3. THE ALGORITHM

The proof of Theorem 1 leads to the following algorithm for computing solutions to the
congruence (1) that satisfy the given bounds.

Algorithm: SOLVE-CONGRUENCE
Input: An odd prime ¢, A, B € {2,...,(¢ — 1)/2}, and positive integers p, v with
p<A/2and v < q/(24).
Output: The solutions (z,y) of Congruence (1) with |z| < u|g/A] and |y| < vA.
(1) Compute integers v and v satisfying ¢ = Au+ v and 0 < v < A.
(2) Compute positive integers K and C' such that —uB = —Kq+C and 0 < C' < q.
(3) For each i € {0,£1,...,+u}, determine all j € {0, +1,...,+(u+ v)} such that
the quantities
rij=itu+j—K and y;;=iv—-jA+AK - B

satisfy the inequalities

|5

<u L%J and |y ;| < VA.

(4) Output all pairs (z; ;,y;;) that satisfy the inequalities specified in the previous
step.

Remark 1. If the integers u and v are sufficiently small — if, for instance, u, v are both
less than (logq)? — then the above algorithm runs in polynomial time and is therefore
practical for computation.

4. EXAMPLES

In this section, we work through two examples illustrating the use of the algorithm
SOLVE-CONGRUENCE. We remark that, in these examples, the number of solutions
satisfying the given bounds is significantly smaller than the upper bound mentioned in
Theorem 1.

Example 1. Consider the prime ¢ = 1073741827. We shall compute the solutions of
the congruence

y + 131073x 4 25277021 = 0 (mod q) (6)
with
lz] <8100 and |y| < 12000.

We have A = 131073, B = 25277021, and |g/A| = 8191. We choose parameters
i =rv = 1. Thus, we find integers u = 8191 and v = 122884 such that ¢ = Au + v and
0 < v < A. Next, we compute K = 193 and C' = 188093600 such that —uB = —Kq+C.
Finally, we compute AK — B = 20068.

We now consider solutions to the Congruence (6) of the form (x; j,v; ;) (i =0,%1, j =
0,+1,+2), where

z;; =181914 7 — 193, and y,;; =122884 — 5131073 + 20068.

We check which of these pairs satisfy the required bounds. For ¢ = —1,0, the values y; ;
(j = —2,—1,0,1,2) do not meet the given bound. For i = 1, only the pair (z1,y1) =
(7999, 11879) satisfies the bounds. Therefore, the only solution to the congruence (6)
within the specified bounds is (7999, 11879).
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Example 2. Consider the linear bivariate congruence
y + 149z + 475 = 0 (mod 1013). (7)

We shall compute the solutions of the above congruences (z,y) € Z* with |z| < 90 and
ly| < 149.

The integer ¢ = 1013 is a prime number. We are given A = 149, B = 475, and
observe that |g/A| = 6. We choose parameters y = 15 and v = 1. According to the
algorithm, we first determine integers u = 6 and v = 119 such that ¢ = Au + v, with
0 <wv < A. Next, we compute integers K = 3 and C' = 189 satisfying —uB = —Kq+C,
with 0 < C < ¢. Then, we obtain the solutions

(zij,yig) (i=0,%£1,...,415,j=0,41,...,+16)
of Congruence (7), where
zij;=16+7—3 and y;; =119 — 5149 — 28.

For i = 0, we find that only j = 0 and j = —1 yield values of |yo ;| < 149. Specifically,
the corresponding solutions are:

(20,0, ¥0,0) = (—3,—-28), (x0,—1,¥0,—1) = (—4,121),

both of which satisfy the imposed upper bounds.
For j = 0, we find that only ¢ = 1 and ¢ = —1, other than ¢ = 0, yield values of
lyio| < 149. Specifically, the corresponding solutions are:

(x1,0,91,0) = (3,91), (x_1,0,y-1,0) = (-9, —147).
If i >0 and j <0, then
Yij = 1197 — 1495 — 28 > 149,
violating the bound on y; ;. Similarly, if ¢ < 0 and j > 0, then
yi; = 1197 — 1495 — 28 < —149,

which also violates the bound. Therefore, for any 7 # 0 and j # 0, ¢ and j must be of the
same sign. Accordingly, for each ¢ = 4+1,...,+15, we examine valuesof j = +1,...,+16
with the same sign to determine whether the corresponding pairs (z; j, s ;) satisfy the
given bounds and solve Congruence (7). We have 59 such solutions that are listed in
the table overleaf. Note that this number is considerably smaller than the bound 1023
that is provided by Theorem 1.
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i J (g, Yi) i J (wij,vig)
15 12 (-105,25) 0 -1 (—4,121)
~15 —13 (—106,124) 0 0 (-3,-28)
14 —11 (—98,-55) 1 0 (3,9)
14 12 (—99,94) 1 1 (4,-58)
~13 —10 (-91,-85) 2 1 (10,61)
13 11 (—92,64) 2 2 (11,-88)
12 9 (-84,-115) 3 2 (17,31)
~12 10 (—85,34) 3 3 (18,—118)
11 -8 (—77,-145) 43 (241)
—-11 -9 (—78,4) 4 4 (25,—148)
-10 -8 (—T71,-26) 5 3 (30,120)
10 -9 (-72,123) 5 4 (31,-29)
—9 -7 (—64,56) 6 4 (37,90
9 -8 (—65,93) 6 5 (38-59)
8 6 (—57,-86) 7 5 (44,60)
8 7 (-58,63) 76 (45,-89)
7 -5 (=50,—116) 8 6 (51,30
7 =6 (-51,33) 8 7 (52,-119)
6 —4  (—43,—146) 9 6 (57,149)
6 -5 (—44,3) 9 7 (58,0
5 —4  (—37,-27) 9 8 (59,-149)
5 -5 (-38,122) 10 7 (64,119)
4 -3 (=30,57) 10 8 (65,—30)
4 4 (-31,92) 11 8  (71,89)
3 _2  (—23,-87) 119 (72,-60)
3 -3 (—24,62) 12 9 (78,59)
2 1 (~16,-117) 12 10 (79, -90)
2 2 (-17,32) 13 10 (85,29)
10 (—9,-147) 13 11 (86, —120)
11 (—10,2)
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The Trace and its Extensions in Operator Algebras

MARTIN ARGERAMI AND MOHAMMAD SAL MOSLEHIAN

ABSTRACT. We discuss how mathematicians generalize the usual trace on matrices
to various finite and infinite-dimensional algebras. We also examine the existence or
lack of (faithful) tracial states in the framework of operator algebras.

1. INTRODUCTION AND PRELIMINARIES

A natural invariant associated to each linear operator 1" acting on an n-dimensional
vector space V' is its characteristic polynomial py(A) = det(T' — AI), where I is the
identity operator on V and A is a scalar (for simplicity and because of where we are
going, we will assume that the field of scalars is C). This polynomial encodes essential
information about T'; namely its eigenvalues, which are the roots of pr(\).

In turn, this gives importance to its coefficients, as invariants of the operator. The
most well-known of these coefficients is the constant term, that is the determinant
det T = p7r(0). This is equal to the product of the eigenvalues of T', counting multiplic-
ities. Among the other coefficients of pr(\), the best known is the coefficient of A\"~1.
This coefficient is equal to the sum of the eigenvalues of T', counting multiplicities, and
it is usually called the trace of T, and denoted by tr(7T"). Eigenvalues are crucial in
understanding the behavior of linear operators, so the trace and the determinant give
quick ways to relate a matrix to its eigenvalues without having to compute them.

Via the Jordan form Jp of T', the number tr(7") can be seen as the sum of the diagonal
entries of Jp. A straightforward computation shows that tr(ST) = tr(7'S) for any two
linear operators S and T acting on V, and hence tr(ST'S™!) = tr(T) for all invertible
S and all T. From this one can deduce that tr(T) = Y_;" | a;; for any presentation of T
as a matrix A = [a;;] with respect to some basis of V. It is not hard to show that tr is
the only linear functional on V' with the tracial property:

tr(ST) = tr(T'S) for all S and T, (1)

up to normalization by a scalar (see Subsection 2.1.1 for a proof of uniqueness).

The trace is particularly meaningful in the case where our finite-dimensional vector
space is a Hilbert space 57, but its straightforward extension to the infinite-dimensional
case cannot work for all bounded operators on 7. For example, for the diagonal oper-
ator diag(1,1/2,1/3,...) acting on the Hilbert space £2 of square summable sequences,
the sum of its diagonal entries is not finite. Extensions exist, though, and they appear
in many flavours. Discussing those extensions is the main goal of this article.

To fix notation, we let 5 denote a Hilbert space over the field C with inner product
(-, ). We write B(#) for the x-algebra of all linear bounded operators on .#; we
denote by I the identity operator on 7. The space of all compact operators acting on
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A is denoted by K (), which is a closed two-sided ideal of B(7¢). In the case where
dim 27 = n, we can identify B(.#) = K(.#) with the matrix algebra M, of all complex
n x n matrices. In this latter case the trace takes the form
n
tl“(T) = Z(T@k, €k>,

k=1

where {e;}}_, is any orthonormal basis of 7. We denote the normalized trace %tr by
tr.

As noted by Albrecht Pietsch [26], the definition of the trace for a square matrix
mentioned above has been in use since the 18th century. The term “Spur” for this
notion was first introduced by Dedekind [11] within the context of algebraic number
theory. In his work on the development of mathematical foundations for quantum
mechanics ([32, 33, 34], compiled in [35]), von Neumann defined the trace of a positive
operator acting on a Hilbert space and considered the ideal of trace-class operators.
Incidentally, von Neumann also defined for the first time the idea of an abstract Hilbert
space.

As soon as one tries to extend the notion of trace to the infinite-dimensional setting,
issues arise: the only linear functional ¢ : B(J#) — C satisfying the tracial property is
the zero functional. This is what led von Neumann to consider the trace-class operators,
which form in a sense the largest ideal T(2#°) where (1) holds. In fact, T() is the
set of all operators T" € B(2) such that [Ty := > cg(|T]e,e) < oo, where E is
any orthonormal basis for . In addition, we can define the trace of T' € T(¢) as
tr(T) := > . cg(Te,e), and this definition is independent of the choice of basis. The
trace in this context appears to be intrinsic, as T(7) can be seen as the predual of
B(4€), in the sense that we have isometric isomorphisms

K(2) =T(x),  T(A) =BX),

where the isomorphisms in both cases are given by the trace; that is, a trace-class
operator 1" is seen as a bounded linear functional on K(5¢) via S — tr(ST), and
T € B(7) is seen as a bounded linear functional on T(.7¢) via the same duality pairing.

A positive linear functional ¢ on a C*-algebra o is called tracial if it satisfies (1) for
all S,T € o/. As in [16, Proposition 8.1.1], one can observe that (2) and (3), the latter
when &7 is unital, are each equivalent to (1):

p(X7X) = o(XX7), Xed. (2)
e(UXU") = p(X), X € &/ and U € & a unitary. (3)

There are several papers exploring the characterizations of the tracial functionals on
matrices and operator algebras; we mention [3] for further reference.

The study of tracial states, which are tracial positive linear functionals of norm one, is
an active area in the theory of operator algebras, particularly in Elliott’s Classification
Program (see [36] as an initial source of a very large number of references). It is a natural
question whether certain classes of C*-algebras or von Neumann algebras admit a tracial
state or not.

Besides the intrinsic interest for operator algebras, such studies have applications in
other disciplines. From classifying linear operators to enabling quantum computations
and optimizing machine learning models, the trace features both in abstract theory and
in real-world applications.

In quantum mechanics, the trace is used in defining the notion of density matrix; such
a matrix p is a positive semidefinite matrix of trace one. The entropy of a quantum
system with density matrix p is given by S = —tr(plnp); see [10, 24]. Moreover, the
concept of partial trace in quantum information theory is used to describe subsystems.
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The partial trace try : M,, ® M,,, — M, is the linear map induced by tr1(A ® B) =
(tr A)B and the partial trace trg : M,, ® M,;, — M, is induced by tro(A® B) = (tr B)A.
In another setting, the trace is also used in defining the Frobenius inner product on
M, via (A, B) = tr(B*A). This inner product is useful in optimization problems over
matrices, for example in machine learning where one may minimize some loss function
that is expressed using the trace. Another application occurs in random matrix theory,
where the trace of random matrices is studied, and results such as the law of large
numbers for traces of powers of matrices relate to eigenvalue distributions.

For the readers’ convenience we have included a brief summary of the basic theory
of C*-algebras and von Neumann algebras in Appendix A. For any undefined notations
or terminologies, readers are referred to [2] for matrix theory and to [16, 22, 31] for the
theory of operator algebras.

The main objective of this expository article is to discuss various extensions of the
usual trace tr: M, — C to more general settings in operator algebras. Although the
literature contains many interesting and deep results on this topic (see, e.g., [20]), we
focus on presenting fundamental facts and some new proofs, and illustrative examples
for readers familiar with basic operator algebra theory.

2. EXTENSIONS OF THE USUAL TRACE, UNIQUENESS, AND EXAMPLES

We aim to explore how to extend the usual trace tr : M,, — C to positive linear maps
satisfying the tracial property by considering changes in the domain M,,, codomain C,
or both, to some operator algebras. We also examine the existence or lack of tracial
states in the framework of operator algebras.

2.1. Changing domain.

2.1.1. Replacing M,, with a finite-dimensional C*-algebra. As mentioned in the intro-
duction, tr is the only tracial state on M,,.

Indeed, consider the canonical matrix unit system {F;;} C M, which satisfies
E;jEy = 6;1E;. For a tracial state ¢, if i # j then

P(Eij) = o(EijEjj) = ¢(EjiEij) = ¢(0) = 0;
and for any 1, j
p(Eii) = o(EijEji) = ¢(EjiEij) = ¢(Ejj).

Thus, for A = [aij] = Z;l,jzl aijEij € M,,, we have

P(A) = aip(By) = aip(Ei) = o(E11) Y ai; = ¢(En) tr(A)
i,7=1 =1 i=1
— L) = 4.

n

If we replace M,, with a finite-dimensional C*-algebra & = @, My(im), then there
are uncountably many tracial states ¢ : &/ — C, of the form

v (éxk) - Zm:tk T(Xp),
k=1 k=1

where t;, > 0 for all k and Y ;" |ty = 1.
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2.1.2. Substituting C in M, (C) with an arbitrary C*-algebra </ having a tracial state.
Given a tracial state ¢ on &/, we can define a tracial state on M, (<) by

pullang)) = - > plai). ()
=1

And this is the only way to construct tracial states on M, (o): if v : M, (&) — C
is a tracial state, then there exists a unique tracial state ¢ on A, defined by ¢(a) =
v(a ® E11)), such that v = ¢,,. So there is a natural bijective correspondence between
tracial states on &/ and tracial states on M, ().

2.1.3. Replacing M,,(C) with a commutative C*-algebra. One may replace M,, with a
commutative C*-algebra 7. In this case, every state is tracial. It is known that &/
is isometrically *-isomorphic to Cy(€2) for some locally compact Hausdorff space (.
Therefore, any (tracial) positive linear functional on <7 can be represented as ¢(f) =
Jo fdp for a unique positive Borel measure p on € such that (Q) = || ¢ ||, where || ¢||
denotes the operator norm of ¢. Hence there exist uncountably many tracial states on a
commutative C*-algebra, as long as it is not one-dimensional. If &7 is finite-dimensional,
then ) must be a finite set with, say, n elements; see [22, p. 57]. In such case, the state
space is parametrized by the simplex {(¢1,...,t,) € R": t; >0 for all j, Ej tj =1}

2.1.4. Finite factors have unique tracial states. It is a seminal result of Murray and
von Neumann [23] that a finite factor has a unique tracial state (the original Murray—
von Neumann ideas are developed with detail in [30, Section 1.3]). The unique tracial
state is always faithful and normal. A finite-dimensional example of a finite factor is
M,,, n > 1 with the usual tracial state fr. An infinite-dimensional example of a finite
factor is the hyperfinite I -factor, which can be seen as the double commutant (that
is, the sot-completion) of (J, .y Mgn (with the embeddings A — A @ A) via the GNS
representation of the tracial state ¢((4,)) extending the natural normalized trace on
each subalgebra. The hyperfinite II;-factor also appears as the sot-closure of the image
of the group algebra, via the left-regular representation, of any amenable countable
discrete group G with infinite conjugacy classes.

2.1.5. C*-algebras without any tracial states. There exist C*-algebras o/ without any
tracial states. A separable example is the simple C*-algebra K(.7) for any infinite-
dimensional separable Hilbert space .. Given a fixed orthonormal basis (e;)7°; for
S, the corresponding matriz units are the operators {E;;}, where E;; is the rank-
one operator that sends e; to e;. As in the matrix case, they satisfy the relations
E,sE;j = 65 Erj. In particular {E;;} are pairwise orthogonal rank-one projections. As
@ is tracial, p(E;;) = 0 for any ¢ # j, and

e(Ejj) = p(EjiEij) = p(EijEji) = p(Ei).
Then, with P, = > | Ey,
ne(En) = o(Pa) < [ @ll [Pl = 1.

As n is arbitrary, this implies that ¢ = 0, which is not a state since its operator norm
is not equal to one.

The argument above also demonstrates that B(#) is a nonsimple C*-algebra with-
out any tracial state. It is known that a C*-algebra o/ has no tracial states if and only
if its universal enveloping von Neumann algebra m(7)” is properly infinite.

Haagerup proved that if &7 is a unital C*-algebra, then ./ has no tracial state if and
only if there exist n > 2 and a finite set {A;,...,A4,} C & such that » ' A%A; =1
and || D7, A;AF|| < 1 [12, Lemma 2.1]. Pop [27] showed that a C*-algebra < has
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no tracial state if and only if there exists n > 2 such that any element of & can be
expressed as a sum of n commutators [A;, B;] = A;B; — B;A;, 1 <i <n. An interesting
question posed by Pop [27] is that if &7 has no tracial state, what is the smallest n such
that each element of &/ can be expressed as a sum of n commutators?

2.1.6. Existence of a unique tracial state on a nonnuclear C*-subalgebra of a separa-
ble simple C*-algebra possessing no tracial state. The Choi algebra is the C*-algebra
generated by two unitary operators U and V acting on an infinite-dimensional Hilbert
space  such that U2 = V3 = 1. For a construction of U and V, Choi [7] used suit-
able decompositions ¢ = J ® s and 4 = I, ® H3 subject to the conditions
dim % = dim 74 = dim J#, = dim J¢3. He then defined U and V' by block operator

matrices

0 0 W
]GB(%@%) and |Vo 0 0| B @I @A),
0 Vs 0

where Uy : JA — Hy, Uy : 56 — 74, V1« Hp — 5, Vo 2 I — I, and V3 @ A —
€3 are unitaries between corresponding Hilbert subspaces of the same dimensions. This
C*-algebra has a unique tracial state, even though it is a C*-subalgebra of the Cuntz
C*-algebra 0o, which has no tracial state. To prove the latter fact, recall that Oy is
generated by two isometries S; and Sy such that S1.57 + 5255 = I. If ¢ is a tracial
state on Og, then 1 = (1) = ¢ (5157 + 5255) = p(5157) +¢(5255) = p(I)+p(I) = 2,
a contradiction. A nonunital simple separable C*-algebra with a unique tracial state
is the so-called Jacelon-Razak C*-algebra; see [14]. An example of a unital separable,
nuclear projectionless infinite-dimensional C*-algebra with a unique tracial state is the
Jiang-Su algebra [15].

0 Uy
Uy 0

2.1.7. Kaplansky’s problem. What happens if one assumes that the tracial property
©(AB) = ¢(BA) holds for specific classes of elements A, B € o/ but not necessarily all
elements of «/7 For instance one could require that p(A*A) = p(AA*) for all A € .
The linearity of ¢ then implies (1). But what if ¢ is not required to be linear? A
function ¢ : &/ — C is called a quasitrace if it satisfies p(A*A) = p(AA*) for all
A € o, it satisfies p(A 4+ 1B) = ¢(A) +i1¢(B) for all A, B selfadjoint, and it is linear
on each abelian subalgebra of «7. Kaplansky [17] asked whether every II; AW*-factor
is a von Neumann algebra. This would be true if one can prove that every quasitrace
is a trace. While still an open problem, Haagerup [12] was able to prove in 1991 that
each quasitrace on a unital exact C*-algebra is a trace. This result has had significant
applications to the theory of C*-algebras.

2.1.8. Approzimately tracial state. In perturbation theory, one considers situations where
(1) we have an object that approximately fulfills a property, and we try to prove that
it is close to an object that exactly satisfies that property; (2) there exists a problem
for which we do not know the exact solution, but we can find an approximate solution
for it; (3) there are objects with an approximate property and we seek an object that
exactly meets the property. Here we deal with the third situation.

We may consider (F,e)-almost traces for any given finite subset F of the closed
unit ball of & and any € > 0. This means that there is a state ¢ . on & such that
| pr(A"A—AA")| < eforall A€ F. It is shown in [19, Lemma 5.4] that a C*-algebra
</ has a tracial state ¢ if and only if it has (F, ¢)-almost traces for all F and ¢. Indeed,
¢ can be taken to be an accumulation point of the net (¢ .) in the weak*-compact
unit ball of the dual of <.
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2.2. Changing codomain.

2.2.1. An extension of the trace with values in a C*-algebra. In seeking an extension
of the trace, one may substitute the C*-algebra C with an arbitrary C*-algebra <.
If p : M,, — & is a tracial positive linear map, then by repeating the argument in
subsection 2.1.1 we get

Z Qij SO zy Zazz (P u = Ell Zau = Ell tI‘(A)

i,5=1
1 ~
= (np(En))—tr(4) = p(I)tr(A),
where now ¢(7) is an element of <7.

2.3. Changing both domain and codomain.

2.3.1. A generalization of the trace that implies the commutativity of the underlying
C*-algebra. One can think of replacing M, and C with M, (<) and <7, respectively, for
some unital C*-algebra </, and then define ¢ : M, (&) — & by p([Ai;]) = iy Ais-
Then, if I, denotes the identity element of M, (.27) and ¢ satisfies the trac1al property
(1), we have

AB =+ o(ABI,) = 1 ©(AlLBI,) = 1 p(BI,Al,) = L p(BAI,) = BA.
n n n "

Therefore, <7 has to be commutative, every state is tracial, and o7 is of the form C(Q2)
for some compact Hausdorff space 2.

2.3.2. Replacing M, and C with an arbitrary C*-algebra and B(I€), respectively. A
linear map @ : &/ — A is called tracial and positive if it takes positive elements of <7 to
those of # and fulfills the condition (1). A result due to Choi and Tsui [8, pp. 59-60]
states that if ® : &/ — B(J¢) is a tracial and positive linear map, then there exist a
commutative C*-algebra C'(X), where X is a compact Hausdorff space, and tracial and
positive linear maps ¢ : A — C(X) and ¢ : C(X) — B() such that ® = ¢20¢;. In
particular, any tracial and positive linear map is completely positive.

2.3.3. Substituting M, and C with a properly infinite von Neumann algebra # and a
unital C*-algebra A, respectively. 1If ® : A4 — P is a unital tracial positive linear map,
then @ is identically zero. The reason is that we can “halve” projections. In particular,
there exists a projection P € .# such that P ~ I ~ [ — P [31, Proposition V.1.36].
Hence, there are partial isometries U,V € .# such that U*U = V*V =1, VV* = P
and UU* = I — P. By the tracial property of ®, we have ®(I) = &(P) = &(I — P).
Therefore, ®(I) = ®(P)+ (I — P) = 2®9(I), whence ®(I) = 0. Now given any positive
element A € o7/, we have A < ||A|| I. Therefore, 0 < ®(A) < ||A|| ®(I) = 0, and hence,
®(A) = 0. As any element in &7 is a linear combination of four positive elements, it
follows that & = 0.

2.4. C*-algebras and faithful tracial states.

2.4.1. A unital C*-algebra with o faithful tracial state is finite. Let ¢ be a faithful
tracial state on a unital C*-algebra /. We show that if I ~ P, then P = I. To see
this, suppose U*U = I. Then, (I — UU*) = o(U*U — UU*) = 0, and because ¢ is
faithful, we infer that UU* = I. This shows that every isometry is a unitary, and in
particular the identity I is finite.
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2.4.2. C*-algebras and von Neumann algebras admitting a faithful tracial state. As op-
posed to the case of von Neumann algebras, it is not entirely clear how to characterize
a C*-algebra as finite. The naive way is to use the same definition as for von Neumann
algebras. This is done for instance on [28], and it is the definition used in 2.4.1 above.
The problem with this is that a C*-algebra may not have enough projections, or it may
even fail to have nonzero projections at all; see [18]. This would make C*-algebras that
“feel” infinite be finite, for example Cy(R,O3). A stronger definition is used in [29],
where the requirement for finiteness is that all projections are finite, together with the
existence of an approximate unit made entirely of projections. With this definition,
combining the results from [4] and [12] it is proven that every unital, stably finite, exact
C*-algebra admits a tracial state. Here stably finite means that o7 ®K() contains
no infinite projections. Another notion of finite was considered by Cuntz and Pedersen
in [9]. They consider, instead of equivalence of projections, equivalence of positive ele-
ments, where x ~ y in &7 if there exists a sequence {z,} C & such that z =5 2"z,
and y = ) zn2;. They say that o is finite if 0 < y < 2 and y ~ x implies x = y.
With this definition of finite, they prove that a separable C*-algebra & is finite if and
only if it admits a faithful tracial state.

For von Neumann algebras, the situation is simpler. If .# is a finite von Neumann
algebra with separable predual, then it has a faithful tracial state. The von Neumann
algebra .# is finite precisely when in the central decomposition of .#Z there exist only
types I, with n < oo and II;.

There is a general form for tracial states on finite von Neumann algebras: if .# is
a finite von Neumann algebra equipped with a center-valued tracial map tr. : # —
Z(M), then each tracial state ¢ on .# is of the form ¢ = p o tr., where p is a state
on Z(#). The tracial state ¢ is normal on . if and only if the state p is normal on
Z(A), as shown in [16, Theorems 8.2.8 and 8.3.6]; see also [5, Theorem 4.1].

2.4.3. A normal state on a von Neumann algebra gives a faithful normal tracial state
on a reduced von Neumann algebra. Let’s consider a similar construction. Let .#Z be
a von Neumann algebra and let ¢ be a nonzero normal state on .# with support P.
Then P .# P is a von Neumann algebra with a faithful state ¢. If 7 denotes the unique
center-valued trace on .Z, then ¢ = @ o7 is a faithful normal tracial state on P.# P;
see [16, Chapter 8| for more details.

2.4.4. Invertibility in the presence of a faithful tracial state. If a C*-algebra « has a
faithful tracial state ¢, then the one-sided invertibility of A € & implies the two-sided
invertibility of A. Indeed, if BA = I, then

I =(BA)*BA= A*B*BA < |B||? A*A
This implies that A*A > ||B|| 21, so A*A is invertible. Let V = A(A*A)~'/2. Then
VAV = (ATA)TPATAAT AT = T
We obtain that |[VV*|| = ||V||? = [|[V*V]| = 1; thus 0 < VV* < I. In addition,
0<p(I-VV)=1-p(VV*)=1-p(V*V)=1-1=0.

As ¢ is faithful, VV* = I, so V is unitary (in particular, it is invertible). Thus,
A = V(A*A)Y? is invertible. An analog computation can be made when A is right-
invertible.

2.4.5. Factors with a faithful tracial state. It is notable that a faithful tracial state ¢
on a factor .# has the property

P~ Q<+ ¢(P)=¢(Q)



76 ARGERAMI AND MOSLEHIAN

for all projections P,Q € .# . Indeed, if two projections P, Q) € .# are not equivalent,
then by the Comparison Theorem in factors [16, Theorem 6.2.7], we may assume P < @
(otherwise, we obtain Q < P and we can reason the same). That is, P ~ @1 < Q
for some projection Q1. Therefore, p(P) = ¢(Q1) < ¢(Q). If p(P) = ¢(Q), then
©(Q—Q1) = 0 and faithfulness implies that Q1 = @; this means P ~ @, a contradiction.
Thus, ¢(P) = p(Q1) < ¢(Q), and so p(P) and ¢(Q) are distinct. The converse is clear
by the tracial property of .

2.4.6. Examples of nonfaithful tracial states. Given a unital C*-algebra <7 with a faith-
ful tracial state ¢, the extension ¢ : &/ @&/ — C defined by (A, B) = ¢(A) is a
nonfaithful tracial state. Furthermore, the restriction of a tracial state on a C*-algebra
to a C*-subalgebra may fail to be a state. For example, let &/ be a C*-algebra and
consider the tracial state ¢ : o/ @M, — C defined by (A, B) = tr(B). Then, the
restriction of ¢ to &7 is identically 0, which is not even a state. Another example is to
consider a non-factor .# with a faithful tracial state . Given a nontrivial projection
in the center of .Z, we have ¢(P) > 0 by the faithfulness of ¢. Then ¥(A) = p(AP)
provides a nonfaithful tracial state, since ¥(I — P) = 0. In this situation we can get
different faithful tracial states by weighting, in the following sense: for each ¢ € [0, 1],

_ ot 1-¢) L
Yi(A) = 2(P) P(AP) + S(PL) p(AP™),

where P+ =T — P, is a faithful tracial state.

2.4.7. GNS construction for a tracial state. Let us now describe a situation where one
extends a faithful tracial state on a unital C*-algebra &/ to a faithful normal tracial
state on a certain von Neumann algebra. We use the notation in the GNS construction
(described in Appendix A). As ¢ is faithful, N, = 0, so ., is the completion of &/ with
respect to the norm ||A|ls,, = p(A*A)1/2 induced by the inner product (a,b) = ¢(b*a).
For instance, if &7 = L*°[0, 1] and ¢ is integration with respect to the Lebesgue measure,
then J, = L?[0, 1].

In addition, the positive linear functional @ : 7, (%)

1

— C defined by ¢(T) :=
(T, ) is a faithful normal tracial state on the von Neumann algebra 7,(</)" gen-
erated by m,(), since p(m,(A)) = ¢(A) for all A € & (see (5)) and 7, (&) is
dense in 7, (o )" in the strong operator topology. Therefore, T (o )" is a finite von
Neumann algebra; see [1, Lemma 2.2] for details. Furthermore, if f is a continu-
ous real-valued function on an interval containing the spectrum of A € &, then
o(f(A)) = @(mo(f(A))) = @(f(m,(A))). This property is employed in [25] to establish
that if f is a monotone (convex) function, then so is A — ¢(f(A)).

Since ¢ is a faithful tracial state, the representation m, : & — B(J,) is one-to-one,
for if 7,(A) = 0, then (5) implies that ¢(A*A) =0, and so A = 0.

2.4.8. Constructing a von Neumann algebra with a faithful normal tracial state from a
family of C*-algebras admitting tracial states. Let J be an infinite set equipped with a
nontrivial ultrafilter o, meaning that « is free and there exists a sequence (.J,,) in « such
that N,J, = @. Suppose that for each i € J there exists a unital C*-algebra o/; with a
tracial state ¢;. Then, the tracial ultraproduct [[j; (47}, ;) is defined to be the C*-

product [[,.; /; modulo the ideal of all (4;) in ], ; #/; such that lim;_,, ||AZ||§ 0, =
lim;_,q ¢; (AfA;) = 0. It is established in [13, Theorem 4.1] that a tracial ultraproduct
(6%

H (o7, ;) of C*-algebras is a von Neumann algebra with the faithful normal tracial
ieJ
state 1q ((Ai)) = limia ¢; (4i).
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APPENDIX A. Basics oF C* AND VON NEUMANN ALGEBRAS

A C*-algebra is a complex Banach -algebra .7 with an involution such that || A*A|| =
| A||? for all A € o. Every C*-algebra can be realized as a C*-subalgebra of B(.#) for
some Hilbert space  (Gel'fand-Naimark—Segal; see [22, Theorem 3.4.1]). On B(5¢)
we can consider the operator norm, defined as

T[] = sup{||Tz]| : = €, |«f| =1}.

An element A € of is selfadjoint if A* = A and positive if A = B*B for some B € o/
(equivalently, if A = A* and 0(A) C [0,00), where o(A) denotes the spectrum of A).
We denote by &/ and &7 the subsets of positive and selfadjoint operators in .7,
respectively. For two self-adjoint operators (matrices) A and B, we say that A < B
whenever B — A is positive (positive semidefinite). A rank-one projection is an operator
of the form e ® e for some unit vector e € .7, where (e®e)(f) := (f,e)e for all f € .

By the commutant of a set X C B(), we mean the set X' = {Y € B(J#) : XY =
YX, X € X}. A non-degenerate *-subalgebra .# of the algebra B(J¢) is called a von
Neumann algebra acting in the Hilbert space 5 if .#4 = .#". Von Neumann’s Double
Commutant Theorem states that for a non-degenerate x-algebra .# we always have
M = ]SOt, where sot (“strong operator topology”) denotes pointwise convergence.
The commutative von Neumann algebra Z(.#) := .# N.#' is referred to as the center
of ., which in turn is always of the form L (), ) for some measure space (2, ). A
factor is a von Neumann algebra with trivial center. If P € .# is a projection (that is,
P? = P and P* = P), the corresponding reduced von Neumann algebra is defined as
Mp = {PX|p)f X G.///}

For projections P,Q € .# , we denote P ~ Q (Murray—von Neumann equivalence) if
P =U*U and Q = UU* for some U € .#; intuitively this says that both projections
have the same rank, but there is a dependence on the algebra for the existence of the
partial isometry U, so the notion of equivalentce is intrinsic to .#. A von Neumann
algebra .# is said to be finite if P = @Q for any equivalent projections P,(Q € .# with
P < @. Abelian von Neumann algebras are trivially finite. A non-finite projection
is said to be infinite, and properly infinite if it is nonzero and infinite, and for every
nonzero central projection QQ € .#, either QP = 0 or QP is infinite. A von Neumann
algebra is said to be finite or properly infinite if its identity has the corresponding
property. It is known that there exists a unique projection Py in the center Z(.#) of
A such that Py is finite and I — P, is properly infinite. Hence, we have the direct sum

M= MPyD M1 - Fy),

where .# P, is finite and .# (I — Py) is properly infinite.

We say that a projection in .# is abelian if the algebra P.# P is commutative. A
von Neumann algebra . is said to be of type I if every projection in Z(.#') majorizes
a nonzero abelian projection in .. If there is no nonzero finite projection in .#, then
it is said to be of type III. If .# has no nonzero abelian projection and if each nonzero
projection in Z(.#') majorizes a nonzero finite projection in .#, then it is said to be of
type II. If .4 is type Il and finite, then it is said to be of type II. If .# is of type II
and properly infinite, then it is said to be of type 1.

Every von Neumann algebra .# has a unique central decomposition into a direct sum
of subalgebras of type I, type IIj, type Il, and type IIT [31, Chapter V, Theorem
1.19]. Thus, # = #p, ® %le © Mpy  © Mpy,, where projections Pr, Py, Py, and
Pyr in Z(#) are such that Pr + Py, + P, + Piir = I; it is possible for one or more
of these to be zero.

A linear functional ¢ on &7 is said to be positive if ¢(X) > 0 for all positive elements
X € o/. It is referred to as a state if it is positive and its operator norm | ¢ || is
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equal to one. The positivity-preserving property of a linear functional ¢ is equivalent
to || ¢l = ¢(I); see [22, Corollary 3.3.5]. It is called faithful if it is one to one on
/T . A positive linear functional ¢ on a von Neumann algebra ./ is said to be normal
if X; 7 X (that is, (Xjz,2) 7 (Xz,2) for all z € ) with X;, X € .#°* implies
P(X) = sup p(X;).

We briefly introduce the GNS construction corresponding to a given state on a unital
C*-algebra /. Suppose that ¢ is a state and let N, = {A € & : ¢(A*A) = 0}; this is
a norm-closed left ideal of o#. An inner product on the quotient space &/ /N, can be
defined by

(A4+ Ny, B+ Ny) := p(B*A)

The completion of this inner product space is denoted by 7. The linear operator
m, o [Ny — o/ /N, defined as 7, (A + N,)(B + N,) = AB + N, can be extended to
a linear operator on ¢, denoted by the same 7,(A). Moreover, 1, : & — B(J,) is a
x-homomorphism between C*-algebras; that is, a representation. In addition, the unit
vector x, = I + N, € J, is cyclic (meaning that 7, (47 )z, is dense in J#,) and

P(A) = (my(A)zy, Tp). (5)

The triple (m,,¢,,x,) is called the GNS representation (from Gelfand-Naimark-
Segal).

The pair {7, #} = Dcg(ry (7o) #,} is known as the universal representation
of «/. Here, S(&) denotes the set of all states on /. The von Neumann algebra
M = ()" generated by 7(&) is said to be the universal enveloping von Neumann
algebra of the C*-algebra <7 [31, Chap. III, Definition 2.3].
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The Fundamental Theorem of Algebra

ANTHONY G. O'FARRELL

ABSTRACT. This is an expository note about the Fundamental Theorem of Algebra.

1. INTRODUCTION

Each nonconstant polynomial with complex coefficients has a complex root. In sym-
bols:

Theorem 1.1. If p(z) € C[z]| has positive degree, then there exists a € C such that
p(a) = 0.

This is one of the foundations on which algebra rests. Burnside and Panton [3]! state
it in article 15, in Chapter II, and use it for most of the rest of Volume I, before giving
a proof in article 122. The proof they give is based on the argument principle.

1.1. Argument principle. The variation of the argument of the polynomial around
a simple closed curve v on which it does not vanish counts the roots inside:

/7 darg(p) = /7 b /;'2;& — 2rin

if p has n roots inside v (where multiple roots are counted a number of times equal to
their multiplicity).

Assuming this, Theorem 1.1 follows on applying the principle, taking v to be a very
large circle around 0.

This proof of Theorem 1.1 has the merit of exposing the real reason why the theorem
is true. The theorem is a consequence of the topological action of polynomials on the
plane. More precisely, there are two ingredients: (1) the completeness of the complex
plane C, as a metric space; (2) the fact that a polynomial with b = p(a) induces a
positive map of homotopy groups

m({z€C:0< |z—a| <r}) = m(C\{b})

for all sufficiently small positive . The latter comes down to the fact that the map
z — 2™ induces multiplication by m on m (C*), combined with the remainder theorem.

Usually, people derive the theorem from the argument principle for holomorphic
functions, and note that polynomials are entire functions, so that the argument principle
applies to them. The argument principle for holomorphic functions depends on Cauchy’s
Theorem, and hence on the Stokes-Green formula.
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1.2. Issues. The remainder theorem is elementary algebra, but plane algebraic topol-
ogy is not. So it is reasonable to ask for proofs of Theorem 1.1 that avoid analysis as
much as possible.

It seems obvious to me that you can’t avoid analysis altogether, since the complete-
ness of C is an essential ingredient.

1.3. From Cauchy-Stokes. The following proof uses a minimum of complex analysis:

Suppose p(z) € C[z] has degree m > 0 and has no roots. Assume, as we may, that
p(2) is monic. Then f(z) := 2™~ 1/p(z) has f: = 0 on C. If D = U(0, R) is the disk of
radius R about 0, then by Stokes’ Theorem

- (z)dz:/DdedZ:/D(fzdz—l—fzdz)Adz:0.

But, parametrising 0D by z = Re?, we have
dz 2
(2 dz—/ —i/ (1+O(1/R))do
oo’ O Jop v om) ~ 'y
=2mi(1 4+ O(1/R) — 2mi
as R 1T oco. This is impossible.
1.4. Maximum principle. The maximum principle for polynomials is elementary:

Theorem 1.2. Let p(z) € C[z]. Suppose |p(z)| has a local maximum at some point
a € C. Then p(z) = p(a), constant.

Proof. Suppose p is nonconstant. Composing with translations, we may assume a = 0.
Applying the remainder theorem, we can factor

p(z) = p(0) = 2"g(2),

where n > 1 and g(z) € C[z] has g(0) # 0. Then for small positive r and any 6 € R, we
have . ‘

p(re’®) = p(0) + "™ g(0) (1 +o(1)).
Writing p(0) = ae*® and ¢(0) = pe’® with o > 0, B € R, p > 0 and ¢ € R, this gives

plre®®) = e + e (1 4 o(1)). 1)
So for 8 = (8 — ¢)/n and all small positive r we have

plre®) = (o +17p) ¢ + o(r™),

so for arbitrarily small positive r
n

» r
pre”)| = a+1"p = =F > a = |p(0)],
contradicting the assumption that 0 is a local maximum. 0

A small twist on the same argument gives the minimum priciple away from roots:

Theorem 1.3. Let p(z) € Clz]. Suppose |p(z)| has a local minimum at some point
a € C. Then p(a) =0 or p(z) = p(a), constant.

Proof. Assuming p nonconstant and p(a) # 0, and proceeding as before, we have Equa-
tion (1), where now « is strictly positive. So for 8 = (58— ¢+7)/n and all small positive
r we have

p(re?) = (a —r"p)e” +o(r™),
so for arbitrarily small positive r

plre?)| < a—r"p+ 0 < a = [p(O)],

contradicting the assumption that 0 is a local minimum. 0
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1.5. Bolzano-Weierstrass. The Bolzano-Weierstrass Theorem says that each bounded
sequence of real numbers has a convergent subsequence. (See, for instance, [16, Theo-
rem 8.17].) It follows that each bounded sequence of complex numbers has a convergent
subsequnce: just apply it to the real parts and then apply it to the imaginary parts of
the resulting subsequence. This is enough analysis to give Theorem 1.1.

1.6. Proof of Theorem 1.1 without winding numbers. Suppose p(z) € C[z] is
nonconstant and has no root.

Since |p(z)| — +o0o as |z| — +o00, we may choose R > 0 such that |p(z)| > 2|p(0)]
whenever |z| > R. Let B := B(0, R).

Let m := inf{|p(z| : |z| < R}. Then 0 < m < |p(0)].

Suppose m = 0. Then we could choose a sequence (z,) C B such that p(z,) — 0.
Passing to a subsequence, we may assume (z,,) converges to some a € B. By continuity
of p, p(a) = 0, which is impossible. Thus m > 0.

Choose a sequence (z,) C B such that |p(z,)| — m. Passing to a subsequence, we
may assume z, — £ for some £ € B. Then |p(§)| = m. We cannot have |[£| = R, since
otherwise

m = [p(§)| = 2[p(0)| = 2m > m.

Thus p has a local minimum at &, which contradicts Theorem 1.3. O

1.7. Variation. A variation on the foregoing proof goes as follows:

Suppose p(z) € C[z] is nonconstant and has no root. Then f := 1/|p(z)]| is positive
and continuous on C, and tends to zero as |z| — +00. Thus we may choose R > 0
such that |f(z)| < %|f(0)| whenever |z| > R. Let B := B(0,R), D := U(0,R) and
S:=B\D.

There exists some a € B such that

f(a) = sup|f].
B

By continuity, |f| < 1|f(0)| < 3|f(a)| on S, so a € D. Thus |p| has a local minimum
at a, contradicting Theorem 1.3.

1.8. Proof of Theorem 1.1 using harmonicity. Harmonic functions may be de-
fined as the twice-differentiable solutions of Laplace’s equation, or, equivalently, as the
continuous functions having the mean-value property. See [4].

Harmonic functions have a maximum principle.

Theorem 1.4. Suppose 2 C C is a connected open set, and h :  — R is harmonic on
Q. Then if there is some point a € €} such that

h(a) = sup h,
Q

then h is constant on Q.

This is most conveniently proved by appealing to the mean-value property, and show-
ing that the existence of a global maximum at a implies that the set h=1(h(a)) is
open-closed relative to Q.

Now if we had a nonconstant polynomial p(z) having no root, then u := 2log |p|
would be harmonic on C, because u = log(pp) and p, = p'zy = Py, Dyy = —Dax SO &
simple calculation gives

Uy = }L_x + piv
p p
DPxx — 133@ DPDzz — p;%
Uy = 5 + 2 )

p p
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and similar formulas for the y-derivatives, giving

PAD — Py — D, N pAp —p3 —p;
p? p?

We could then argue much as in Subsection 1.6 that, since it is a continuous real-valued

function on C tending to infinity at infinity, v has a global minimum on C at some

point a, and hence the nonconstant harmonic function —u has a global maximum at a,

contradicting from Theorem 1.4.

AU = Ugy + Uyy = =0.

2. OPEN MAPPING THEOREMS

The argument of Subsection 1.6 (or Subsection 1.7) can also be used by replacing
the minimum principle Theorem 1.3 by the open mapping theorem for polynomials,
because an open set that meets a circle must have points inside and outside the circle.

The open mapping theorem is:

Theorem 2.1. Let p(z) € C[z] be nonconstant. Then p(2) is open whenever Q C C is
open.

2.1. Holomorphic functions. The open mapping theorem for holomorphic functions
is:

Theorem 2.2. Let f : Q — C be holomorphic on the connected open set ) and non-
constant. Then p(Q2) is open.

The usual proof uses Rouchés Theorem. (For an alternative, see Section 4, below.)
Theorem 2.1 is an immediate corollary, and this is the standard way to prove it.

2.2. Smooth functions. The open mapping theorem for vector-valued differentiable
functions is:

Theorem 2.3. Let f : Q — R? be continuously differentiable on the connected open set
Q € R?, with nonsingular Frechet derivative at each point. Then f(Q) is open.

This is a corollary of the inverse function theorem for smooth functions, which can
be proved by applying Banach’s contraction mapping principle.

Notice that an f satisfying the hypotheses must either preserve or reverse orientation
on each connected component of 2, because the sign of the determinant of its derivative
cannot change there.

Theorem 2.3 may be used in a proof of Theorem 2.2, as follows:

Suppose f :  — C is holomorphic and nonconstant, and €2 is open. Let C' := {c €
Q: f'(¢c) =0} be the set of critical points of f. Then C' has no accumulation points in
Q. Theorem 2.3 tells us that f(Q\ C) is open. So it remains to see that for ¢ € C' and
sufficiently-small > 0, the image f(B(c,r)) is a neighbourhood of a := f(c).

The set P := f~(f(c)) of preimages of f(c) has no accumulation points in €.

Choose r > 0 smaller than half the distance from ¢ to the rest of C U P U (C\ Q).
Let B be the closed disc B(c,r), let U be its interior, and S be its boundary circle. Let
A be the annulus U \ {c}.

Let F := f(B). Then F is closed, since f is continuous and B is compact. Let
T :=bdy(F), so T C F. Suppose F is not a neighbourhood of a. Then a must belong
to T. Since f(U \ {a}) is open, and is contained in F, it does not meet 7. Thus
T C {a} U f(S). Since a ¢ f(S), this means that 7" has an isolated point at a.

Now A is dense in B, so D := f(A) is a dense subset of F', thus T' C bdy(D). Since
D is open, it does not meet bdy(D), so bdy(D) C F\ D C T. Thus T = bdy(D), and
D is a connected open set having a as an isolated boundary point. This implies that D
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contains a deleted neighbourhood of a, and then F' contains a full neighbourhood of a,
contrary to our assumption. Thus f(£2) is open. O

This proof does not simplify materially when f is assumed to be a polynomial, in
place of an arbitrary holomorphic function.

3. Roors

The fundamental theorem implies that each nonzero a € C has m-th roots of each
order m € N, but this fact is more elementary, and can be proved using De Moivre’s
formula. Proving De Moivre’s formula does require some analysis, of course, since we
have to introduce the trigonometric functions first. Look at [16], for instance.

4. FORMAL POWER SERIES

4.1. Let F be the ring of all formal power series over C in one variable, and F* be
the group of invertibles under convolution multiplication. Let G C F be the group
of the series that are invertible under formal composition. Let §, §* and & be the
corresponding subsets of series having positive radius of convergence.

Cartan [5] proves the inverse function theorem for convergent series, using a ma-
jorization argument:

Theorem 4.1. Suppose f € GNF. Then the compositional inverse of f belongs to &.

This has as a corollary the inverse function theorem for holomorphic functions, al-
ready mentioned, and this is an interesting alternative to the use of Rouchés Theorem.

4.2. Roots.

Proposition 4.2. Suppose f = ag+a1z+HOT € F and ay # 0. Then for each m € N
there exists g € F such that g(2)™ = f(z). Moreover, if f € §, then each choice of g
also belongs to §.

(Here, HOT stands for higher-order terms.)

Proof. Since ag has m-th roots, it suffices to consider the case ag = 1. The binomial
series for the m-th root:

o 1
ri=(1+2)/m .= Z <Z‘>xn
n=0

has radius of convergence 1 > 0, so the composition g := r o (f — 1) has positive radius
of convergence if f does, and satisfies ¢"* = f. U

This gives us another way to prove the open mapping theorem for holomorphic func-
tions:

Suppose f is holomorphic and nonconstant on a neighbourhood N of a. We want to
see that f(NN) is a neighbourhood of b = f(a). Translating before and after, we may
assume a¢ = b = 0. The function f has a convergent power series expansion near 0, so
for some m € N, we have

f(z) =2"(ap + a1z + HOT) = 2™h(z),

with ag # 0. By Proposition 4.2, there is a convergent series g = by + b1z + HOT) such
that ¢™ = h. Then f = (zg(z))™ near 0. Now by the inverse function theorem, zg(z)
maps N onto a neighbourhood Nj of 0, and since all complex numbers have mth roots,
z +— 2™ maps N; onto a neighbourhood N3 of 0, so f = (2™) o (zg(z)) maps N onto
N>, and we are done.
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5. CONNECTIVITY

Recall that a map is proper if the preimage of each compact set is compact. Proper
maps between metric spaces are continuous. A map f : C — C is proper if it is
continuous and |f(z)] — +oo as |z| = +o0.

Theorem 5.1. Suppose M # 0 and N are connected manifolds, and f : M — N is
continuous, proper, and open. Then f(M) = N.

Proof. f(M) is nonempty, connected, open and closed in N. Since N is connected,
f(M)=N. O

This gives Theorem 1.1, once we know that nonconstant polynomials are open. This
proof sidesteps the use of maxima and minima.

6. GALOIS THEORY

People who like to use as little analysis as possible are drawn to the following proof
of Theorem 1, which uses substantial results from Galois theory and group theory. It is
found for instance in van der Waerden [17, Kap 11|, or [14]. Lang says it is essentially
one of Gauss’ proofs, and van der Waerden describes it as the second Gauss proof [17,
§81, p.252]%

The analysis is in the following two lemmas.

Lemma 6.1. Fach odd-degree polynomial over R has a real root.

Proof. 1t suffices to consider monic polynomials. If p(x) € R[z] is monic and has odd
degree, then for all large enough real x > 0, p(x) is positive and p(—z) is negative.
By the Axiom of Completeness, there exists a least upper bound A of the set {z € R :
p(z) < 0}. Since p : R — R is a continuous function, it follows readily that p(A\) = 0. O

Lemma 6.2. Each positive real number has a positive real square Toot.

Proof. If 0 < a € R, then p(z) := 2? — a is negative at x = 0 and positive for all large
enough real x, so exactly as in the previous lemma, p has a positive real root. O

Corollary 6.3. Each nonzero complex number has a complex square root.

Proof. Indeed, let a, b be arbitrary elements of R . We claim that there are ¢,d € R such
that a + bi = (c + di)?. The case a = 0 is covered by Lemma 6.2 and the observation
that —1 and 7 have complex square roots. For the case of non-zero a, we may assume
that a is positive since —1 has a complex square root, and then by Lemma 6.2 that
a = 1. We have to solve the system

1=c?—d
b= 2cd.
Squaring the second and multiplying both sides of the first by c?, we get
b2
e R
Completing the square gives
@—pr= L

The right-hand side has a positive real square root, say e. Then % + e has a positive
real square root, say f. So ¢ = f and d = b/(2¢) give us real numbers that solve the
system. O

2t is worth noting that van der Waerden [17, §80] says that the simplest proof of Theorem 1.1 is one
that uses complex analysis: a counterexample p(z) would have 1/p(z) nonconstant, entire and bounded,
contradicting Liouville’s Theorem.
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Corollary 6.4. Fach monic quadratic over C has a complex root.
Proof. Just use the usual quadratic formula and Corollary 6.3. ]

Armed with these, we can prove Theorem 1.1, as follows.

Since —1 is not a square in R, C := R[i] is a degree 2 extension of R.

Suppose some monic polynomial p(z) € C[z] has no root in C. Then there is a proper
finite degree extension K of C, which is Galois over C.

Let S be a Sylow 2-subgroup of Aut(K/R). The fixed subfield K° C K of S is an
odd degree extension of R. Pick & € K such that K° = R[¢]. Then the minimal
polynomial of & over R has odd degree, hence has a root in R, and hence has degree
one. Thus S = Aut(K/R).

Thus Aut(K/R) is a 2-group, hence so is its subgroup Aut(K/C).

Every 2-group has a subgroup of index two?, so choose H < Aut(K/C) of index 2.
Then the fixed subfield K is a degree 2 extension of C. But we can always solve
quadratics over C in C, so C does not have a degree 2 extension. This contradiction
concludes the proof.

7. PURE ALGEBRA

We can avoid analysis completely by changing the question. As already remarked, R is
a convenient fiction, containing a huge set of ‘yellow-pack’ numbers which are literally
indescribable. One can imagine trying to get along without R. Among reasonable
alternatives, three come immediately to mind:

e The field E of ‘Euclidean reals’. These are the numbers corresponding to the
points that you can construct on a line using straight-edge and compass and a
segment on the line with ends labelled 0 and 1. Algebraically, E is a quadratic
closure of Q, i.e. [E has characteristic zero, each quadratic polynomial over E
has a root in E, and no proper subfield of E has this property.

e The field G of ‘Gaussian reals’, or real algebraic numbers. This can be described
without reference to R, as follows. Let (@ be an algebraic closure of QQ, and let
i € Q denote one of the square roots of —1. The field automorphism of Qli]
that sends 7 — —i extends to an involutive field automorphism of Q, which we
denote by 7 : z — z. Then G C Q is the subfield fixed by 7, and one sees that
Q = GJi].

If you try, for a moment, to put yourself in Gauss’ shoes, at the time before
he had found his first proof of Theorem 1.1, you see that the great man had to
grapple with the possibility that, big though it may be, C might not be large
enough to embrace C or even Q, and R might not contain a copy of G.

e The field D of real numbers that have a definite description. Without getting
into technicalities, D contains G and also numbers such as 7 and Euler’s e and ~,
real and imaginary parts of the values of all explicit elementary functions at all
rationals, of zeros of Bessel functions, of Riemann’s ((s), and so on. But since
there are only a countable number of definite descriptions, D is much smaller
than R, even though it contains all the real numbers anyone might ever care
about.

3Each p-group is nilpotent [8, Theorem 3.3(iii)], so each 2-group G has [G,G] < G so the abelian
group G/[G, G] has a subgroup of index 2, hence its preimage under the surjection

G

G%[G,G]

also has index 2.
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If we ask what might replace Theorem1.1 if we replace R and C = R[i] by one of these
alternatives, then we get nowhere with the Euclidean numbers, because there are cubics
over (Q with no solution in E. For G and D, one can formulate reasonable questions.

The fields R, G and D are examples of formally-real fields in the sense of Artin and
Schreier: This just means that —1 is not a sum of squares in the field.

In logical terms, the real-closed formally-real fields share the same first-order prop-
erties as the ordered field R, and are the subject of the Grand Artin-Schreier Theorem
[19, 6]:

Theorem 7.1 (Grand Artin-Schreier Theorem). Let F' be a field. Then the following
are equivalent:

(i) Fis formally real and admits no proper formally real algebraic extension.

(ii) F is formally real, every odd degree polynomial over F' has a root, and for each
x € F*, one of x, —x is a square.

(iii) F is formally real and F(\/—1) is algebraically closed.

(iv) The absolute Galois group of F is finite and nontrivial.

To use this to prove that G[i] and D[i] are algebraically-closed, one needs to verify
condition (ii) for F = G and F' = D. I don’t see any way to do that without applying
the fact that it holds for ' = R and hence that (iii) holds for F' = R.

8. WIDER CONTEXT

It has been said that Theorem 1.1 is neither fundamental nor algebra. Algebra has
changed its meaning in the past two centuries, and no longer just means the theory of
equations, so the real question is whether the theorem is really fundamental for algebraic
equations. The field Q of algebraic numbers is certainly fundamental. It is necessary
to deal with all the algebraic numbers, fictions of our imagination though they be. But
the field of complex numbers is much larger, even in cardinality, and most complex
numbers are even more fictional. In fact, the typical complex number has only generic
properties, i.e. it cannot be characterised by a specific finite list of properties. The field
C is convenient, because Theorem 1.1 implies that it contains an isomorphic copy of
Q and because we can use the richness of complex analysis on it. It is an interesting
consequence of Theorem 1.1 that the field R has index two in its algebraic closure.
However, R is large and mysterious, and open to the same criticism as C.

8.1. C,.

Definition 8.1. |- | is a field norm on the field F if it satisfies the conditions:
(1) |z| is a nonnegative real number, whenever = € F, and |z| = 0 if and only if = 0.
(2) | +y| < |z| + |y|, whenever z,y € F.
(3) |zy| = |z| - ly|, whenever z,y € F.
The norm is non-archimedean if it satisfies the stronger condition:
(2") |z + y| < max(|z|,|y|), whenever x,y € F.

We remark that one could consider a more general concept, where the values of the
norm lie in some totally-ordered abelian group [11].

Only fields of characteristic zero admit a field norm.

Each field of characteristic zero has a subfield isomorphic to Q. Ostrowski [12] proved
that the only field norms on QQ are powers of the usual absolute value and powers of the
p-adic norms corresponding to primes p.

From the adelic point of view, there is little to choose between R and any of the p—acii\c
completions Q, of the rationals. It is no longer the case that the algebraic closure Q,
of Q, is a finite extension, nor is it complete with respect to the (unique!) extension of
the p-adic metric, and we can enlarge it to its metric completion, denoted C,,.
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Theorem 8.2. [12, Theorem 13, p72][15, Theorem 4.6] The field C, is algebraically-
closed.

The key step in proving this is Krasner’s Lemma:

Lemma 8.3. Suppose K is a field complete with respect to a non-archimedean field
norm | -|. Suppose o, € K. Let L be the Galois completion of K(c, ) and let a;

(7 =1,...,m) be the conjugates of o under the group G of automorphisms of L that fix
K(B). Suppose

| — o <min{|oy — o] 1 # 5}
Then o € K ().

Proof. Let 0 € G. Then, since the norm is invariant under o, we have

18 —a(a)| =lo(6—a)|=|8—al

Thus
o(@) —af = lo(a) =S+ 5 -«
< max(|o(e) — B, (8 — af)
=18 —al
<loj —af, Yoy #
Thus o(a) = «, and so o € K () since it is fixed by G. O

8.2. Proof of Theorem 8.2.

Proof. Fix a € @, nonzero. Let f(x) € Cp,[z] be the (monic) minimal polynomial of «,
and a; (j =1,...,n) be its roots. Let

M = max(1,|a|"), and m := H;éln | — o).
i#j

Choose a monic polynomial g(x) € @D of degree n with all coefficients within (m/2)" /M
(with respect to the field norm) of the corresponding coefficients of f(x). This ensures
that

l9e) = fe) < (%)
Let (31,..., 3y be the roots of g(x), so that
g(x) == - 8))-
j=1
Then

ﬂ o = B))| = lg(a) — f(a)] < (%)
j=1

It follows that for some j we have | — ;| < m/2 < m, so by Krasner’s Lemma it
follows that o € K(3;). Thus o € C,,. O

8.3. Spectra. It is interesting that this proof of Theorem 8.2 is quite different from
those we have seen of Theorem 1.1. It uses the extended norm on @7. It raises the
question whether Theorem 1.1 could be proved in the same way. In fact, if one could
prove without assuming the fundamental theorem of algebra that the usual absolute-
value norm extends from C to C, then one could deduce the fundamental theorem in
various ways. For example, the norm would extend to the metric completion (@, which
would then be a Banach algebra (a complete normed complex algebra) and a field, and

the Gelfand-Mazur Theorem[1] then yields C = C.
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Unfortunately, the usual proof of Gelfand-Mazur uses Liouville’s Theorem, which
may be applied more directly to prove the fundamental theorem. The key ingredient
in the proof of the Gelfand-Mazur Theorem is that spectra are always nonempty, for
elements of a Banach algebra with unit. The spectrum of an element f of a Banach
algebra A is defined to be

spec(f) :={A € C: f — Al is noninvertible in A}.

Theorem 8.4. Let A be a complete normed algebra with unit over C. If f € A, then
spec(f) # 0.

This theorem may be regarded as a generalisation of the fundamental theorem of
algebra, because each monic complex polynomial of degree n is the characteristic poly-
nomial of a companion n Xn matrix, the set of all nxn complex matrices forms a Banach
algebra, and the spectrum of a matrix in that algebra is the set of its eigenvalues.

Having written the account above, I had a look at Wikipedia [18], and found consid-
erable overlap, along with a good deal of historical information. In particular, it seems
that the first correct proof of the full theorem was given by Argand, in 1806, and not
by Gauss, as folklore said.

9. FINDING THE ROOTS

It is one thing to know the number of complex roots of a polynomial, counting
multiplicities, but that doesn’t butter any parsnips unless you can calculate them all to
any desired accuracy. Ever since Galois, we know that this involves more than just the
computation of k-th roots. Newton’s method, the iteration of

will approximate any given root of p(z), once you get close enough. For simple roots,
it is phenomenally efficient, eventually doubling the number of significant figures at
each step. But how can you ensure that you get close enough to each and every root?
This problem was solved quite recently by applying twentieth-century advances in the
theories of complex dynamical systems, topology, and conformal invariants. The initial
breakthrough was made in the doctoral thesis of Scott Sutherland, and a refined and
polished account is available in the paper of Hubbard, Schleicher and Sutherland [10].
This is a beautiful exposition of a stunning piece of work. It involves the classical Gauss-
Lucas Theorem, a result of F. Riesz about radial limits, the Ahlfors conformal modulus
and extremal length. The basic idea is that each root of p(z) lies in a basin of attraction
for g(z) that contains a tentacle heading out to infinity, and each sufficiently-large circle
meets each of these basins in a set that contains an interval that is not too small. So
evenly-spaced points on the circle, provided the spacing is not too large, will do as a set
of starting points for iterations of ¢(z) that will converge to all the roots. In fact, the
same evenly-spaced points will deliver all the roots of all possible polynomials p(z) of a
given degree d that have all their roots in the unit disc. By using some fast footwork,
the number of starting points can be further reduced by placing them strategically
on several circles instead of one. They give an explicit construction of approximately
0.2663 log d circles, each containing 4.1627d log d points at equal distances.
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REVIEWED BY ZHENWEI LYU

In a time when artificial intelligence is reshaping industries, education, and everyday
life, this book stands out as a clear and thoughtful guide to what Al truly is, what it
might become, and how we should respond. It is not just about how AI works today,
but about how it could evolve over the coming years, and what that means for all of us
— individuals, professionals, governments, and society as a whole. Drawing from every
part of the book’s argument, especially as seen in the conclusion, the author urges us to
stop focusing only on tools like ChatGPT or image generators and instead think about
where these technologies are leading us. This book is not meant just for Al experts. It
is written in a way that anyone interested in the future — teachers, students, business
leaders, or policymakers — can understand and learn from. It offers a roadmap for
navigating the coming changes with clarity, responsibility, and deep reflection.

One of the book’s most useful ideas is the distinction between “process-thinking”
and “outcome-thinking”. These two ways of thinking help make sense of many of
the disagreements and debates people have about AI. Process-thinkers are those who
focus on how Al systems work internally — data, algorithms, training models — while
outcome-thinkers care more about what Al systems actually do in the real world — the
results, the impact, the usefulness. The author shows how many arguments between
experts happen because they are thinking in these different ways without realising it.
For example, some thinkers worry that Al isn’t “really” intelligent because it doesn’t
think like a human. Others respond that it doesn’t matter how it works, as long as
it gets the job done. The book doesn’t say one view is right and the other is wrong.
Instead, it helps us see that both are useful in different ways and that combining them
gives us a clearer picture. This framework helps explain why big-name thinkers such
as Noam Chomsky and Henry Kissinger often seem to disagree — they are coming from
different “Al cultures”.

In the middle chapters, especially Chapters 3 through 5, the author clears up many
of the most common misunderstandings about AI. One of the strongest points made
is about the “Al Fallacy” — the wrong belief that, for Al to be good at something, it
must work like a human brain. This mistake leads people to underestimate machines
that perform well but don’t “think” like we do. The author argues that we should
stop comparing Al to the human mind and instead judge it based on performance
and outcomes. If a machine can solve complex problems, write useful reports, or help
diagnose diseases — even if it does so in a completely different way from us — then
it is still powerful and important. Another key idea is what the author calls “not-us
thinking”. This is when professionals assume that Al might replace or disrupt other
people’s jobs, but not their own. For example, some doctors and lawyers believe their
work is too human, too personal, or too complex to be touched by Al But the book
explains that most clients don’t care about the process — they care about the result.
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If an Al system can deliver the same or better results, people will use it, regardless of
whether it works like a human or not.

In Chapter 5, the author looks at some of the abilities we often think only humans
can have, such as judgement, empathy, and creativity. Many believe that machines
will never be able to do these things. But instead of simply agreeing or disagreeing,
the author introduces new terms: quasi-judgment, quasi-empathy, and quasi-creativity.
These help us understand that AT doesn’t need to feel emotions or have imagination in
the human sense to perform similar roles. For example, a chatbot can give comforting
replies to someone in distress. It may not “feel” the emotion, but the effect on the person
can still be real. Similarly, Al can generate music, art, or stories that are creative in
output, even if the process is different from how a human creates. The book argues
that we need new words and new ways of thinking to describe what Al does. Just like
the Industrial Revolution brought new vocabulary — such as “factories” and “middle
class” — the Al era needs its own language. Without it, we are stuck using misleading
terms such as “hallucination” to describe machine errors, which only adds confusion.

Chapters 6 and 7 shift the focus to how Al will change work. The author identifies
three major effects: automation (doing current tasks faster or cheaper), innovation
(creating new ways to do things), and elimination (removing certain tasks entirely).
These changes will affect not just blue-collar jobs but also many white-collar professions.
A powerful example in the book is about neurosurgeons. The author explains that
patients don’t really want a neurosurgeon — they want to be healthy. If Al can help
deliver health more effectively, people will choose that, even if it means human surgeons
become less necessary. This is a key point: people care about outcomes, not job titles.
This part of the book is especially important for professionals who assume their work is
safe from automation. It challenges all of us to rethink our value not in terms of what
we do, but in terms of the results we deliver.

One of the most important topics in the book is the possibility of AGI—Artificial
General Intelligence. This means Al that can do any intellectual task a human can
do. The author doesn’t say AGI is definitely coming soon, but suggests it could arrive
between 2030 and 2035. This is not a prediction but a warning: we should prepare
for this possibility, just in case. The author introduces a helpful way to think about
this called “What-if-AGI?” thinking. This is a thought experiment where we imagine
what the world would look like if AGI existed. What rules would we need? How would
we share the wealth it creates? What jobs would be left for humans? How would we
protect people’s rights and dignity? Even if AGI never fully arrives, thinking this way
helps us prepare for many changes that are already starting. It encourages long-term
thinking in a world that usually only looks at the next big app or gadget.

Chapter 8 is one of the most practical and useful parts of the book. It lays out seven
types of risks that Al brings — some short-term, some long-term, and all serious. These
include political risks (such as misinformation), economic risks (such as job losses),
psychological risks (such as identity confusion), and even existential risks (if AT becomes
uncontrollable). The author doesn’t try to scare the reader but helps us think clearly.
This chapter gives readers a framework for understanding risk that is easy to apply and
very needed in today’s noisy debates. Chapter 9, titled “Harnessing Al” is a strong
message that we are late to this conversation. Many of the issues we’re facing now were
already visible decades ago, but we failed to act. Now, Al systems are becoming more
powerful, and we need smart rules, ethical planning, and collaboration across all parts
of society.

Later chapters explore some of the biggest and hardest questions: Can machines ever
be conscious? What does Al mean for the future of life itself? The author doesn’t
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pretend to have all the answers, but offers deep, balanced thinking. He quotes philoso-
phers including A.C. Grayling and Bryan Magee to help us understand that even human
consciousness is still a mystery. So it’s okay to be unsure about machine consciousness.
One especially powerful idea is in Chapter 12, which discusses the “Great Schism” —
a possible future where biological and artificial intelligences split into separate paths.
This is not just science fiction. The book treats it as a real possibility and asks: What
if our role as humans is to begin the next era of intelligence, even if it goes beyond us?

The conclusion of the book is one of its strongest parts. The author tells us not to get
stuck thinking only about today’s tools, such as GPT-4. We must use our imagination
to think about GPT-7 and beyond. The systems of the future will likely be far more
powerful than we expect. If we don’t prepare now, we will be caught off guard. The book
calls for a new kind of thinking — one that is brave, ethical, and forward-looking. Al is
not just another invention. It is a change in how we think, work, live, and understand
ourselves. We must be ready.

This book is clear, original, and deeply important. It avoids hype but doesn’t down-
play the risks. It is not too technical, but it is serious and smart. Most of all, it gives
us the tools we need to think clearly about the future of AI. Whether you are a poli-
cymaker, teacher, doctor, engineer, student, or simply curious, this book will help you
understand where we are headed and how to prepare. It offers a new way of thinking
that we all need right now.

Zhenwei Lyu is an assistant professor of Physics at Dalian University of Technology. He
earned his PhD in gravitational physics from the University of Guelph. Since joining Dalian
University of Technology, his research interests have expanded to include numerical relativity.
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This book presents a panoramic view of mathematics — pure and applied — spanning
three millennia. It is clearly written with ample illustrations and diagrams and there is
an excellent selection of topics, many of which may be new to readers. The book is in
four Parts covering the fields of Geometry, Algebra, Calculus and Topology. Each Part
comprises four chapters and each is about sixty pages in length. The high point of the
book is the final Part, and I will focus most attention on that.

Part I deals with Geometry. The axiomatic approach, which originated in Ancient
Greece, was used to great effect in Euclid’s Elements. Some examples clarify the step-
by-step procedure of this approach. The work of Apollonius on conics is reviewed. The
development of geometry through the work of Islamic and Indian scholars is traced.
The parallel postulate remained a contentious issue until finally it was shown to be
inessential. Non-Euclidean geometry sprang independently and simultaneously from
three sources, Lobachevsky, Gauss, and Bolyai, greatly broadening our understanding
of the subject. Through his study of general curves and surfaces, Gauss initiated dif-
ferential geometry. Chapter 3 gives an excellent presentation of how the line element of
Gauss encapsulated the essence of geometry and led on to the n-dimensional manifolds
of Riemann, so crucial for Einstein’s later work. Fractals are treated in Chapter 4 in
enough detail to enable readers to generate images never seen before.

The second Part is on Algebra. Various primitive number systems are described, ulti-
mately displaced by the Hindu-Arabic numerals. Diophantus used symbols for numbers
and introduced some key ideas that are of interest today, but the first systematic ac-
count of algebraic methods was that of al-Khwarizmi. This work eventually reached
Europe, triggering a flurry of mathematical activity in Italy, where solutions of cubics
and quartics were found. The intrigue and skulduggery accompanying these mathemat-
ical advances is recounted in the book. From this work there emerged complex numbers
and, eventually, the Fundamental Theorem of Algebra. The relationship between the
winding number and the roots of a polynomial is well described in the text.

Next comes an account of the difficulties in solving quintic equations, the findings
of Abel and the tragic story of Galois, whose work gave rise to modern group theory.
There follows an account of the fundamental group of a manifold, and the foundational
work of Emmy Noether on abstract algebra.

Chapter 8 opens with a bold claim: “While the 19*" century was the century of
Calculus and the 20*" the century of Topology, the 215 century will be the century of
Linear Algebra”. The rationale for this is the rapidly increasing importance of Artificial
Intelligence and the need to handle ever-larger data sets. Quaternions and the many
developments following from Hamilton’s discovery, are discussed. Several interesting
applications illustrate the importance of the resulting mathematical advances.
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Part III is on Calculus, described in the opening sentence as “the greatest idea
Mathematics ever had”. Archimedes made some vital early contributions, building
on ideas of Eudoxus. Two great problems passed down from Greece were to find areas
bounded by curves and to determine tangent lines to curves. Descartes and Fermat
made substantial inroads but it was the work of Leibniz and Newton that established
the fundamental basis of the subject. The lack of rigour in handling infinitesimals,
highlighted by Bishop Berkeley, was ultimately resolved in the 19" century. Two little
letters, € and J, have struck terror in maths students’ hearts ever since.

Chapter 10, on the Solar System, is an interesting whistle-stop tour from the Greeks,
via Ptolemy, Copernicus and Kepler to Newton’s Principia. The n-body problem is
introduced, and the discoveries of Poincaré and his homoclinic tangle lead us into chaos.
The chapter ends with a brief look at General Relativity.

Maxima and minima are considered in Chapter 11. Here we must consider functions
of several variables, and partial derivatives are introduced. The problem of Johann
Bernoulli, to find the curve on which a particle will slide to the lowest point in minimum
time, was solved by Newton but, more importantly, it later inspired Euler to develop
what he called the Calculus of Variations. Both Euler and Lagrange found the equations
for a general solution of such problems — the Euler-Lagrange Equations — which are
central in analytical dynamics. Poincaré’s analysis of the 3-body problem is reviewed,
as is the remarkable and delightful theorem of Emmy Noether that links mechanical
invariants and symmetries. The chapter ends with a discussion of geodesics on a triaxial
ellipsoid, a problem that was first solved by Jacobi.

Partial Differential Equations, which form the subject matter of Chapter 12, are “at
the very heart of modern mathematics”. The origins of the three classical PDEs — the
wave equation, Laplace’s equation and the heat equation — are treated. The solution of
these stimulated profound mathematical developments. A fourth order PDE featured
in the research of Monsieur Antoine Le Blanc, aka Sophie Germain, whose tale is told.
The chapter ends with a return to General Relativity, the wave equation emerging from
Einstein’s Field Equations and the detection in 2015 of gravitational waves, which were
triggered by an orbiting pair of black holes more than a billion years ago.

Part IV, on Topology, opens with the usual example of the Bridges of Konigsberg, but
moves quickly to an excellent discussion of the Gauss-Bonnet Theorem, which provides
a strong connection between geometry and topology. A clear sketch gives a good idea
of the proof of this beautiful result. Then the key topological equivalence relations,
homotopy and homeomorphism, are introduced.

In Chapter 14, entitled “Degree”, curves in the plane and in higher-dimensional
spaces are discussed. The winding number and the rotation number are defined and
used to classify plane curves. Then the Poincaré-Hopf Index Theorem is described
and some surprising and delightful connections are made linking Euler’s characteristic
(V — E + F), the Hairy Ball Theorem and the Gauss-Bonnet Theorem. This sounds
formidable, but the treatment in Waters’ book is a model of lucid exposition. The
chapter ends with the statement that “A hairy 18-sphere would have to have a ‘tuft’
somewhere, but we could comb a hairy 19-sphere flat”. You cannot tell when you might
need to know that!

Chapter 15 is on Homology or “using algebra to count holes”. The going gets tougher
but the author manages well to strike a good balance between clarity and rigour. The
ideas here are not often found in a “popular maths” book and are all the more welcome
for that. Betti numbers are defined and evaluated for the sphere and torus. The Euler-
Poincaré characteristic is introduced and shown to be equal to the alternating sum
of Betti numbers. This explains why the closing statement of the previous chapter
must hold! Finally, simplicial complexes are introduced. Waters recalls a suggestion
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of Emmy Noether: to define the quotient group of the group of cycles by the group of
cycles homologous to zero as the Betti Group. This led to the general formulation of
homology groups and the emergence of Algebraic Topology as a major branch of maths.

Having warmly praised this worthy book, I have three minor grumbles. The title is
poorly chosen; the branches of mathematics in the four parts are not corners, but pillars
upon which rest many other results. The references are excellent but, with 137 entries,
an additional short list of “highly-recommended” sources would be very helpful. The
index is comprehensive, but many entries point to in excess of a dozen pages, plunging
the reader into multi-dimensional space; these topics need to be sub-divided.

In summary, I can heartily recommend this well-researched and well-written book as
a valuable and accessible introduction to some of the principal branches of mathematics.
In my youth I read every maths book in Dun Laoghaire Public Library, and many more
from elsewhere, but none compared, in quality or scope, to the book under review. I
believe that it could be recommended to any young student hoping to embark on a
mathematical career. He or she is sure to learn some new and delightful mathematical
truths, and should thoroughly enjoy the process of discovery.

Peter Lynch is emeritus professor at UCD. He is interested in all areas of mathematics
and its history. He writes a regular mathematics column in The Irish Times and has published
three books in the That’s Maths series. His new book, AweSums: the Majesty and Magnificence
of Mathematics, is to be published by World Scientific in 2026. Peter’s website is https:
//maths.ucd.ie/~plynch and his mathematical blog is at http://thatsmaths. com.
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PROBLEM PAGE

J.P. MCCARTHY

PROBLEMS

Thanks to all those who responded to Problem Page 95’s call for more problems.
However, no solutions to Problem Page 94 have been received: we will keep those
problems open until Summer 2026.

The first of this edition’s problems comes courtesy of Des MacHale of University
College Cork.

Problem 96.1. Prove, using group theory, the following results in number theory:

(1) If m and n are natural numbers, then m!n! divides (m + n)!.
(2) If p is prime and n a natural number, then n! divides

" =D —p)--- " —p" ).

The second problem was sent in by Yagub N. Aliyev, of ADA University, Baku,
Azerbaijan.

Problem 96.2. Let a > 0. Suppose that two distinct normals to the parabola 2y = az?

intersect the parabola again at A. Prove that the y-coordinate of A is strictly greater
than 4/a.

Finally a problem from Finbarr Holland of University College Cork.

Problem 96.3. Where I' is the gamma function, determine the limit

lmlo_pﬁwv'

p—0+ P2 2T(2p)

We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (preferably IATEX). Submissions for the sum-
mer Bulletin should arrive before the end of April, and submissions for the winter
Bulletin should arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. If possible, please include solutions
with your submissions.
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