
Irish Math. Soc. Bulletin

Number 95, Summer 2025, 23– 34

ISSN 0791-5578

Computing
√
2 with FRACTRAN

KHUSHI KAUSHIK, TOMMY MURPHY AND DAVID WEED

ABSTRACT. The FRACTRAN programs
√

2GAME and NR
√

2GAME are presented, both

of which compute the decimal expansion of
√

2. Our
√

2GAME is analogous to Conway’s

PIGAME program. In fact, our proof carries over to PIGAME to produce a simpler proof

of Conway’s theorem as well as highlight how the efficiency of the program can be improved.

NR
√

2GAME encodes the canonical example of the Newton–Raphson method in FRACTRAN.

1. INTRODUCTION

FRACTRAN is a Turing complete esoteric programming language with several notable fea-

tures (c.f. [4], [5]). It is simple to understand how the language works. One can code any

standard mathematical algorithm in FRACTRAN, and moreover the Gödel number of any pro-

gram is straightforward to explicitly compute. Conway developed this language in [2], and used

it to formalize examples proving that natural generalizations of the famed Collatz conjecture

are undecidable [3]. He produced several explicit examples of algorithms in FRACTRAN in

[2]. Two examples are PRIMEGAME, which computes, in order, every prime number, and

PIGAME, which generates, in order, the digits of the decimal expansion of π. In fact PIGAME

ties in with a classical and fundamental question at the intersection of real analysis and the-

oretical computer science; namely how to compute the decimal expansion of a computable

irrational number. Turing defined the computable numbers as the real numbers whose decimal

expansions can be computed algorithmically (i.e. with a Turing machine), and they play a cen-

tral role in the work of both Turing and Gödel. For a fascinating and readable account of this

theory, the interested reader is referred to the first two chapters of [6]. Although this book was

written in 1989, Penrose expressed prescient thoughts on the role computers and A.I. will play

in mathematical research which are extremely relevant today.

As Conway himself states, the proof that PIGAME actually works is nontrivial. It involves

using some heavy machinery (e.g. Mähler’s famed irrationality measure for π) together with

Wallis’ infinite product formula for π
2 to ensure that truncating this infinite product after a cer-

tain even number E ≥ 4×210
n

terms is sufficiently accurate to compute the n-th digit of π. One

initial motivation for this work was to actually explain what Conway does, as many details are

omitted. The first main theorem of this paper (
√
2GAME) then computes, in order, the decimal

expansion of
√
2 via Catalan’s [1] infinite product expansion of

√
2. The mechanics of proof

are largely analogous to Conway’s, however we find a simpler proof that our truncated approx-

imation is sufficiently accurate to compute. This simpler proof also carries over to PIGAME:

one then sees a posteriori that a simpler and faster program could be written to compute the

decimal expansion of π.

2010 Mathematics Subject Classification. 68Q04.

Key words and phrases. FRACTRAN, decimal expansions.

Received on 02-04-2025; revised 10-07-2025.

DOI: 10.33232/BIMS.0095.23.34.

K.K acknowledges support from the LSAMP grant at CSUF. K.K. and D.W were supported with a summer

undergraduate research grant in 2023 by the Department of Mathematics at CSU Fullerton. K.K. also thanks the

Undergraduate Research Opportunity Center, CSU Fullerton, for travel support. The authors thank Aaron Cottle for

helpful comments. We also thank the referee for helping us to improve the paper with several insightful comments.

©2025 Irish Mathematical Society

23

26 KAUSHIK, MURPHY AND WEED.

Notice that you can identify which part of the flow chart a given fraction corresponds to

by looking at the prime decomposition of the numerator and denominator. For instance, the

fraction 41/115 corresponds to moving from node 23 to node 41. We start at node 23, meaning

the register N has exactly one copy of 23 in its prime decomposition. For a given prime p,

Conway defines rp as the power of p in the prime decomposition of the register N , so here

r23 = 1. Since 115 = 23× 5, multiplying (41N)/115 clears 23 from the register (so r23 = 0)

and puts 41 in its place, since after the multiplication N has updated to have r41 = 1. As

we move from the 23 cell/node to the 41 one, the program tells us to adjust N by reducing

r5 by 1. In full generality, if one goes from a node labelled p to a node labelled q and the

program requires us to update N by multiplying by the fraction M1/M2, the resulting fraction

in our code is M1q
M2p

. To make this all work smoothly, it is important to have different primes

corresponding to the nodes and the actual program.

The arrow which we are discussing in the flow chart is third in the hierarchy of Figure 1.

The arrow going to node 73 ranks first, and the arrow going to node 79 is second. Hence, the

corresponding fractions (namely 365/46 and 79/575) must come before 41/115 in the code.

Note that when the machine is at the 23 node, all other fractions in the code will not adjust the

register as fiN ∈ N if, and only if, 23 is in the denominator of the fraction fi. So they do

not play a role at all when we are at this stage. However, we have to list these three fractions

corresponding to the 23 node in the order mandated by the arrows. This means we want to

always go to 73 node first until that will violate the rules of FRACTRAN. In particular, every

time we go to the 73 node, r2 will decrease by 1 and r5 will increase by 1. This stops when

r2 = 0, because if r2 = 0, multiplying N by 5/2 will not be a whole number, and analogously

for all later arrows.

Remark 3.2. Conway has an unwritten convention of arranging the fractions in his code in

order of decreasing denominators. There have to be some exceptions to this depending on the

code. We have just discussed how the fraction 41/115 corresponds to the arrow moving from

node 23 to node 41; but all other arrows emanating from node 23 come before this arrow in the

hierarchy and so their corresponding fractions must come before 41/115 in the code. That is

why, for instance, 365/46 is located as the first fraction despite 46 being a small denominator

in the list.

Remark 3.3. There is a small bug in Conway’s code, known to experts, where he incorrectly

states the code starts at 2n. A corrected statement is presented here.

4. THE PROOF OF PIGAME: SETUP

Since the proof of Theorem A is based on PIGAME, and his proof that the algorithm actually

works is short on details, it is natural first to discuss the proof and fill in some of the steps. For

n ∈ N, the claim is that running PIGAME will compute the n-th decimal digit of π. The flow

chart breaks into three phases.

Phase 1 From node 89 to node 83, the program computes E, an even number ≥ 4× 210
n

.

Phase 2 From node 83 to node 41, the program computes

10nNE = 10n2E(E − 2)2 . . . 4222, and

DE = (E − 1)2(E − 3)2 . . . 3212.

Phase 3 The program computes the integer part of 10nNE

DE
and reduces it modulo 10.

√
2 and FRACTRAN 27

The mechanism of these phases are all fully explained in [2]. The number computed in Phase

3 is the n-th term in the decimal expansion of

πE =
NE

DE

=
2E(E − 2)2 . . . 4222

(E − 1)2(E − 3)2 . . . 3212
.

Multiplying the numerator of πE by 10n shifts the decimal unit of πE exactly n places to the

right. Taking the floor function turns this into an integer, and reducing mod 10 allows us to

find the n-th term in the decimal expansion of πE . To complete the proof, one has to compute

explicitly how close πE is to π. Another issue to bear in mind comes from the well-known fact

that two numbers can be very close together but have differing decimal expansions due to the

identification 1 = 0.999̇.

So, to show the program actually works, it remains to prove that the n-th decimal digit of π
and πE agree. To this end, Conway states without proof that

|π − πE | <
π

E
(1)

Then |π − πE | < π
E

< 10−n, meaning π and πE agree to n decimal places unless one of them

has a decimal expansion containing only zeros from the n-th decimal place onwards (where we

make the usual identification 1 = 0.999̇). The proof thus reduces to two key steps; (i) establish

Equation (1), and (ii) show that 10nπE cannot be an integer.

5. ESTABLISHING EQUATION (1)

The first step is to show that π < πE holds for all E even. By way of contradiction, if

πE0
< π then πE0+2 < πE0

, since cancelling common terms we have

πE0+2 < πE0
⇐⇒ E0(E0 + 2)

(E0 + 1)2
< 1

which is true for all E0. Iterating this argument we obtain (with E = 2j denoting the subse-

quence of even integers)

π = lim
E→∞

πE < πE0
< π

a contradiction. Now for E even, we define

πẼ = πE

(

E

E + 1

)

A directly analogous argument left to the reader shows that πẼ < π. Putting these two facts

together we obtain

πẼ < π < πE (2)

Equation (2) implies the desired Equation (1). This is a simple computation:

|π − πE | ∆
= πE − π <

π

E
⇐⇒ πẼ < π.

Note both inequalities in Equation (2) are used. The fact π < πE is used for
∆
=. Then

πE − π <
π

E
⇐⇒ πE < π

(

E + 1

E

)

which rearranges to the statement that πẼ < π, i.e. the other inequality in Equation (2).

Now we know π and πE are within 10−n of each other, it remains to show their decimal

expansion agrees in the n-th decimal place. To this end, Conway utilizes the following result.

Lemma 5.1. (Mähler’s irrationality measure) If p/q is any rational number with gcd(p, q) = 1,
∣

∣

∣

∣

π − p

q

∣

∣

∣

∣

>
1

q42
.

28 KAUSHIK, MURPHY AND WEED.

Write πE = p/q, with gcd(p, q) = 1. Applying Mähler’s Lemma

1

q42
<

∣

∣

∣

∣

π − p

q

∣

∣

∣

∣

<
π

E
<

1

1042n
,

whence (since x → x42 is an increasing function) q > 10n. Assume that

10nπE =
10nNE

DE

=
10np

q

is an integer. Since q > 10n, there is a prime number r whose multiplicity in the prime

decomposition of q is greater than the multiplicity of r in the prime decomposition of 10n (the

power of r could be zero in the prime decomposition of 10n). Hence r divides p, which is a

contradiction as p and q are coprime. This proves fully that Conway’s algorithm works.

There is actually an elementary proof that 10np
q

is not an integer. This will used in the proof of

our first main theorem since there is no irrationality measure for
√
2 (it is algebraic). Supposing

10np
q

is an integer means that q divides 10n. Since q is odd, that implies q = 5j where j ≤ n.

However, when we cancel all the common factors in NE and DE to get p and q, we cannot

cancel the largest prime in DE . This is a consequence of Dirichlet’s theorem, which states

there must be at least one (odd) prime between E and E/2: this number is greater than 5, and

no number in NE divides into it. This is the desired contradiction

Remark 5.2. It is apparent from our discussion that PIGAME can be simplified: there is no

need to generate such a large E. The size of E is exploited when using Mähler’s irrationality

measure, but we have seen this is not needed.

6.
√
2GAME

Our first main result is as follows.

Theorem A. When started at 2n · 173, the Fractran code

424375

173
,
101

1067
,
89

291
,
13

194
,
4897

97
,
2425

101
,
1243

89
,
89

565
,
4949

113
,
109

13
,
3159

763
,
97

109
,
321

83
,

83

1177
,

103

107
,
365

206
,
29

721
,

79

64375
,

41

2575
,
103

73
,
71

29
,
638

355
,
4393

4189
,
73

71
,
71

191
,
1525

79
,
79

122
,
12931

183
,
107

61
,

2669

12931
,
149

1273
,
18745

521461
,
31

67
,
329322079

18055
,
67

157
,
157

131
,
385447

2533
,
151

149
,
149

139
,
2329

7097
,
67

151
,

151

137
,
67

163
,
938

1333
,
61

31
,

7

943
,
254

41
,
41

11
,
1

3
,
1

7
,
1

13
,
1

17
,
1

19
,
1

23
,
1

47
,

1

1024
,
53

127
,
2921

371
,
41

53
,

will terminate at 2
√
2(n), where

√
2(n) is the n-th digit in the decimal expansion of

√
2.

This list of fractions is generated from the flow chart in Figure 4, where we label each node

with a distinct prime number and break all loops up as per Conway’s algorithm. For economy

of space, the term 1/C in the figure refers to the list of fractions

1

3
,
1

7
,
1

13
,
1

17
,
1

19
,
1

23
,
1

47
,

1

1024
.

It is obvious from the flow chart that our proof is based on PIGAME. Theorem B, presented

in the next section, will show a more standard algorithm for computing
√
2. Nevertheless,√

2GAME has the merit of fitting into the same framework as PIGAME.

30 KAUSHIK, MURPHY AND WEED.

also generate DE , which has a different form than the denominator of πE . We break each pass

around the region into part (i), where we travel up from node 107, and part (ii), going down

from node 61. Just as in PIGAME, part (i) sets r7 = 0 and multiples r5 by r7, storing this

number in r11. However we also transfer r59 to r23 and reset r59 = 0.

Moving onto part (ii) of our loop, the hierarchy of arrows (corresponding to the order we

carry out the operations) becomes more delicate. As in PIGAME, we transfer r11 to r3, while

preserving r11. Note r5 decreases by 2 (as opposed to Conway, who decreases r5 by 1). With

this modified value of r5, we multiply r3 by r5, storing this in r7. Then we add 1 to r5 (storing

it in r17), and multiply this new number by r23, storing it in r59. The program continues in

this phase until r5 reaches a value of 2. The program then starts phase (i) of the final loop, but

cannot go to phase (ii) of the loop and exits to start phase (iii) at node 41. At the end of the

second phase r11 = 10nNE and r23 = DE . In the following chart, we summarize how each

register updates during the second phase, breaking each loop into (i) and (ii) schematically.

up (i) down (ii)

r11 = r5.r7 r3 = r11
r5 = r5 r5 = r5 − 2
r7 = 0 r7 = r3 · r5

r23 = r59 r17 = r5 + 1
r59 = 0 r59 = r23 · r17

To clarify the proof, let us explicitly perform four loops of the second phase (numbered I–

IV) in the following table. Each loop is broken into parts (i) and (ii).

I(i) I(ii) II(i) II(ii)

r11 = 10nE r5 = E − 2 r11 = (E − 2)2 r5 = E − 4
r5 = E r7 = E − 2 r5 = E − 2 r7 = 10n(E)(E − 4)
r23 = 1 r17 = E − 1 r7 = 0 r17 = E − 3

r7 = r59 = 0 r3 = 10nE r23 = E − 1 r3 = (E − 2)2

r59 = E − 1 r59 = (E − 1)(E − 3)

III(i) III(ii)

r11 = 10n(E)(E − 4)2 r5 = E − 6
r5 = E − 4 r7 = (E − 2)2(E − 6)

r7 = 0 r17 = E − 5
r23 = (E − 1)(E − 3) r3 = 10n(E)(E − 4)2

r59 = (E − 1)(E − 3)(E − 5)

IV(i) IV(ii)

r11 = (E − 6)2(E − 2)2 r5 = (E − 8)
r5 = (E − 6) r7 = 10n(E)(E − 4)2(E − 8)

r7 = 0 r17 = (E − 7)
r23 = (E − 1)(E − 3)(E − 5) r59 = (E − 1)(E − 3)(E − 5)(E − 7)

r59 = 0 r3 = (E − 6)2(E − 2)2

Continuing on one more loop and recording the key register of interest, note that at the end

of loop V(i) we have r11 = 10nE(E − 4)2(E − 8)2. Since r5 ≡ 2 mod 4, the program will

complete an even number of full loops until r5 = 2. It will then go into phase (i) of an odd

numbered loop, but it cannot go into phase (ii) and so the program passes to the third phase

with r11 = 10nNE as claimed.

Moving into the third phase, we copy with obvious modifications the third phase of PIGAME

to compute the n-th decimal of
√
2E . The balance of the proof will involve two steps.

√
2 and FRACTRAN 31

Step 1 Establish the inequality

|
√
2−

√
2E | <

2
√
2

E
. (3)

Step 2 Show that 10n
√
2E is not an integer.

Since 2
√
2

E
< 10−n, Steps 1 and 2 together prove that the program computes the n-th term

in the decimal expansion of
√
2, just as in PIGAME. To prove Equation (3), firstly we show√

2E >
√
2. If to the contrary

√
2E0

<
√
2 for some E0 = 4j + 2, where j ∈ N, then

√
2E0+4 <

√
2E0

⇐⇒ E2
0 + 4E0 < E2

0 + 4E0 + 3

which is obviously true. Since the sub-sequence
√
24j+2 →

√
2, we again easily derive a

contradiction in the exact same manner as in the proof of PIGAME. Setting

√
2Ẽ =

(

E

E + 2

)√
2E ,

an analogous proof shows that
√
2Ẽ <

√
2. In summary for all E = 4j + 2 we have

√
2Ẽ <

√
2 <

√
2E . (4)

However, Equation (4) is equivalent to Equation (3), as

|
√
2−

√
2E | ∆

=
√
2E −

√
2 <

√
2

x
⇐⇒

√
2E <

√
2

(

x+ 1

x

)

where
∆
= uses the second inequality of Equation (4). However Equation (4) establishes

√
2Ẽ <√

2. Choose now x = E/2 to obtain

√
2Ẽ =

(

x

x+ 1

)√
2E

and we see that Equation (3) immediately follows from the first inequality in Equation (4).

The final step is to prove 10np
q

is never an integer, where
√
2E = p

q
with p and q coprime.

This is directly analogous to our explanation for PIGAME, and the proof of Theorem A is now

complete. �

7. NR
√
2GAME

7.1. Description. The standard way to approximate
√
2 is to use Heron’s algorithm, or equiv-

alently the Newton–Raphson method applied to the function f(x) = x2 − 2 with initial guess

x1 = p1/q1 = 1/1. This updates via

xk+1 =
pk+1

qk+1
=

p2k + 2q2k
2pkqk

.

We claim that computing x2n will generate a rational number sufficiently close to
√
2 to agree

to n decimal places. Encoding this as a FRACTRAN program is our second main result.

Theorem B. Starting at 2n · 89, the following FRACTRAN code terminates at 2
√
2(n):

4979909

89
,
227, 123, 851

466
,
233

239
,
11809

23533
,
241

251
,
60, 993

1687
,
267

723
,
267

257
,
17355

2827
,
277

267
,
271

277
,
3047

1355
,

241

277
,
2959

1205
,
233

241
,
283

233
,
859579

8207
,
283

281
,
24278273

18961
,
307

283
,
313

5833
,
3170

2191
,
313

317
,
331

313
,
2359

1655
,

307

331
,
311

307
,
8903

622
,
347

307
,

359

14227
,
3350

15437
,
359

353
,
367

359
,
16039

16515
,
367

347
,
17101

694
,
379

347
,
397

9475
,
389

397
,

√
2 and FRACTRAN 33

Lemma 7.1. Suppose that f is a smooth function on [1, 2] with |f ′| ≥ L and |f ′′| < M for

some L, M > 0. If f(r) = 0, then the error which arises from applying the Newton-Raphson

algorithm to f , starting at x1, N times is given by

|xN+1 − r| < M

2L
|xN − r|2.

Proof of Theorem B. To compute the n-th decimal digit of
√
2, we need to estimate ǫN :=

|xN −
√
2|. For later use ǫ1 = 1

2 . By induction, it is clear that xk ∈ [1, 2] for all k ∈ N.

Applying the standard error estimates for Newton’s method with f(x) = x2 − 2, we have

|f ′′| = 2 and 2 ≤ |f ′(x)| ≤ 4 on [1, 2]. We iterate the error bound from Lemma 7.1 to obtain

ǫN <

(

1

2

)

ǫ2N−1 <

(

1

4

)

ǫ4N−2 . . . <
ǫ2N1
2N

=
1

23N
.

This shows that

ǫN <
1

10n+1
⇐⇒ 1

23N
<

1

10n+1

which clearly holds if N = 2n. With this error bound xN and
√
2 must agree up to the n-th

decimal place, once we know that 10np2n
q2n

is not an integer.

To establish this last claim, assume to the contrary that

10n(p22n−1 + 2q22n−1)

2p2n−1q2n−1
(5)

is an integer. With p1 = q1 = 1, it follows pn is odd and qn is even for all n > 1. Let λ be

a prime divisor of q2n−1. Then λ = 5 or λ|p22n−1 + 2q22n−1, in which case λ|p2n−1. So every

prime divisor of q2n−1 aside from 5 divides into p2n−1, meaning we can write

p2n−1

q2n−1
=

µ

5j

where µ is an even integer with gcd(5, µ) = 1. Feeding this into Equation (5) yields

10n(p22n−1 + 2q22n−1)

2p2n−1q2n−1
=

10n(µ2 + 2(52j))
2µ
5j

∈ N

which implies that

53j+n2n

µ
∈ N,

whence µ = 2r for some r ∈ N. Putting this all together yields

p2n−1

q2n−1
=

2r

5j
.

Cross-multipying yields a contradiction as it implies an even number is equal to an odd one. �

REFERENCES

[1] Catalan, E. Sur la constante d’Euler et la fonction de Binet, C.R. Acad. Sci. Paris Sér. I Math. 77 (1873),

198-201.

[2] Conway, J.H. FRACTRAN: a simple universal programming language for arithmetic, Open Problems in Com-

munication and Computation, Springer-Verlag New York Inc. (1987), 4–26.

[3] Conway, J.H. Unpredictable Iterations, Proc 1972 Number Tehory Conf., Univ. Colorado, Boulder, pp. 49–52.

[4] Guy, R.K. Conway’s prime-producing machine, Math. Mag. 56 (1983), no. 1, 26–33. 33.

[5] Lagarias, J.C. Conway’s Work on Iteration: In memory of John Horton Conway (1937–2020) The Mathemat-

ical Intelligencer, (06), 2021, Vol.43 (2), p.3–9.

[6] Penrose, R. The Emporer’s New Mind, Oxford University Press, 1989.

[7] Sondow, J. and Hi, H. New Wallis- and Catalan-type infinite products for π, e and
√

2 +
√

2, Amer. Math.

Monthly, 117 (2010), no. 10, 912-917.

34 KAUSHIK, MURPHY AND WEED.

APPENDIX: CONVERTING A FLOW CHART INTO A FRACTRAN CODE

The following code converts our flow charts into their corresponding list of FRACTRAN frac-

tions. For a single node in the flow chart, we write a line describing to what node it is con-

nected and through what fraction. Line 17 then shows how you convert that line into a series

of fractions. This is described more in Section 8 of [2]. In a single line the order in which the

connections are listed handles the hierarchy of the arrows.

#Each l i n e s h o u l d be P , a / b−>Q, c / d−>R , . . .

wi th open (’ f r a c n . t x t ’) a s f i l e :

f r a c t i o n L i s t = l i s t ()

f r a c t i o n F a c t o r e d = l i s t ()

f o r l i n e in f i l e :

e n t r i e s = l i n e . s p l i t (’ , ’)

P = e n t r i e s [0]

f o r e n t r y in e n t r i e s [1 :] :

p r i n t (e n t r y)

a , temp = e n t r y . s p l i t (’ / ’)

b ,Q = temp . s p l i t (’−> ’)

Q = Q. s t r i p ()

f r a c t i o n F a c t o r e d . append (a+ ’ * ’+Q+ ’ / ’+b+ ’ * ’+P)

aQ = s t r (i n t (a)* i n t (Q))

bP = s t r (i n t (b)* i n t (P))

f r a c t i o n L i s t . append (aQ+ ’ / ’+bP)

p r i n t (f r a c t i o n F a c t o r e d)

p r i n t (f r a c t i o n L i s t)

w i th open (’ f r a c t i o n s . t x t ’ , ’w’) a s f i l e :

f i l e . w r i t e (’ , ’ . j o i n (f r a c t i o n L i s t))

w i th open (’ f r a c t i o n s F a c t o r e d . t x t ’ , ’w’) a s f i l e :

f i l e . w r i t e (’ , ’ . j o i n (f r a c t i o n F a c t o r e d))

Khushi Kaushik graduated in 2025 from CSU Fullerton with a degree in Computer Science. Broadly

interested in machine learning and data science, she is starting her M.Sc. in Comp. Sci. at UC San Diego.

Tommy Murphy is Professor at Cal State Fullerton, having completed his Ph.D. under Jürgen Berndt at

UCC and postdoctoral fellowships at the Université Libre de Bruxelles (Belgium) and McMaster Uni-

versity (Canada). His research interests span Riemannian and Kähler geometry, focused specifically on

Einstein manifolds and symmetric spaces. He also maintains an active interest in the history of mathe-

matics and collaborating with undergraduate students.

David Weed graduated in 2024 from CSU Fullerton with a degree in mathematics, and is currently

undertaking his Ph.D. in mathematics at UC Riverside. He is exploring a range of topics in pure mathe-

matics particularly around the representation and character varieties of surfaces and 3-manifolds.

(Kaushik) DEPARTMENT OF COMPUTER SCIENCE, CALIFORNIA STATE UNIVERSITY FULLERTON.

E-mail address: kkaushik@ucsd.edu

(Murphy) DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY FULLERTON.

E-mail address: tmurphy@fullerton.edu

URL: http://www.fullerton.edu/math/faculty/tmurphy/

(Weed) DEPARTMENT OF MATHEMATICS, UC RIVERSIDE.

E-mail address: david@davidweed.net

