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Commutators of the Unilateral shift and adjoint for reproducing kernel

Hilbert spaces on the disk

NATHAN PARKER

Abstract. We generalise the result of Berger and Shaw [2] the trace formula for
Hardy Hilbert space to a larger class of rotation invariant Hilbert function spaces on
the unit disk. We also demonstrate many meaningful examples of these Hilbert spaces
by computing the inner products. We also extend to a wider class than the unilateral
shift, that is, weighted shifts under certain restrictions.

1. Introduction

This paper proves an extension of the Berger-Shaw theorem regarding the trace
formula for the shift and its adjoint. Berger and Shaw dealt with the Hardy Hilbert
space on the disk while we extend to a class of rotation invariant Hilbert function
spaces on the disk; remarkably, all these trace formulas involve Dirichlet space. A
recent summary of the historical progress made relating to the trace formula can be
found in [12].

2. Reproducing Kernel Hilbert Spaces on the Disk

Definition 2.1 (Reproducing kernel Hilbert space). A reproducing kernel Hilbert space
RKHS on a domain D ⊆ C is a complex Hilbert space H of functions on D such that
the maps of point evaluations f → f(z) are continuous linear functionals. For all z ∈ D
there exists a unique Kz ∈ H such that 〈f,Kz〉 = f(z). Let K(z, w) = 〈Kw,Kz〉H .

Lemma 2.2. Let H be a RKHS:

(1) Suppose that z → Kz is a weakly continuous map D → H. Then the function

(z, w) → K(z, w) is continuous for all z, w.
(2) Suppose further that

∫

Γ
K(z, w)dz = 0

for all contours Γ in D. Then f(z) = 〈f,Kz〉 is holomorphic on D.

Proof. (1) By the weak continuity of z → Kz, the map z → 〈f,Kz〉 is continuous
for all f ∈ H. We let f = Kw and we have z → 〈Kw,Kz〉 = K(z, w) continuous.
The same argument holds for w and, by symmetry, we have joint continuity of
the map.

(2) This is due to Morera’s theorem.
�
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Definition 2.3 (Rotation Invariance). For the open unit disc D, say that a reproducing
kernel Hilbert space is rotation invariant if Rθ : f(z) 7→ f(eiθz) gives a linear isometric
isomorphism on H.

An invertible isometry is a unitary, so R−θ = R†
θ.

Definition 2.4 (Dirichlet Space). The Dirichlet space D on the unit disk D is the space
of holomorphic functions such that, for all f ∈ D, we have

∫

D

|f ′(z)|2dA(z) < ∞.

The inner product is given by

〈f, g〉D = f(0)g(0) +
1

π

∫

D

f ′(z)g′(z) dA(z).

The Dirichlet space D gives a RKHS on D. Let D0 be the closed linear subspace

D0 = {f ∈ D : f(0) = 0} of D. The orthonormal basis of D0 is given by
{

1√
n
zn
}∞

n=1
.

Let

f(z) =

∞
∑

n=0

anz
n, g(z) =

∞
∑

n=0

bnz
n,

then

〈f, g〉 =
∞
∑

n=1

(n+ 1)anbn.

From here onwards we assume (αn)
∞
n=0 is a sequence of positive real numbers.

Definition 2.5. For each sequence α = (αn)
∞
n=0 such that

lim sup
n→∞

(αn)
1
n = 1,

let Hα be the Hilbert space whose elements are power series f, g ∈ Hα given by

f(z) =

∞
∑

n=0

anz
n, g(z) =

∞
∑

n=0

bnz
n

with inner product given by

〈f, g〉Hα =
∞
∑

n=0

anbnαn.

3. Main Theorem

Theorem 3.1. Let α = (αn)
∞
n=0 obey

lim
n→∞

αn+1

αn
= 1

and suppose that α is concave or convex. The following properties hold:

(1) Hα is a rotation invariant Hilbert space.

(2) Hα has reproducing kernel

Kw(z) =
∞
∑

n=0

wnzn

αn
.

(3) Let S be the unilateral shift Sf(z) = zf(z). Then S is a bounded linear operator

on Hα.
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(4) The adjoint shift S† on Hα acting on

f(z) =

∞
∑

n=0

anz
n

is given by

S†f(z) =
∞
∑

n=0

αn+1

αn
an+1z

n.

(5) The commutator of S and S† is trace class and for all polynomials f and g

〈〈f, g〉〉Han
= tr

(

g(S)†f(S)− f(S)g(S)†
)

=
1

π

∫

D

f ′(z)g′(z) dA(z).

Proof. (1) We have

‖f(eiθz)‖2Hα
=

∞
∑

n=0

|aneinθ|2αn = ||f ||2Hα
.

(2) We have

f(w) =
∞
∑

n=0

anw
n =

∞
∑

n=0

αnan
wn

αn
= 〈f,Kw〉Hα .

Hence

Kw(z) =
∞
∑

n=0

wnzn

αn
.

(3) Firstly, we have S(λf + g) = z(λf + g) = λzf + zg = λSf + Sg hence S is
linear. Now we have

‖f‖2Hα
=

∞
∑

n=0

|a2n|αn

and

‖Sf‖2Hα
=

∞
∑

n=0

|a2n|αn+1 =
∞
∑

n=0

|a2n|αn
αn+1

αn
.

Hence, since we know the series obtained by

sup
n∈N0

{

αn+1

αn

} ∞
∑

n=0

|a2n|αn

is convergent, and we have

sup
n∈N0

{

αn+1

αn

} ∞
∑

n=0

|a2n|αn ≥
∞
∑

n=0

|a2n|αn
αn+1

αn
,

we must have

‖Sf‖2Hα
≤ sup

n∈N0

{

αn+1

αn

}

||f ||2Hα
.

Hence S is a bounded operator.
(4) The adjoint shift must satisfy 〈Sf, g〉Hα = 〈f, S†g〉Hα . We have

〈Sf, g〉Hα =
∞
∑

n=1

an−1bnαn, 〈f, S†g〉Hα =
∞
∑

n=0

anbn+1αn+1

and these are equal by change of indices. Hence, the operator described must
be the adjoint shift.
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(5) We first consider f(z) = g(z) = zm and consider the operation on elements of
the orthogonal basis {zn}∞n=0. We have:

zn zn+m αn+m

αn
znSm (S†)m

.

Also:

zn
n−m+ 1

2
+|n−m+ 1

2
|

2(n−m+ 1
2
)

αn

αn−m
zn−m n−m+ 1

2
+|n−m+ 1

2
|

2(n−m+ 1
2
)

αn

αn−m
zn

(S†)m Sm

.

Hence we split into two cases to compute the trace. For m > n,
(

S†mSm − SmS†m
)

zn =
αn+m

αn
zn.

For m ≤ n we have
(

S†mSm − SmS†m
)

zn =

(

αn+m

αn
− αn

αn−m

)

zn.

Hence we have

tr
(

S†mSm − SmS†m
)

=

m−1
∑

n=0

αn+m

αn
+

∞
∑

n=m

αn+m

αn
− αn

αn−m
. (1)

We proceed to show this is absolutely convergent. Since α is convex, the se-
quence αn+1

αn
is non-increasing by 4.1 of [9], hence the series in (1) contains all

positive terms and the series is absolutely convergent. In this case the series
mostly cancels and we are left with

lim
N→∞

N
∑

n=N−m+1

αn+m

αn
= m

due to our ratio test assumption of

lim
n→∞

αn

αn+1
= 1.

The concave case is similar. Hence we have

tr
(

S†mSm − SmS†m
)

= m.

Hence [S†m, Sm] may be represented by a diagonal matrix with respect to the

orthonormal basis
{

zn√
αn

}∞

n=0
of Hα. This is the same orthonormal basis as D0

hence these Hilbert spaces are equal and the inner products are identical. This
proves this part of the theorem.

�

4. Generalisation to Weighted Shift

Definition 4.1. Given a Hilbert space H with orthonormal basis {zn}∞n=0 and a weight
r = {rn}∞n=0 of complex numbers where supn |rn| < ∞, a weighted shift on H is an
operator Sr ∈ B(H) defined by Srzn = rnzn+1

Theorem 4.2. Let α = (αn)
∞
n=0 obey

lim
n→∞

αn+1

αn
= 1

and suppose α is concave or convex. Further suppose Sr is a weighted shift for which

lim
n→∞

|rn| = 1.
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The commutator of Sr and S†
r is trace class for all polynomials f and g and we have

〈〈f, g〉〉rHan
= tr

(

g(Sr)
†f(Sr)− f(Sr)g(Sr)

†
)

=
1

π

∫

D

f ′(z)g′(z) dA(z).

Proof. We begin by explicitly stating the adjoint shift S†
r on f ∈ Hα. We have

S†
rf =

∞
∑

n=0

αn+1

αn
an+1rnz

n.

We now mimic the proof of the unilateral case; consider f(z) = g(z) = zm. We have
the following:

zn
∏n+m−1

i=n riz
n+m

∏n+m−1
i=n |ri|2 αn+m

αn
zn

Sm
r (S†

r)
m

.

Also:

zn
n−1
∏

i=n−m

ri
n−m+ 1

2 + |n−m+ 1
2 |

2(n−m+ 1
2)

αn

αn−m
zn−m(S†

r)
m

n−1
∏

i=n−m

|ri|2
n−m+ 1

2 + |n−m+ 1
2 |

2(n−m+ 1
2)

αn

αn−m
zn

Sm
r

We split into two cases to compute the trace. For m > n,

(

S†
r

m
Sm
r − Sm

r S†
r

m
)

zn =
n+m−1
∏

i=n

|ri|2
αn+m

αn
zn.

For m ≤ n we have

(

S†
r

m
Sm
r − Sm

r S†
r

m
)

zn =

(

n+m−1
∏

i=n

|ri|2
αn+m

αn
−

n−1
∏

i=n=m

|ri|2
αn

αn−m

)

zn.

Hence we have

tr
(

S†
r

m
Sm
r − Sm

r S†
r

m
)

=
m−1
∑

n=0

n+m−1
∏

i=n

|ri|2
αn+m

αn
+

∞
∑

n=m

n+m−1
∏

i=n

|ri|2
αn+m

αn
−

n−1
∏

i=n−m

|ri|2
αn

αn−m
.

By similar arguments we are left with

lim
N→∞

N
∑

n=N−m+1

n+m−1
∏

i=n

|ri|2
αn+m

αn
.

By our assumption on the limits of the weights, this also uniformly converges to m and
the same argument holds on the orthonormal bases. �

5. Examples

Definition 5.1 (Polylogarithm function). The polylogarithm function defined for n ∈ N

and |z| < 1 is given by

Lin(z) =

∞
∑

k=1

zk

kn
.
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This is extended to C by analytic continuation. We observe that these functions have
the property

Lin+1(z) =

∫ z

0

Li(t)

t
dt

and Li1(z) = − ln(1− z).

Example 5.2. For the sequences αn in the top line of the given table, the corresponding
RKHS on the disc has orthonormal basis, reproducing kernel and inner product given
on successive lines below αn. Given γ > −2 and Γ is Euler’s gamma function and our
αn may be zero for up to finitely many elements.

αn 1 n n+ 1 n2(n− 1)

ONB {zn}∞n=0

{

1√
n
zn
}∞

n=1

{

1√
n+1

zn
}∞

n=0

{

1
n
√
n−1

}∞

n=2

Kw(z)
wz

1−wz
− ln(1− wz) − ln(1−wz)

wz
− 1 2wz + ln

(

(1− wz)1−wz
)

− Li2(wz)

〈., .〉 H2(D) D0 D 1
π

∫

D

f ′′(z)g′′(z)dA(z)

αn
1
n

1
n+1

Γ(β+1)

(γ+2n+2)(1+β)

ONB {√nzn}∞n=1

{√
n+ 1zn

}∞
n=0

{

(γ+2n+2)
1+β
2√

Γ(β+1)
zn
}∞

n=0

Kw(z)
wz

(1−wz)2
wz(2−wz)
(1−wz)2

∞
∑

n=1

(γ + 2n+ 2)(1+β)

(n− k + 1)Γ(β + 1)
wnzn

〈., .〉 A2(D)0 A2(D)

∫

D

f(z)g(z)|z|γ (log 1/|z|)β dA(z)

π

αn
(n−k+1)Γ(β+1)

(γ+2n+2)(1+β)

k
∏

i=2

(n− k + i)2

ONB

{

(γ+2n+2)
(1+β)

2√
(n−k+1)Γ(β+1)

k
∏

i=2

1

(n− k + i)
zn

}∞

n=k

Kw(z)
∞
∑

n=k

(γ + 2n+ 2)(1+β)

(n− k + 1)Γ(β + 1)

k
∏

i=2

1

(n− k + i)2
wnzn

〈., .〉
∫

D

f (k)(z)g(k)(z)|z|γ (log 1/|z|)β dA(z)

π

Proof. We show computation of the reproducing kernels and inner products. Let ζ = wz
so that we have |ζ| ≤ 1.

• αn = n2(n− 1). We have

Kw(z) =
∞
∑

n=2

ζn

n2(n− 1)
.

We differentiate to obtain

d

dζ
Kw(z) =

∞
∑

n=2

ζn−1

n(n− 1)
=

∞
∑

n=2

ζn−1

n− 1
−

∞
∑

n=2

ζn−1

n
.
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By change of indices we obtain:

d

dζ
Kw(z) =

∞
∑

n=1

ζn

n
−

∞
∑

n=1

ζn

n+ 1
.

These are computed similarly by differentiating using the geometric series for-
mula, with a change of index for the second term. We hence obtain

d

dζ
Kw(z) = − ln(1− ζ) +

ln(1− ζ)

ζ
+ 1

which we integrate by [4] (2.711), (6.254) to obtain

Kw(z) = 2ζ + (1− ζ) ln(1− ζ)− Li2(ζ).

• αn = (n−k+1)Γ(β+1)

(γ+2n+2)(1+β)

k
∏

i=2

(n− k + i)2. We have

Kw(z) =
1

Γ(β + 1)

∞
∑

n=k

ζn(γ + 2n+ 2)β+1

n− k + 1

k
∏

i=2

1

(n− k + i)2
.

This can be computed for any integral values β, k for example we consider, β = 2
and k = 3. We obtain

1

2

∞
∑

n=3

ζn
(γ + 2n+ 2)2

(n− 2)(n− 1)2n2
.

By partial fractions we obtain:

1

8

∞
∑

n=3

ζn
(

γ2 + 12γ + 36

n− 2
+

4γ2 + 16γ

n− 1
− 2γ2 + 8γ + 8

n2
−

5γ2 + 28γ + 36

n
− 4γ2 + 32γ + 64

(n− 1)2

)

.

We use standard series formulae results to obtain:

1

8

(

− (γ2 + 12γ + 36)(ζ2 ln(1− ζ))− (4γ2 + 16γ)(ζ ln(1− ζ) + ζ2)+

(2γ2 + 8γ + 8)

(

ζ +
ζ2

4
− Li2(ζ)

)

+ (5γ2 + 28γ + 36)

(

ln(1− ζ)+

ζ +
ζ2

2

)

+ (4γ2 + 32γ + 64)(ζ2 − ζ Li2(ζ))

)

.

We see we can calculate these for any values as shown. �

6. Closing Remarks

The result of our main theorem here gives an instance of the Carey Pincus formula,
that is, if T = X + iY is such that X,Y are bounded self-adjoint operators where the
commutator [X,Y ] is trace class and T acts on a Hilbert space H, then for any pair of
polynomials

p(x, y) =

n
∑

j,k=1

ajkx
jyk, q(x, y) =

n
∑

j,k=1

bjkx
jyk,

there exists a positive, integrable, compactly supported function gT : R2 → R known
as the principal function such that

tr[p(X,Y ), q(X,Y )] =
1

2πi

∫

C

(

∂p

∂x

∂q

∂y
− ∂p

∂y

∂q

∂x

)

gT (x, y)dxdy.
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Specifically, when H obeys our assumptions, we obtain that gT = 1. Variations of this
trace formula are used in the context of invariant subspaces of Hilbert space. Some
discussion is found in [7] and [6]. We note that the sequences discussed here are natural
to consider; by 4.1 of [10] we have that such sequences arise from Fourier transforms of
L1 functions.
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