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EDITORIAL

This is Issue Number 95 of the IMS Bulletin, my second. I hope you will enjoy read-
ing this summer’s articles spanning a range of topics. Stephen Buckley and Tony
O’Farrell continue their work from Issue 84 on wiring switches to light bulbs. Steven
Dougherty has a comprehensive account of the history of coding theory emphasizing
how the subject developed from a problem in engineering / signal processing to an area
of pure mathematics with mutually enriching connections to other areas of mathemat-
ics. Nathan Parker, a PhD student of Gordon Blower in Lancaster, shares interesting
results on reproducing kernel Hilbert spaces. Tommy Murphy, a former student of ours
at UCC and now at California State University, Fullerton, together with his under-
graduate students Khushi Kaushik and David Weed, introduces us to Conway’s model,
FRACTRAN, of a Turing machine.

Thanks to the Bulletin’s Book Review Editor, Eleanor Lingham, and the work of
reviewers Christopher Bishop and Brendan Masterson, we have reviews of a complex
analysis textbook by this editor and of Susan M. C. Mac Donald’s book Euclid Trans-

mogrified: A National Scandal on the history of the teaching of geometry in Ireland’s
second level school system.

The issue is nicely rounded off by a selection of interesting problems edited by J.P.
McCarthy.

Remember that, for a limited time and beginning as soon as possible after the online
publication of this Bulletin, a printed and bound copy may be ordered online on a
print-on-demand basis at a minimal price1.

Finally, my thanks to Des MacHale (UCC) for his permission to include the graphic
on the next page connecting GBOOLE and GOOGLE.

1Go to www.lulu.com and search for Irish Mathematical Society Bulletin.
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EDITORIAL iii
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Editor, Bulletin IMS, School of Mathematical Sciences, Western Gateway Building,

University College Cork, Cork, Ireland.

E-mail address: ims.bulletin@gmail.com



LINKS FOR POSTGRADUATE STUDY

The following are the links provided by Irish Schools for prospective research students
in Mathematics:

DCU: mailto://maths@dcu.ie
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Coding Theory: The story of how an engineering problem evolved into

a branch of pure mathematics

STEVEN T. DOUGHERTY

Abstract. We describe how a very practical engineering problem involving the trans-
mission of electronic information evolved into beautiful, interesting, pure mathematics
with branches in algebra, combinatorics, and number theory.

1. Introduction

Throughout the development of mathematics, interesting questions from other disci-
plines have sparked new mathematics to emerge. For example, when Newton discovered
calculus [27], he was doing so largely to answer questions about motion and gravity (in
contrast to Leibniz’s motivation, which was quite different [23]). However, no one doing
real analysis today would think that what they were doing was completely in service to
questions of motion or gravity. The mathematics of calculus developed on its own as
pure mathematics after it was born to answer applied questions. Similarly, Newton’s
minimal resistance problem [27] gave rise to the calculus of variations, which sparked
a great deal of mathematics. Modern physics has also given mathematicians plenty
to study arising from topics like string theory and the theory of relativity. After all,
where would differential equations and differential geometry be without a constant flow
of problems from physics and engineering. Outside of analysis, Euler developed graph
theory to answer the fairly easy recreational question about the bridges of Königsberg
[10]. This simple problem gave rise to one of the most useful and interesting branches
of discrete mathematics. Moreover, numerous applied problems have been solved using
the techniques developed in graph theory. In a similar way, Euler developed the study
of Latin squares from the much more difficult recreational problem of arranging 36 of-
ficers in a square [11] (the problem took over 100 years to solve after Euler started the
approach). In this paper, we are going to describe another situation where a mathemat-
ical discipline arose from an engineering problem in the twentieth century to become a
highly active and interesting area of pure mathematics. In fact, one could argue that
several highly interesting pure branches of coding theory have emerged, such as alge-
braic geometry codes and codes over rings. In both of these areas, an existing branch of
pure mathematics, specifically algebraic geometry and ring theory, was first used in the
service of practical coding theory and then was highly enriched as pure mathematics
from the techniques that were used in the application. In this paper, while we do talk
about algebraic geometry, our main focus will be the development of the study of codes
over rings and other alphabets as pure mathematical objects.

1.1. Coding Theory is Born. In the late 1940s, coding theory was born as a very
practical solution to an engineering problem. At Bell Labs, when the information

2020 Mathematics Subject Classification. 01A60,11T71, 94B05 .
Key words and phrases. Coding Theory, Rings, Pure Mathematics.
Received on 28-02-2025; revised on 15/06/2025.
DOI: 10.33232/BIMS.0095.3.21.
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age was in its infancy, scientists and engineers worked on practical problems for the
monopolistic telephone giant. Basically, the idea arose that if the electronic device
could realize that something was, in fact, an error, then the device should also be able
to change the error so that with a very high probability the error could be changed to
what it should be. In other words, if an error can be detected, it should be possible
that the error can be corrected.

The first major step in this direction was made by Claude Shannon in 1948 in the
paper “A mathematical theory of communication” [36]. It is impossible to overempha-
size the profound effect this paper had on the emerging science of information theory.
It is for this work and what follows that Shannon is often called the “Father of Infor-
mation Theory”. In this setting, communication generally means taking information,
encoding it, passing it along a channel, decoding it, and receiving it. One can think
of information being a message sent by an electronic device, which is encoded into a
sequence of 0s and 1s. Then the information can be sent through a wire or over the
airways, then it is decoded and received by another device. As an example, one might
think of a telephone conversation. In this setting, noise may effect the message while
it is in a channel. Certainly, anyone who has had telephone conversations has experi-
enced a noisy channel. What Shannon showed was that effective communication can be
conducted in virtually all situations. That is, no matter how noisy the channel is, one
can still effectively communicate over it. However, he did not show exactly how this
should be done, but rather that it was always possible. Thus began the long search for
the mathematics that could make this happen.

2. Nomenclature and Early History

At this point, it might benefit the reader to give the definitions of the names of the
disciplines (confusing as they are) that are being discussed. Information theory is the
science of communicating, storing, and quantifying information. In general, this over-
arching term houses three different subjects. The first is coding theory, which studies
how to communicate effectively, that is, how to correct errors with high probability
that occur when transmitting data. The second is cryptology, which is the science of
keeping information secret from bad actors as well as decrypting secret information
made secret by someone else. Making messages secret is called cryptography with the
obvious etymology of writing secrets and cryptanalysis is the branch which seeks to
uncover what someone else has made secret. Here is where we meet our first difficulty
in nomenclature, as we admit that often the term cryptography replaces the term cryp-
tology to refer to the entire discipline. The third is called information theory, (which is
our next difficulty in nomenclature). While information theory often refers to the entire
subject, it also refers to the very practical engineering problem of the quantification of
information and its transmission through a channel.

While the three topics are necessarily related and are often applied to the same in-
formation, the techniques used in these three disciplines are quite different. The mathe-
matics behind coding theory is largely linear algebra with some help from combinatorics
and abstract algebra. The mathematics behind modern cryptography is usually number
theory (for example with the RSA crypto-system and the discrete log crypto-system)
in non-symmetric key cryptosystems and finite field arithmetic, boolean functions, and
other techniques from discrete mathematics in symmetric key cryptosystems. However,
as we approach a post-quantum world, the techniques of cryptography are expanding
quite rapidly to encompass numerous mathematical fields. The mathematics behind
information theory is largely probability with some help from analysis. In actual trans-
mission of information in our time, certainly, all three sciences are at work, as we desire
to make the information correct, secure, and efficiently transmitted.



Coding Theory 5

Shannon laid the foundation for all three of these disciplines. For coding theory there
was the 1949 paper “Communication in the presence of noise” [37]; for information
theory there was the 1948 paper “A mathematical theory of communication” [36]; and
for cryptology there was the 1949 paper “Communication theory of secrecy systems”
[38]. The three vitally important disciplines for the information age are based on these
three seminal papers. We note that the first and third papers were published in the
Bell System Technical Journal and the second was published in the proceedings of the
IRE which has been renamed as the proceedings of the IEEE (Institute of Electrical
and Electronics Engineers). It is quite clear that these are not mathematical journals,
but rather very applied engineering journals. At that point, they were not trying to
produce interesting mathematics, but rather using mathematics to solve very important
and interesting engineering problems.

In this paper, we shall be concerned with the first of these sciences, which is coding
theory. We shall show how it evolved from this application to become a branch of
pure mathematics studied for its own sake rather than in the service of other applied
disciplines.

Following Shannon’s landmark paper [36] in 1948, there came two more important
papers. The first by Marcel Golay [16], in 1949, and the second by Richard Hamming
[20] in 1950. Within these papers, the Golay codes and the Hamming codes were
described. To this day, they remain some of the most discussed codes in coding theory.
Moreover, the list of connections between these two families of codes to other interesting
mathematical objects seems to never stop growing. It has often been said that if you
want to interest a mathematician in coding theory you show them the length 23 Golay
code, its connections to the Leech lattice, and its connections to finite groups (see [6] for
a description of all of these connections) and any mathematician will quickly become
interested in the topic.

3. Techniques of Coding Theory

The techniques that arose from these early papers are essentially the techniques that
are still used today. First of all, you define an alphabet A. This alphabet consists of
the symbols that one can send. Quite often, in the electronic world, the alphabet is
the binary set A = {0, 1}, but other alphabets are possible. One can even think of the
English language as a code over the Latin alphabet. While every discussion of coding
theory begins by assuming that A is any set, it very quickly becomes clear that A must
have some algebraic structure to make the techniques of coding theory effective. In
those days, and in most applications today, it was assumed that A must be a finite
field. In practice, A is often the finite field F2. However, even in early papers, results
were often couched in terms of an arbitrary field since the proofs were the same.

While one might assume that the field F2 is the only field used in applications, this
is not correct. Even when the information is stored as a 0 or a 1, one can use the field
F2r . For example, one can use F28 and deal with bytes rather than bits of information
and still have the information stored as binary. The next task is to define the length
of the code, usually denoted by n. Then a code of length n is simply any subset of the
space An. That is, a code is simply a collection of length n vectors with entries from
the alphabet A. Essentially, the code consists of all the possible “words” that you can
send over the channel. This means that the only things you want the receiver to read
are the elements of the code. In this way, if the receiver reads something that is not in
the code, an error must have occurred.

One can think of the parallel situation for the English language when you receive
something that is not a word. If you are sent, in a message, a collection of letters
that are not an English word, you first recognize that it is not a word, then you try to
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determine what is the most likely word that was actually sent and had morphed into
this collection of letters. This is the same situation as in coding theory. Therefore, the
next step is to turn the ambient space, An, into a metric space which enables you to
determine the distance between a received message and a possible word. This is done by
defining the Hamming metric, which is dH(v,w) = |{i | vi 6= wi}| for vectors v,w ∈ An.
It is clear at this point that if you want to define a code that is effective in correcting
errors, you want the distance between vectors to be as large as possible. In particular,
you want the minimal distance between two distinct vectors to be as large as possible.
In that way, if some mistakes are made, it is clear what vector was originally sent.

In terms of the English language analogue, the distance is very small. For example,
the words can, cat, and car only differ in one location. Therefore, if someone receives
the word cas, without any context, it is impossible to know which of these three was
the intended message. Mathematically, this is done in the following way. Define the
minimum distance of a code C to be dC = min{dH(v,w) | v,w ∈ C,v 6= w}. Then,
using this code, you will be able to detect d− 1 errors and can correct ⌊d−1

2 ⌋ errors. In
terms of the English example above, if you send cat and receive car, then you would
not detect that an error was made since the minimum distance is only 1 in the English
language. However, if your language consisted of two words 000 and 111 and you
received 110 then you know that a mistake was made in transmission. You would want
to correct the vector to 111 since that vector is distance 1 from the received vector,
whereas 000 is distance 2 from the received vector. Of course, 2 mistakes might have
been made in which case you correct the received vector to the wrong vector.

Already, this setting is sounding like a very mathematical problem. Namely, stated
as a mathematical problem, what is the largest set of vectors C ⊆ An, where A is a
set, such that the minimum distance between distinct vectors is d. One can rearrange
this question by fixing any two of the parameters and optimizing the third. One can
easily imagine this as placing ping pong balls in a room (in which they can float). You
want to put as many in the room as possible but keep the distance between any two as
far away as possible (two conflicting aims). Therefore, the question becomes how many
pingpong balls can you put in the room where they are at least d units away.

3.1. Bounds and Families of Codes. Within this very simple combinatorial setting
two very important results emerge. The first is the Singleton bound, which states that
for a code C of length n over an alphabet of size q with minimum Hamming distance
d, we have logq(|C|) ≤ n − d + 1. The proof of this result is very easy and short,
however the result has massive consequences. We call any code meeting this bound,
that is, logq(|C|) = n− d+1, a Maximal Distance Separable (MDS) code. These codes
have been shown to be equivalent to many of the most important open questions in
combinatorics. For example, a set of k-mutually orthogonal Latin squares is equivalent
to certain MDS codes and as such the question of the existence of finite affine and
projective planes can be couched in terms of MDS codes. Additionally, the central
questions about orthogonal arrays can be phrased in terms of MDS codes. Moreover,
there is a well known conjecture about these codes that arose in the study of finite
geometry. Specifically, in 1955, Segre posed the MDS conjecture, which is as follows
[35]. If k ≤ q then n ≤ q + 1, unless q = 2h and k = 3 or k = q − 1, in which case
n ≤ q + 2.

The second important result is the sphere packing bound, which states that for a
code C of length n over an alphabet of size q with minimum Hamming distance at
least 2t + 1, we have |C|

(∑t
s=0C(n, s)(q − 1)s

)
≤ qn, where C(n, s) is the binomial

coefficient n!
s!(n−s)! . The proof of this result is a straightforward counting argument.

Namely,
∑t

s=0C(n, s)(q− 1)s counts the number of vectors in a ball of radius t around
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a codeword, so the number of vectors times the number of vectors in the non-intersecting
balls must be less than the number of vectors in the ambient space. A code that meets
this bound, that is a code C over an alphabet of size q with minimum Hamming weight
2t+1 and |C|(∑t

s=0C(n, s)(q− 1)s) = qn, is said to be a perfect code. Important open
questions remain about perfect codes, but some of the most important perfect codes
were found right at the very beginnings of coding theory. Specifically, they were found
by Golay in 1949 [16] and Hamming in 1950 [20].

3.2. Foundations. We shall describe the underlying mathematical structures laid forth
in these early papers, which remain the foundation for modern coding theory. A gen-
erating matrix G is given, which is a k by n matrix with elements from a finite field
Fq whose rows are linearly independent. Then, to encode the vector v ∈ F

k
q from the

alphabet Fq, one computes vG to produce a length n codeword. In general, one encodes

F
k
q to obtain a vector subspace of dimension k in F

n
q , which is known as a linear code

of length n and dimension k and denoted as an [n, k]q code. If, in addition, the mini-
mum Hamming distance is known, it is denoted as an [n, k, d]q code. The fundamental
question of coding theory then becomes: “what is the largest dimension k for which a
k-dimensional subspace of Fn

q exists with minimum Hamming distance d.” For linear
codes, the Hamming distance turns out to be equal to the minimum Hamming weight
where the Hamming weight is the number of non-zero entries in a vector and the min-
imum Hamming weight is the smallest Hamming weight of any non-zero vector in the
code. At this point, one can see that this is fundamentally a mathematical question,
which naturally interested mathematicians.

To decode information, the following technique was made. The ambient space F
n
q is

endowed with the standard inner-product [v,w] =
∑

viwi and the orthogonal code is
defined as C⊥ = {w | [v,w] = 0, ∀v ∈ C}. A parity check matrix for C is an (n−k)×n
matrix of rank n− k whose row space is C⊥. It is immediate that v ∈ C if and only if
HvT = 0. This setting put the mechanics of coding theory solidly in the field of classical
linear algebra. For example, one immediately has that dim(C)+dim(C⊥) = n and that
C⊥ must be a linear code. Then, one finds each coset of the code in the ambient space
and defines it as e+C where e is a vector of (hopefully) small Hamming weight, which
serves as a possible error. If the vector u is received, one computes HuT and finds e
satisfying HuT = HeT . This means that u is in the coset e+C and one assumes that
e is the error vector. Then one assumes the message that was sent was u − e. Note
that H(u− e)T = 0 so u− e must be in the code. One can see immediately that there
are many computational difficulties in this scenario. A code that is useful is one that
has a high minimum weight (and hence can correct a high number of erroneous entries
of a received word) and where there is an efficient algorithm for decoding the received
vectors.

Essentially, the code is a k-dimensional subspace of an n-dimensional space over a
finite field. The received message is a vector in this n dimensional space and is decoded
by finding the closest vector (with respect to the Hamming metric) in the k dimensional
code and decoding to that vector. This is further complicated by the fact that there
may not be a unique vector that is closest. Not only does this sound like a problem from
pure mathematics, it sounds like a classical geometric problem. These types of problems
have been studied in Euclidean space for centuries. This problem simply changes the
metric and uses a finite field. For example, one can easily see analogues in terms of the
sphere packing problem or in terms of uniform distributions.

The main work done in subsequent decades was to come up with codes that had
efficient decoding algorithms. That is, a way of describing the code such that there is
an efficient algorithm for finding the closest vector. One of the first was the celebrated
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Hamming codes [20]. In these codes, the parity check matrix is constructed by using
vector representatives of the distinct points of projective space over a finite field as the
columns of the matrix. This means that the minimum distance is 3 and that the code
meets the sphere packing bound, that is, they are all perfect codes. Then computing
HuT gives the exact coordinate where the error is made and what the error is. While
these codes have many fascinating properties, they were not often used in applications
because the minimum distance is small. However, they have been studied extensively in
terms of their connections to combinatorics and group theory. For example, the [7, 4, 3]
binary code is intimately related in every imaginable way to the projective plane of
order 2, known as the Fano plane.

At about the same time, Golay came up with two other perfect codes, namely a binary
[23, 12, 7] code and a ternary [11, 6, 5] code. These codes have been intensely studied
and they have fascinating connections to groups, lattices, and designs. For example, the
binary Golay code is intimately related to the Leech lattice and it produces 5-designs by
its vectors of a given weight. Moreover, its automorphism group is the Mathieu group
M23. See [6] for a description of these results.

4. Coding Theory Comes to Life

Within the next decade two families of codes were found that were actually highly
useful in practice, namely the Reed-Muller codes [32] and the Reed-Solomon codes
[33]. These codes were not only shown to have good parameters but efficient decoding
techniques were also produced. Both of these codes rely on very clever applications
of abstract algebra. The Reed-Muller codes have a wide array of uses in information
transfer and have very interesting connections to finite geometry, see [1] for a detailed
description of this connection. The Reed-Solomon codes are extensively used in such
technologies as compact discs, digital video discs, blue ray discs, and QR codes. Both
families of codes have been used in NASA space probes when sending digital information
back to earth.

What should be understood about this period in the history of coding theory is that
mathematicians and engineers were using classical results from combinatorics, linear
algebra, and abstract algebra to produce codes and algorithms associated with these
codes. At this early stage it was very much applied mathematics, namely the results of
mathematics were used (along with some very clever innovations) to solve practical en-
gineering problems. Codes were not yet being used to answer questions in mathematics
(at least not extensively).

As an example of codes being constructed at this time, consider cyclic codes, which
were first introduced by Eugene A. Prange in 1957, see [28], [29], [30], and [31]. These
papers, despite their importance are exceedingly difficult to find, and are generally not
even in the usual mathematical databases. They were technical reports for a United
States Air Force project. A cyclic code is a code C such that if (c0, c1, . . . , cn−1) ∈ C
then (cn−1, c0, c1, . . . , cn−2) ∈ C. This family of codes is one of the most well studied
families of codes, not only because they are useful but because they have a canonical
algebraic description. Specifically, a linear cyclic code corresponds to an ideal in the
ring Fq[x]/〈xn − 1〉, where the vector (c0, c1, . . . , cn−1) corresponds to the polynomial
c0 + c1x + c2x

2 + · · · + cn−1x
n−1. Notice that multiplication by x corresponds to the

cyclic shift.
It follows that a complete classification of cyclic codes can be found by factoring the

polynomial xn−1 over the field Fq. If p(x) is a factor, then the ideal 〈p(x)〉 corresponds
to a cyclic code of length n over Fq. One of the reasons that cyclic codes are so widely
studied is that polynomial rings are such a well studied object in abstract algebra. In
that sense, the machinery necessary to study these codes was already firmly in place
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in the world of pure mathematics. All that was required was to apply this extensive
machinery in the setting of algebraic coding theory. This does not mean that interesting
and difficult questions did not arise from this application; they certainly did. But the
large machinery of algebra was a great help in building the theory of cyclic codes. For
example, finding the ideals when the length was not relatively prime to the characteristic
of the field is a difficult algebraic problem.

The ideas used to study cyclic codes have been widely generalized from 1957 to the
present day. For example, ideals in Fq[x]/〈xn+1〉 correspond to codes with the property
that

(c0, c1, . . . , cn−1) ∈ C

implies
(−cn−1, c0, c1, . . . , cn−2) ∈ C

and are known as negacyclic codes. Ideals in Fq[x]/〈xn − λ〉 correspond to codes with
the property that

(c0, c1, . . . , cn−1) ∈ C

implies
(λcn−1, c0, c1, . . . , cn−2) ∈ C

and are known as constacyclic codes. Additionally, codes that are ideals in Fq[x]/〈p(x)〉
are known as polycyclic codes. Denoting the cyclic shift by σ, that is

σ((c0, c1, . . . , cn−1)) = (cn−1, c0, c1, . . . , cn−2),

then a code that is held invariant by the action of σk is known as a quasi-cyclic code of
index k.

Finally, one of the more recent generalizations uses an automorphism θ of the al-
phabet A. If a linear code has the property that if (c0, c1, ..., cn−1) is in C then
(θ(cn−1), θ(c0), ..., θ(cn−2)) is in C, we say that C is a skew-cyclic code. Numerous
references for these codes can be found by looking at one of the standard references for
coding theory such as [21], [26], or [34].

4.1. The MacWilliams Relations. In the early 1960s, Jessie MacWilliams proved
two results that were foundational for the study of coding theory, see [24], [25]. The
first theorem states that every linear isometry between linear codes for the Hamming
distance can be extended to a linear isometry of the ambient space. The second involves
weight enumerators and are known as the MacWilliams relations. We shall describe
weight enumerators now. Let C be a code of length n over an alphabet A, then the
Hamming weight enumerator of C is defined as WC(x, y) =

∑
c∈C xn−wtH(c)ywtH(c),

where wtH(c) indicates the Hamming weight of the vector c. The weight enumerator
is expressed as WC(x, y) =

∑
Aix

n−iyi where there are Ai vectors of Hamming weight
i in C. The MacWilliams relations show that the weight enumerator of the orthogonal
code can be determined from the weight enumerator of the code. Specifically, if C
is a linear code over the finite field Fq, then WC⊥(x, y) = 1

|C|WC(x + (q − 1)y, x −
y). One cannot overestimate the many uses this theorem has in coding theory. For
example, if C is a self-dual code, that is C = C⊥, then the weight enumerator is held
invariant by the action of the MacWilliams relations and therefore invariant theory can
be used to determine the set of all possible weight enumerators for self-dual codes. This
result is known as Gleason’s Theorem. This would be used extensively in the following
years in the application of coding theory to design theory and to lattice theory (see
[1],[2],[6],[26]). The MacWilliams relations were one of the earliest and most beautiful
theorems in coding theory that were both useful in practical applications and stood
alone as beautiful theorems of mathematics. This was a case of new mathematics being
developed in coding theory rather than existing mathematics being applied to a problem.
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By this I mean that even if there were no applications of codes to the problem of
electronic communication, this was still a particularly beautiful and interesting theorem.

The author of these theorems had a particularly interesting story as well. She had
studied in England before raising her children and many years later received her Ph.D.
from Harvard University. More will be mentioned about her story and accomplishments
later in the article.

5. End of the Beginning

In 1970, N. Levinson published “Coding Theory: A Counterexample to G. H. Hardy’s
Conception of Applied Mathematics” [22]. In this article, Levinson puts forth the idea
that Hardy’s well known ideas on the distinction between pure and applied mathematics
were contradicted by number theory’s use in actual applied coding theory. Hardy saw
pure mathematics (in his eyes the superior) as useless and should revel in its uselessness.
At the apex of this useless but beautiful mathematics was number theory; it was the
queen of mathematics and was (at least at that time) considered completely useless in
the outside world. What Levinson shows is that results that Hardy saw as useless but
wonderful, were used extensively in the design of codes and decoding algorithms. The
purest of the pure of mathematics was now used with a very practical purpose. (As an
aside, Hardy believed that one of number theory’s greatest attributes was that it had
no military applications. How disappointed he would be to find out that in the twenty-
first century the world’s security services were absolutely filled with number theorists
working on cryptographic applications.)

At this point, coding theory was solidly an applied mathematics endeavor. Re-
searchers were using known classical mathematics to solve interesting and important
questions in electrical engineering and computer science. That is not to say that there
were not first-rate mathematicians and first-rate mathematical theorems emerging, but
the main focus was solidly on applications.

In 1971, at a workshop on coding theory, Ned Weldon stated: “Too many equa-
tions had been generated with too few consequences... Coding theorist professors had
begotten more coding theory Ph.D.s in their own image... no one else cared; it was
time to see this perversion for what it was. Give up this fantasy and take up a useful
occupation... Coding is dead.” [42] The author of the present paper was told by people
who were present that this conference was known as the “coding theory is dead” con-
ference. The idea behind this comment was that technology was far behind what they
could do in theory. Another concern for those present was that mathematicians were
getting interested in the central problem of coding theory, which meant that someone
was going to give a complete solution to the fundamental problems of the discipline
leaving no room for further research. That is, he thought that all of the work being
done by coding theorists was not being applied and served no useful purpose. This did
not prove to be the case! There were two enormous reasons for this. The first is that
the mathematical part of the theory began to explode and find a myriad of interesting
paths to take including numerous connections to combinatorics, finite geometry, and
number theory. The second was that over the next three decades electronic devices of
all kinds were to expand the uses of coding theory greatly. Few in 1970 would have
guessed that by the year 2000 most people would have a computer on their desk at
work as well as one in their house, nor would they have guessed that cellphones would
be carried by virtually every person on the planet (the author of this article still does
not have one, but recognizes their universality). This explosion of electronic communi-
cation would find many new and interesting applications for coding theory as well as
for information theory as a whole. For example, before the dawn of the information
age, cryptography was largely the concern of the military, the government, and large
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financial organizations. In 2024, cryptography is the concern of every person on the
planet as it allows for internet commerce. One can hardly overstate the importance of
keeping personal and financial information secure in the present day.

In 1973, Delsarte published a paper framing coding theory in very pure terms [7].
In this paper, he studied codes in terms of association schemes. This paper has been
referenced numerous times and used to produce interesting results about codes in this
setting. The paper was the author’s thesis at the Université Catholique de Louvain.
In this paper, the author describes an association scheme approach to coding theory.
One scheme, the Hamming scheme, is defined using a finite set F with cardinality at
least 2, and in the space Fn. Then two points x and y are said to be i-th related if the
Hamming distance between them is i. One of the important results in this paper was
determining the possible group structures in this Hamming scheme. This result would
later be understood more completely in the 1990s leading to an explosion in the study
of codes over rings. This paper will be discussed later in detail. From our perspective,
the importance of this paper is that the author was examining coding theory as a well
described mathematical structure. In essence, coding theory was being considered as
pure mathematics with solid foundations and viewing the fundamental objects of coding
theory in their own right rather than in service to an application. Just two years after
Weldon had incorrectly announced the death of coding theory, Delsarte was putting
the mathematical discipline of coding theory on a sound foundation within the field of
combinatorics.

6. Coding Theory Emerges as a Full Discipline

One of the biggest events in coding theory, just six years after the pronouncement of
its death knell, was the publication of the text “The theory of error-correcting codes” by
Jessie MacWilliams and Neil Sloane in 1977. This text became the standard reference
for algebraic coding theory for at least the next 30 years. The text was steeped both
in the engineering applications and the mathematics that underpinned them. One can
hardly overestimate the influence this book had on the subject. It was comprehensive
and well written and filled with avenues of future research. As a testament to its
importance, checking the standard mathematical databases, the text has been cited
thousands of times. The major importance of this work was that it brought the known
world of coding theory into one place and set a course for the future of coding theory.
It also unified notation and terminology for the discipline and served as the standard
reference for works in coding theory for the decades that followed.

In the late 1960s and the 1970s, coding theory began to give results in mathematics,
as opposed to being used primarily in applications. For example, in 1969 [2], Assmus and
Mattson proved a now celebrated theorem that gave a construction for new 5-designs
from extremal self-dual codes. Codes such as the extended Golay code of length 24
could be used to construct 5-designs from the codewords of a given weight. Rather
than combinatorics giving constructions for codes, codes were now giving constructions
of difficult to produce combinatorial objects. In this way, the results of coding theory
were now being used to inform questions in pure mathematics, specifically in the field of
combinatorics. There were, in fact, numerous connections between combinatorics and
coding theory; see [3], published in 1974, for a taste of canonical connections between
the two worlds.

During this time there was an active research group in Cambridge Massachusetts
centered around Andrew Gleason (a Harvard professor who had solved Hilbert’s fifth
problem, had done significant work in breaking enemy codes during the second world
war, and has two theorems in coding theory named for him, namely the Gleason-
Prange Theorem and Gleason’s Theorem, which was mentioned earlier), with members
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Ed Assmus, Gene Prange, Vera Pless, John N. Pierce, and Skip Mattson, with frequent
visits from Elwyn Berlekamp, Jessie MacWilliams, and Neil Sloane. This group was
funded by the United States Air Force and was pivotal in making a wide group of
mathematicians interested in coding theory. Moreover, this group began to bring the
full force of mathematics to questions in coding theory. Some of the most foundational
and beautiful theorems in coding theory arose during this time as mathematicians began
building a solid mathematical foundation for coding theory, viewing it as a newly born
branch of mathematics.

Unfortunately, this group was disbanded when congress passed new legislation di-
recting that the armed services could only fund research that was directly applicable to
practical applications. One of the most interesting things that emerged from this group
at this time was a presentation in 1970 given by Ed Assmus on the projective plane
of order 10, which was a difficult open problem in finite geometry that was of great
interest to many combinatorialists and geometers. This would lead to a major event in
coding theory and combinatorics beginning with the paper we describe next.

In 1973, “On the existence of a projective plane of order 10”, was published by
MacWilliams, Sloane, and Thompson [13]. To give an idea of the level of mathematician
who was being attracted to coding theory at this time, we shall give a few of the
accomplishments of these authors. Sloane was was the winner of a Lester R. Ford
Award in 1978, the Chauvenet Prize in 1979, IEEE Richard W. Hamming Medal in
2005, the Mathematical Association of America David P. Robbins Prize in 2008, and
the George Pólya Award in 2013. Despite all of these accomplishments, he is perhaps
best known for his creation On-Line Encyclopedia of Integer Sequences. Thompson was
awarded the Fields Medal in 1970, the Wolf Prize in 1992, and the Abel Prize in 2008
and proved numerous major results in abstract algebra.

Jessie MacWilliams (mentioned earlier in the article) had a major impact on coding
theory and proved one of the foundational results. She received a B.A. from Cambridge
in 1938 and an M.A. in 1939 and then moved to the U.S. She raised a family there
and later worked at Bell Labs. She completed her Ph.D. in 1962 at Harvard (under
the direction of Gleason whose pivotal role was mentioned earlier) where she discovered
the MacWilliams relations mentioned earlier. She was also the first Noether Lecturer,
and as such gave a talk entitled “A Survey of Coding Theory” in 1980. The accom-
plishments of these three mathematicians are highlighted just to give an idea of the
high quality mathematicians who were being drawn to the discipline at this time. One
could also describe the accomplishments of many of the mathematicians that have been
cited earlier. The point is that coding theory was being taken seriously by highly able
mathematicians from first-rate institutions.

This paper on the projective plane of order 10 was the start of one of the most
famous results in which coding theory was able to play a central role. Essentially, one
takes a putative projective plane of order 10 and constructs an incidence matrix from
its lines and its points. This matrix is used to generate a binary code, which can be
extended to a self-dual (C = C⊥) [112, 56, 12] code. Using the MacWilliams relations
and Gleason’s theorem, which is based on this and gives the possible weight enumerators
for a self-dual code using invariant theory, the weight enumerator of this putative code
can be constructed after determining a few of its parameters with combinatorial (often
difficult) arguments.

The existence of the projective plane of order 10 was the first unknown case for finite
planes and the problem was often thought to be too difficult for young mathematicians
to attempt. In fact, Clement Lam was warned off the problem by his Ph.D. advisor
Herbert Ryser as a student at Caltech. Later, after Lam established himself as an
accomplished researcher, he took to the problem with full force in the 1980s. He took
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the following approach. If the weight enumerator of a putative self-dual code formed
from the projective plane of order 10 was known, if one could prove the non-existence
of such a code, then the plane would not exist. Lam and his team did significant work
in reducing what needed to be done to prove its non-existence, such as showing the
code had a trivial automorphism group. Following extensive theoretical work they ran
a program on a supercomputer for about one year, which showed that no such code
existed and hence the non-existence of the projective plane of order 10 was proven. By
doing so, they used the machinery developed in coding theory to produce a significant
result in pure mathematics. In essence, this result was an example of coding theory
giving results in combinatorics rather than combinatorics providing a framework for
applicable results in coding theory. This result, together with the proof of the four color
theorem, sparked a debate in the mathematical community about whether a computer
proof did, in fact, constitute a proof of a theorem.

In a conversation with the author of this article, Lam offered one possible avenue to
take in this regard. Namely, we could take a cue from the physical sciences and only
accept a computer proof after an independent team verified the computation. Given
the amount of work to do this, it seems unlikely that anyone will try to do this for
Lam’s proof until they have found something that would streamline the computation.

7. Algebraic-Geometry Brings New Ideas

A major advancement that occurred in the 1980s and 1990s was the use of algebraic
geometry in coding theory. It has been widely considered that the Varshamov-Gilbert
codes were considered best possible codes in terms of optimization. In the early 1980s,
V. D. Goppa discovered a broad class of codes arising from algebraic curves over finite
fields, see [17], [18]. In 1983, Tsfasman, Vlădut and others showed the existence of
Goppa codes better than Varshamov-Gilbert codes for alphabet size p2 ≥ 49, where p is
a prime in certain cases, see [40] (whose authors received the 1983 Information Theory
Society Award).

This was another example of the application of pure mathematics to produce inter-
esting results in coding theory. In this case, it was the gigantic machinery of algebraic
geometry. Algebraic geometry certainly had very pure origins in terms of Hardy’s defi-
nition of pure mathematics. Moreover, the machinery developed in this discipline was
absolutely enormous. Mathematicians, who had been applying these ideas to pure ques-
tions in number theory, pivoted and began applying these results to questions in coding
theory. Of course, Wiles’ phenomenal proof of Fermat’s Last Theorem sent algebraic
geometers in search of a new holy grail. A very large body of results soon followed.
While, in overarching philosophy, this was still another branch of mathematics inform-
ing questions in coding theory, there were still a vast number of results in algebraic
geometry codes that were produced that would certainly be considered pure mathemat-
ics in the sense that they were produced for coding theory (not algebraic geometry) but
had no real application in the world of electronic communication.

It is interesting to note that these early papers were published in the Soviet Union,
in a time when there was still limited exchange of ideas and results between countries
in the Soviet block and countries outside of that block, especially in disciplines such as
information theory where knowledge of the results could give a militaristic or techno-
logical advantage. The opening up of this block and the subsequent fall of the Soviet
Union certainly helped spread the use of algebraic geometry to study codes. Perhaps
the greatest impact was that numerous mathematicians from this block emigrated to
countries in western Europe and North America (or at least visited them for long peri-
ods of time) and brought these ideas with them. Certainly, this explosion of the study
of coding theory from the viewpoint of algebraic geometry was a very important move
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in the direction to pure mathematics. For a complete description of this connection
and an encyclopedic collection of the results see the book by Tsfasman and Vlădut
“Algebraic-geometric codes” [39].

8. Rings Spark a Revolution

The next major move toward pure mathematics was the paper “The Z4-linearity of
Kerdock, Preparata, Goethals, and related codes” [12], which was published in 1994.
This paper showed that certain families of binary non-linear codes that nonetheless
behaved very much like linear codes are, in fact, images of linear codes over the finite
ring Z4 under the Gray map. That is, they were the images of submodules of Zn

4 mapped
to F

2n
2 with the proper map. The Gray map is a non-linear map, which is defined as

follows: 0 → 00, 1 → 01, 2 → 11, 3 → 10. Note that this map is not the one most
mathematicians would think of when mapping Z4 to F

2
2. That is, usually one would

think that 2 would map to 10 and 3 would map to 11. However, this Gray map was the
key to showing that these binary codes, which were not linear, were actually simply the
image of the quaternary linear codes under this map. This is why these codes behaved
like linear codes. That is, their group structure came from their being submodules of
Z
n
4 and explained why they seemingly obeyed the MacWilliams relations even though

they were not linear codes. It should be noted that an understanding of Delsarte’s
1973 paper really should have lead the coding theory community to these results much
earlier! While these results were very important in their own right, their impact on the
study of codes was even greater. It sparked a massive rush to study codes over finite
rings.

There were some previous papers about codes over rings, but it was this paper that
really sparked interest in this study. These early papers largely showed some things that
were used to study codes over finite fields could also be extended to finite rings. They
did not really have an application, either practical or theoretical, that sparked people’s
interest to continue their study. At first, most of the papers justified the study of codes
over rings with an application to binary codes, which would tie the results closely to
the applications of coding theory. For example, the first rings to be studied were the
commutative rings of order 4. Codes over the finite field F4 had already been studied
and codes over Z4 were widely studied. Then, numerous papers were written about
codes over the ring F2[u]/〈u2〉 and its associated linear Gray map. Finally, codes over
the ring F2[v]/〈v2 + v〉, which is isomorphic as a ring to Z2 × Z2, were studied. Codes
over these rings were shown to have a canonical connection to lattices in certain spaces.
Additionally, motived by the results in Delsarte’s 1973 paper, codes were studied over
mixed alphabets such as Z4Z2 codes. These were codes that combined the Gray map
from the quaternary ring with the identity map from the binary field to construct binary
codes. Many interesting and important results were obtained from this viewpoint, see
[4] for a complete description of this work.

Next, generalizations of these four rings were studied. For example, some studied
codes over the finite fields F2r , the rings Z2k, Rk = F2[u1, u2, . . . , uk]/〈u2i , uiuj + ujui〉,
and Ak = F2[u1, u2, . . . , uk]/〈v2i + vi, vivj + vjvi〉. These families of rings are also
equipped with corresponding Gray maps to the binary space and are just some of
the natural generalizations that were studied very quickly after codes over the finite
ring Z4. More exhaustively, codes were studied over chain rings (rings whose ideals
form a chain), local rings (rings with a unique maximal ideal), and then to principal
ideal rings. However, the study of these rings was carried out in an essentially ad hoc
manner, in that foundational results such as the MacWilliams relations were produced
for various families of rings as needed. Foundational results for codes over rings in gen-
eral were not yet well studied or clearly stated. However, numerous fascinating results



Coding Theory 15

for codes over rings were found such as connections to unimodular lattices (see [6] and
the massive number of reference therein) and interesting connections to binary codes
via Gray maps. While numerous interesting results were found during this time, little
thought was given to studying codes over a very broad family of rings. Rather, it was
particular applications that fuelled the research.

Throughout the 1990s numerous papers were written on codes over various families
of rings and numerous connections were found to number theoretic structures, but still
quite often these papers were motivated (at least they were stated as such, if not in
reality) by applications in the field of electronic communication. Additionally, old ideas
were resurrected because of advances in computing. For example, in 1962 Gallagher
wrote a paper [15] on Low Density Parity Check (LDPC) codes. Essentially, these were
codes whose parity check matrix had few coordinates containing a non-zero element.
Very little was done with these codes in the ensuing years.

In the 1990s and the decades that followed, an explosion of results on these codes
appeared. Researchers noticed that these codes could use probabilistic methods, such
as belief propagation, for decoding. This gave decoding algorithms of complexity linear
in the length of the code. If every coding theorist had a very good computer on their
desk in the 1960s, then this would have been noticed decades earlier. By the time of
the writing of this article hundreds of papers have been written on this topic. Many
techniques from graph theory, algebra, and finite geometry were used to construct these
codes and began what is often referred to as modern coding theory to distinguish it
from classical coding theory.

9. The Move to Purity

By the 1990s, mathematicians were studying codes in their own right for purely
mathematical purposes, but this was still often couched in terms of possible applications,
either in engineering or in other branches of mathematics such as combinatorics or
number theory. This began to change significantly in this decade. Jay Wood spent
the 1989 - 1990 academic year at Lehigh University (during this time he taught the
author of this paper algebraic topology) and had numerous productive conversations
with E. F. Assmus on coding theory. Recall that Assmus had been part of Gleason’s
team decades earlier. Assmus certainly viewed coding theory as pure mathematics (at
least the part where his interests were) and was largely concerned with studying codes
in relation to combinatorics and finite geometry. It was at this time that he wrote a
text with Jenny Key on the relationship between codes and designs [1]. Later in the
decade, Vera Pless suggested to Wood that it was time to reconsider the MacWilliams
Theorems, given the new directions in coding theory. These conversations prompted
Wood to write the paper “Duality for modules over finite rings and applications to
coding theory” [41], published in 1999. In this paper, he showed that the largest class
of rings for which both MacWilliams theorems held was the class of Frobenius rings.
It should be noted that, if you were to ask one hundred good coding theorists at the
time for a definition of a Frobenius ring, you probably would have received zero correct
answers. Asking the same question today to the same group, there would be a marked
increase in the number who give the correct answer.

Specifically, he showed the following results.

• If R is a finite Frobenius ring and C is a linear code, then every Hamming
isometry C → Rn can be extended to a monomial transformation.

• If a finite commutative ring R satisfies that all of its Hamming isometries be-
tween linear codes allow for monomial extensions, then R is a Frobenius ring.
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By an example of Greferath and Schmidt, [19], it was shown that these results do
not extend to quasi-Frobenius rings. Therefore, Frobenius rings are the largest class of
rings for which the first MacWilliams Theorem hold.

The next result generalizes the MacWilliams relations which we will state in a very
general form, that is for the complete weight enumerator rather than just the Hamming
weight enumerator. We require some definitions to state it. Let R be a finite ring
with r elements and define ι : R → {0, 1, 2, 3 . . . , r − 1}, where the elements of R are
a0, a1, . . . , ar−1 and ι(ai) = i. Define the complete weight enumerator of a code C over
R as

cweC(x0, x1, . . . , xr−1) =
∑

c∈C

n∏

i=1

xι(ci).

Then, if Ta,b = χ(ab) where χ is a generating character for R̂, for a linear code C over
a finite commutative Frobenius ring R, we have

cweC⊥(x0, x1, . . . , xr−1) =
1

|C|cweC(T · (x0, x1, . . . , xr−1)).

As a corollary, we get the MacWilliams relations for the Hamming weight enumerator.

WC⊥(x, y) =
1

|C|WC(x+ (r − 1)y, x− y).

What these results showed was that many of the foundational techniques of codes over
finite fields could be applied in the case where the alphabet is a finite Frobenius ring. For
example, when the ring is commutative and the code C is linear, we have |C||C⊥| = |R|n
and (C⊥)⊥ = C. When the ring is non-commutative you must define orthogonals on
the left and the right, then similar results are true depending on whether the code is
left linear or right linear.

This paper then sparked an intense interest in codes over Frobenius rings and a flood
of papers followed investigating what possible results could be obtained in this new
path.

9.1. Questions and Debates. At the AMS Special Topic Session at Notre Dame
University in April, 2000, a talk was given on codes over Frobenius rings (the author
does not recall who was giving the talk). Vera Pless, who was a very important coding
theorist (also a member of Gleason’s team described earlier), casually raised her hand
at the end of the talk and asked “Why should we care about codes over Frobenius
rings anyway?” Her question was seeking to find motivation for the study of codes over
Frobenius rings. Namely, was there a reason for going down this path. It must be
noted that by this time Wood’s paper was not widely known. While the author does
not remember the answer given, it is certain that Vera Pless was far from satisfied with
it. Pless had voiced a question that many were considering at the time. Namely, is it
interesting to make such broad general definitions – are we still actually doing coding
theory or are we doing generalizations for the sake of generalization?

Years later, at the AMS special session honoring the retirement of Than Ward (an-
other mathematician who wrote numerous important papers in coding theory) at De-
Paul University, Chicago, October 6, 2007, the author of this article gave a talk about
codes over rings with Vera Pless in the first row. The talk began recalling the Pless
quote from seven years earlier. Pless then responded, loud enough for everyone to hear,
“Why does everyone remember everything I say?”

The talk continued giving reasons for why we should be studying codes over Frobenius
rings. The first reason is that we have the two foundational MacWilliams Theorems.
There are numerous implications of these theorems in the classical case. It becomes
natural to investigate what these implications are in the more general case. The second
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reason is that combinatorial bounds such as the Singleton and Sphere-packing bounds
mentioned earlier still apply in this case. Moreover, there are analogues for the algebraic
bounds based on the types of rings. Additionally, some of the connections to other
branches of mathematics were even better than in the classical case. For example, self-
dual codes over rings have a much more natural connection to unimodular lattices than
codes over fields do; there is no binary code that can produce the extremal unimodular
lattice of length 72, but there is a self-dual code over Z4 that can produce it. Moreover,
infinitely many lattices can be produced by self-dual codes over Z2k that cannot be
produced from codes over fields. Moreover, connections to lattices over various other
infinite fields were found from codes over rings. Additionally, studying codes over
Frobenius rings opened up a flood gate of applications to other algebraic questions.
Finally, the results that were being obtained were, in fact, beautiful mathematics. They
were natural, interesting, and highly non-trivial. At the end of the talk, the moderator
asked for questions, then he said that he had a question but not for the speaker, but
rather for Vera Pless. He asked her if she was now convinced that we should be studying
codes over Frobenius rings and she wholeheartedly agreed that we should!

Essentially, if we have the foundational results in such a broad setting, it is quite
natural to study these objects to determine what can be said about them. What has
happened in these past 25 years is that mathematicians began to study codes as an
interesting mathematical object in themselves. Like any objects in pure mathematics,
practical applications may be found later for these results, but the drive to study these
objects no longer came solely from a particular application.

As Alexander Barg said at an AMS conference at the University of Cincinnati in
October 2006: “We do not have to pretend that what we are doing has anything to
do with information transfer any more.” At this point, codes are algebraic objects just
like groups, rings, and fields and should be studied for their own sake whether or not
they had an application in engineering or another branch of mathematics. In 2017
the text “Algebraic Coding Theory over Finite Commutative Rings” was published by
the author of this paper. This text gives many of the foundational results of codes
over rings. The author in no way would compare this book to the other major works
described in this article, but mentions it because it is a high level book about coding
theory that does not mention any applications at all. The book treats coding theory as
a branch of algebra and gives no motivation from any applications. By this time, this
approach was perfectly natural.

Within the time between these conferences and the present day, there has been a flood
of research done on codes over rings and their applications in algebra and combinatorics.
There have been so many written that some journals have had to restrict the number
of coding theory papers that they are willing to accept for fear of being overwhelmed
by them and losing their original desired focus whether algebraic or combinatorial.
Likewise, engineering journals have put restrictions on coding theory papers as well,
demanding that the papers they publish should have an immediate application that
was the focus of the paper. Their fear was that their engineering journal was quickly
becoming a journal of pure mathematics.

10. New Avenues from New Applications

During this time, coding theory was given another avenue of pursuit via an important
engineering application. As physicists were rushing headlong into the quantum world,
questions arose as to how errors in quantum communication could be detected. In
this application, linear codes were not the codes that were interesting. Rather, it was
additive codes (codes closed under addition but possibly not under scalar multiplication)
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that were useful and instead of the standard Euclidean inner-product, different inner-
products were used. See [5] for a complete description. When studying additive codes, it
was also shown that a variety of inner-products could be used coming from the character
group of the underlying additive group. In this way, one can think of a code over a
group rather than over a ring. This idea sparked a great deal of research in loosening
the algebraic conditions of the alphabet. Namely, a great deal of research was put forth
looking at codes that were additive over some group (possible the additive group of a
field or a ring). It can be shown that MacWilliams relations hold in this case in a very
broad sense as well; see [9] for a complete description of the MacWilliams relations in
this case.

Another new idea came to coding theory around this time as well, namely DNA
codes. It is well known, and incredibly important scientifically especially in biology,
that DNA contains a genetic program for the development of life. It consists of two
strands, which are linked by the Watson-Crick pairing. Essentially, DNA is a sequence
of information with an alphabet of A,C,G, and T. As such, it is interesting to study this
information from the point of view of coding theory, namely as a code over an alphabet
of size 4.

Unlike the quantum case, there does not seem to be a canonical connection to one of
the rings of order 4, but rather any ring of order 4 can give results in this setting. Inter-
estingly, at this point, it is not uncommon to hear geneticists talking about Hamming
distance when they are talking about DNA.

From the point of view of this article, the interesting thing here is that scientists
took coding theory as a body of pure mathematics, and then applied it to a scientific
situation. In essence, this is what is at the heart of mathematics, scientists can take an
already developed, abstract, body of results and apply them to questions in their own
discipline.

As a branch of pure mathematics, coding theory can now be viewed in the following
way. A code is a subset of An where A is a set with an associated metric. In this setting,
the questions of coding theory are largely combinatorial (for example the connection
between MDS codes and mutually orthogonal Latin squares). We then consider A
to have some algebraic structure. In its most general form we assume A is a finite
commutative group and linear codes are subgroups of the ambient space. Attached
to the ambient space is a function that acts like an inner-product, which defines an
orthogonal code. The MacWilliams relations hold for weight enumerators in this setting
and we have the double annihilator condition (C⊥)⊥ = C and the cardinality condition
that |C||C⊥| = |A|n.

Restricting the alphabet, we can make A a finite Frobenius ring (either commuta-
tive or non-commutative). Then, with an associated inner-product, the MacWilliams
relations, the double-annihilator condition, and the cardinality condition hold. Within
this framework, we have an algebraic structure, a metric, and a notion of duality. The
essential question then becomes what is the largest code one can construct for a given
length with a given minimum distance under the metric. This is certainly a question
of pure mathematics and can be stated in a very general abstract manner. Given this
setting, various types of codes can be studied, for example codes equal to their duals,
codes contained in their orthogonal, codes held invariant by the action of a group, codes
meeting a bound, and a host of others. It is then possible that these objects can have
a variety of applications both within mathematics and outside of mathematics, which
will depend on the choice of alphabet, metric, and inner-product.
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11. Conclusion

As it is now, coding theory is the name for two distinct things. The first is a branch
of engineering that has applications in electronic communication, information retrieval
and storage, quantum computing, cryptographic applications, secret sharing, and a
host of other applications. Given the explosion of computer innovations in the past
40 years, each new innovation seems to bring with it a new use for the techniques
developed in coding theory. Secondly, coding theory is a branch of pure mathematics.
One might think of this as a three petaled flower. The first petal is the connection
between codes and topics in combinatorics such as mutually orthogonal latin squares,
finite planes, orthogonal arrays, and t-designs. The second petal is number-theoretic,
with the fascinating connection between codes and lattices, forms, and the geometry
of numbers. The third petal is a branch of abstract algebra that shares concepts with
group theory, ring theory, field theory, module theory, and linear algebra in its broadest
definition. These three flowers share a common center, which is the classical theory of
codes. While the three petals can seem distinct, results in one petal can sometimes be
reflected in results in one or both of the other petals. These petals are still very highly
connected.

Many of the results in the pure mathematical part of coding theory still have applica-
tions in the vast array of applications in the engineering world of codes. However, there
are numerous results that would make Hardy laugh with glee at their utter uselessness
in the outside world. These are results which, at present, are so removed from any
application that no engineer would find any interest in them at all. However, if the
history of the discipline has taught us anything, it may only be a matter of time before
they find application in some unlikely location.

There is also a strong bridge between these worlds. New applications bring new
questions into the pure branch of coding theory. For example, the rush to build quantum
technology has provided numerous questions for coding theorists, which has brought
them into dialog with theoretical physicists as well.

In a department talk at Lehigh University in 1991, Ed Assmus began his talk on
coding theory with a statement that read: “The purpose of applied mathematics is
to enrich pure mathematics”. The statement caused a great amount of good natured
boos and cheers. From his perspective, the applications of coding were important
because they enriched pure mathematics. This deliberately provocative statement might
not have the complete support of the author of this present work, but he is certainly
grateful that these applications were able to spark such interesting and compelling pure
mathematics. From the point of view of the author, coding theory is a paradigmatic
example of the healthy relationship between pure and applied mathematics in which
both benefit highly from the other and spark interesting avenues of research in both.
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ABSTRACT. The FRACTRAN programs
√

2GAME and NR
√

2GAME are presented, both

of which compute the decimal expansion of
√

2. Our
√

2GAME is analogous to Conway’s

PIGAME program. In fact, our proof carries over to PIGAME to produce a simpler proof

of Conway’s theorem as well as highlight how the efficiency of the program can be improved.

NR
√

2GAME encodes the canonical example of the Newton–Raphson method in FRACTRAN.

1. INTRODUCTION

FRACTRAN is a Turing complete esoteric programming language with several notable fea-

tures (c.f. [4], [5]). It is simple to understand how the language works. One can code any

standard mathematical algorithm in FRACTRAN, and moreover the Gödel number of any pro-

gram is straightforward to explicitly compute. Conway developed this language in [2], and used

it to formalize examples proving that natural generalizations of the famed Collatz conjecture

are undecidable [3]. He produced several explicit examples of algorithms in FRACTRAN in

[2]. Two examples are PRIMEGAME, which computes, in order, every prime number, and

PIGAME, which generates, in order, the digits of the decimal expansion of π. In fact PIGAME

ties in with a classical and fundamental question at the intersection of real analysis and the-

oretical computer science; namely how to compute the decimal expansion of a computable

irrational number. Turing defined the computable numbers as the real numbers whose decimal

expansions can be computed algorithmically (i.e. with a Turing machine), and they play a cen-

tral role in the work of both Turing and Gödel. For a fascinating and readable account of this

theory, the interested reader is referred to the first two chapters of [6]. Although this book was

written in 1989, Penrose expressed prescient thoughts on the role computers and A.I. will play

in mathematical research which are extremely relevant today.

As Conway himself states, the proof that PIGAME actually works is nontrivial. It involves

using some heavy machinery (e.g. Mähler’s famed irrationality measure for π) together with

Wallis’ infinite product formula for π
2 to ensure that truncating this infinite product after a cer-

tain even number E ≥ 4×210
n

terms is sufficiently accurate to compute the n-th digit of π. One

initial motivation for this work was to actually explain what Conway does, as many details are

omitted. The first main theorem of this paper (
√
2GAME) then computes, in order, the decimal

expansion of
√
2 via Catalan’s [1] infinite product expansion of

√
2. The mechanics of proof

are largely analogous to Conway’s, however we find a simpler proof that our truncated approx-

imation is sufficiently accurate to compute. This simpler proof also carries over to PIGAME:

one then sees a posteriori that a simpler and faster program could be written to compute the

decimal expansion of π.
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Notice that you can identify which part of the flow chart a given fraction corresponds to

by looking at the prime decomposition of the numerator and denominator. For instance, the

fraction 41/115 corresponds to moving from node 23 to node 41. We start at node 23, meaning

the register N has exactly one copy of 23 in its prime decomposition. For a given prime p,

Conway defines rp as the power of p in the prime decomposition of the register N , so here

r23 = 1. Since 115 = 23× 5, multiplying (41N)/115 clears 23 from the register (so r23 = 0)

and puts 41 in its place, since after the multiplication N has updated to have r41 = 1. As

we move from the 23 cell/node to the 41 one, the program tells us to adjust N by reducing

r5 by 1. In full generality, if one goes from a node labelled p to a node labelled q and the

program requires us to update N by multiplying by the fraction M1/M2, the resulting fraction

in our code is M1q
M2p

. To make this all work smoothly, it is important to have different primes

corresponding to the nodes and the actual program.

The arrow which we are discussing in the flow chart is third in the hierarchy of Figure 1.

The arrow going to node 73 ranks first, and the arrow going to node 79 is second. Hence, the

corresponding fractions (namely 365/46 and 79/575) must come before 41/115 in the code.

Note that when the machine is at the 23 node, all other fractions in the code will not adjust the

register as fiN ∈ N if, and only if, 23 is in the denominator of the fraction fi. So they do

not play a role at all when we are at this stage. However, we have to list these three fractions

corresponding to the 23 node in the order mandated by the arrows. This means we want to

always go to 73 node first until that will violate the rules of FRACTRAN. In particular, every

time we go to the 73 node, r2 will decrease by 1 and r5 will increase by 1. This stops when

r2 = 0, because if r2 = 0, multiplying N by 5/2 will not be a whole number, and analogously

for all later arrows.

Remark 3.2. Conway has an unwritten convention of arranging the fractions in his code in

order of decreasing denominators. There have to be some exceptions to this depending on the

code. We have just discussed how the fraction 41/115 corresponds to the arrow moving from

node 23 to node 41; but all other arrows emanating from node 23 come before this arrow in the

hierarchy and so their corresponding fractions must come before 41/115 in the code. That is

why, for instance, 365/46 is located as the first fraction despite 46 being a small denominator

in the list.

Remark 3.3. There is a small bug in Conway’s code, known to experts, where he incorrectly

states the code starts at 2n. A corrected statement is presented here.

4. THE PROOF OF PIGAME: SETUP

Since the proof of Theorem A is based on PIGAME, and his proof that the algorithm actually

works is short on details, it is natural first to discuss the proof and fill in some of the steps. For

n ∈ N, the claim is that running PIGAME will compute the n-th decimal digit of π. The flow

chart breaks into three phases.

Phase 1 From node 89 to node 83, the program computes E, an even number ≥ 4× 210
n

.

Phase 2 From node 83 to node 41, the program computes

10nNE = 10n2E(E − 2)2 . . . 4222, and

DE = (E − 1)2(E − 3)2 . . . 3212.

Phase 3 The program computes the integer part of 10nNE

DE
and reduces it modulo 10.
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The mechanism of these phases are all fully explained in [2]. The number computed in Phase

3 is the n-th term in the decimal expansion of

πE =
NE

DE
=

2E(E − 2)2 . . . 4222

(E − 1)2(E − 3)2 . . . 3212
.

Multiplying the numerator of πE by 10n shifts the decimal unit of πE exactly n places to the

right. Taking the floor function turns this into an integer, and reducing mod 10 allows us to

find the n-th term in the decimal expansion of πE . To complete the proof, one has to compute

explicitly how close πE is to π. Another issue to bear in mind comes from the well-known fact

that two numbers can be very close together but have differing decimal expansions due to the

identification 1 = 0.999̇.

So, to show the program actually works, it remains to prove that the n-th decimal digit of π
and πE agree. To this end, Conway states without proof that

|π − πE | <
π

E
(1)

Then |π − πE | < π
E < 10−n, meaning π and πE agree to n decimal places unless one of them

has a decimal expansion containing only zeros from the n-th decimal place onwards (where we

make the usual identification 1 = 0.999̇). The proof thus reduces to two key steps; (i) establish

Equation (1), and (ii) show that 10nπE cannot be an integer.

5. ESTABLISHING EQUATION (1)

The first step is to show that π < πE holds for all E even. By way of contradiction, if

πE0 < π then πE0+2 < πE0 , since cancelling common terms we have

πE0+2 < πE0 ⇐⇒ E0(E0 + 2)

(E0 + 1)2
< 1

which is true for all E0. Iterating this argument we obtain (with E = 2j denoting the subse-

quence of even integers)

π = lim
E→∞

πE < πE0 < π

a contradiction. Now for E even, we define

πẼ = πE

(
E

E + 1

)

A directly analogous argument left to the reader shows that πẼ < π. Putting these two facts

together we obtain

πẼ < π < πE (2)

Equation (2) implies the desired Equation (1). This is a simple computation:

|π − πE | ∆
= πE − π <

π

E
⇐⇒ πẼ < π.

Note both inequalities in Equation (2) are used. The fact π < πE is used for
∆
=. Then

πE − π <
π

E
⇐⇒ πE < π

(
E + 1

E

)

which rearranges to the statement that πẼ < π, i.e. the other inequality in Equation (2).

Now we know π and πE are within 10−n of each other, it remains to show their decimal

expansion agrees in the n-th decimal place. To this end, Conway utilizes the following result.

Lemma 5.1. (Mähler’s irrationality measure) If p/q is any rational number with gcd(p, q) = 1,
∣∣∣∣π − p

q

∣∣∣∣ >
1

q42
.
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Write πE = p/q, with gcd(p, q) = 1. Applying Mähler’s Lemma

1

q42
<

∣∣∣∣π − p

q

∣∣∣∣ <
π

E
<

1

1042n
,

whence (since x → x42 is an increasing function) q > 10n. Assume that

10nπE =
10nNE

DE
=

10np

q

is an integer. Since q > 10n, there is a prime number r whose multiplicity in the prime

decomposition of q is greater than the multiplicity of r in the prime decomposition of 10n (the

power of r could be zero in the prime decomposition of 10n). Hence r divides p, which is a

contradiction as p and q are coprime. This proves fully that Conway’s algorithm works.

There is actually an elementary proof that 10np
q is not an integer. This will used in the proof of

our first main theorem since there is no irrationality measure for
√
2 (it is algebraic). Supposing

10np
q is an integer means that q divides 10n. Since q is odd, that implies q = 5j where j ≤ n.

However, when we cancel all the common factors in NE and DE to get p and q, we cannot

cancel the largest prime in DE . This is a consequence of Dirichlet’s theorem, which states

there must be at least one (odd) prime between E and E/2: this number is greater than 5, and

no number in NE divides into it. This is the desired contradiction

Remark 5.2. It is apparent from our discussion that PIGAME can be simplified: there is no

need to generate such a large E. The size of E is exploited when using Mähler’s irrationality

measure, but we have seen this is not needed.

6.
√
2GAME

Our first main result is as follows.

Theorem A. When started at 2n · 173, the Fractran code

424375

173
,
101

1067
,
89

291
,
13

194
,
4897

97
,
2425

101
,
1243

89
,
89

565
,
4949

113
,
109

13
,
3159

763
,
97

109
,
321

83
,

83

1177
,

103

107
,
365

206
,
29

721
,

79

64375
,

41

2575
,
103

73
,
71

29
,
638

355
,
4393

4189
,
73

71
,
71

191
,
1525

79
,
79

122
,
12931

183
,
107

61
,

2669

12931
,
149

1273
,
18745

521461
,
31

67
,
329322079

18055
,
67

157
,
157

131
,
385447

2533
,
151

149
,
149

139
,
2329

7097
,
67

151
,

151

137
,
67

163
,
938

1333
,
61

31
,

7

943
,
254

41
,
41

11
,
1

3
,
1

7
,
1

13
,
1

17
,
1

19
,
1

23
,
1

47
,

1

1024
,
53

127
,
2921

371
,
41

53
,

will terminate at 2
√
2(n), where

√
2(n) is the n-th digit in the decimal expansion of

√
2.

This list of fractions is generated from the flow chart in Figure 4, where we label each node

with a distinct prime number and break all loops up as per Conway’s algorithm. For economy

of space, the term 1/C in the figure refers to the list of fractions

1

3
,
1

7
,
1

13
,
1

17
,
1

19
,
1

23
,
1

47
,

1

1024
.

It is obvious from the flow chart that our proof is based on PIGAME. Theorem B, presented

in the next section, will show a more standard algorithm for computing
√
2. Nevertheless,√

2GAME has the merit of fitting into the same framework as PIGAME.
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also generate DE , which has a different form than the denominator of πE . We break each pass

around the region into part (i), where we travel up from node 107, and part (ii), going down

from node 61. Just as in PIGAME, part (i) sets r7 = 0 and multiples r5 by r7, storing this

number in r11. However we also transfer r59 to r23 and reset r59 = 0.

Moving onto part (ii) of our loop, the hierarchy of arrows (corresponding to the order we

carry out the operations) becomes more delicate. As in PIGAME, we transfer r11 to r3, while

preserving r11. Note r5 decreases by 2 (as opposed to Conway, who decreases r5 by 1). With

this modified value of r5, we multiply r3 by r5, storing this in r7. Then we add 1 to r5 (storing

it in r17), and multiply this new number by r23, storing it in r59. The program continues in

this phase until r5 reaches a value of 2. The program then starts phase (i) of the final loop, but

cannot go to phase (ii) of the loop and exits to start phase (iii) at node 41. At the end of the

second phase r11 = 10nNE and r23 = DE . In the following chart, we summarize how each

register updates during the second phase, breaking each loop into (i) and (ii) schematically.

up (i) down (ii)

r11 = r5.r7 r3 = r11
r5 = r5 r5 = r5 − 2
r7 = 0 r7 = r3 · r5

r23 = r59 r17 = r5 + 1
r59 = 0 r59 = r23 · r17

To clarify the proof, let us explicitly perform four loops of the second phase (numbered I–

IV) in the following table. Each loop is broken into parts (i) and (ii).

I(i) I(ii) II(i) II(ii)

r11 = 10nE r5 = E − 2 r11 = (E − 2)2 r5 = E − 4
r5 = E r7 = E − 2 r5 = E − 2 r7 = 10n(E)(E − 4)
r23 = 1 r17 = E − 1 r7 = 0 r17 = E − 3

r7 = r59 = 0 r3 = 10nE r23 = E − 1 r3 = (E − 2)2

r59 = E − 1 r59 = (E − 1)(E − 3)

III(i) III(ii)

r11 = 10n(E)(E − 4)2 r5 = E − 6
r5 = E − 4 r7 = (E − 2)2(E − 6)

r7 = 0 r17 = E − 5
r23 = (E − 1)(E − 3) r3 = 10n(E)(E − 4)2

r59 = (E − 1)(E − 3)(E − 5)

IV(i) IV(ii)

r11 = (E − 6)2(E − 2)2 r5 = (E − 8)
r5 = (E − 6) r7 = 10n(E)(E − 4)2(E − 8)

r7 = 0 r17 = (E − 7)
r23 = (E − 1)(E − 3)(E − 5) r59 = (E − 1)(E − 3)(E − 5)(E − 7)

r59 = 0 r3 = (E − 6)2(E − 2)2

Continuing on one more loop and recording the key register of interest, note that at the end

of loop V(i) we have r11 = 10nE(E − 4)2(E − 8)2. Since r5 ≡ 2 mod 4, the program will

complete an even number of full loops until r5 = 2. It will then go into phase (i) of an odd

numbered loop, but it cannot go into phase (ii) and so the program passes to the third phase

with r11 = 10nNE as claimed.

Moving into the third phase, we copy with obvious modifications the third phase of PIGAME

to compute the n-th decimal of
√
2E . The balance of the proof will involve two steps.
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Step 1 Establish the inequality

|
√
2−

√
2E | <

2
√
2

E
. (3)

Step 2 Show that 10n
√
2E is not an integer.

Since 2
√
2

E < 10−n, Steps 1 and 2 together prove that the program computes the n-th term

in the decimal expansion of
√
2, just as in PIGAME. To prove Equation (3), firstly we show√

2E >
√
2. If to the contrary

√
2E0

<
√
2 for some E0 = 4j + 2, where j ∈ N, then

√
2E0+4 <

√
2E0 ⇐⇒ E2

0 + 4E0 < E2
0 + 4E0 + 3

which is obviously true. Since the sub-sequence
√
24j+2 →

√
2, we again easily derive a

contradiction in the exact same manner as in the proof of PIGAME. Setting

√
2Ẽ =

(
E

E + 2

)√
2E ,

an analogous proof shows that
√
2Ẽ <

√
2. In summary for all E = 4j + 2 we have

√
2Ẽ <

√
2 <

√
2E . (4)

However, Equation (4) is equivalent to Equation (3), as

|
√
2−

√
2E | ∆

=
√
2E −

√
2 <

√
2

x
⇐⇒

√
2E <

√
2

(
x+ 1

x

)

where
∆
= uses the second inequality of Equation (4). However Equation (4) establishes

√
2Ẽ <√

2. Choose now x = E/2 to obtain

√
2Ẽ =

(
x

x+ 1

)√
2E

and we see that Equation (3) immediately follows from the first inequality in Equation (4).

The final step is to prove 10np
q is never an integer, where

√
2E = p

q with p and q coprime.

This is directly analogous to our explanation for PIGAME, and the proof of Theorem A is now

complete. �

7. NR
√
2GAME

7.1. Description. The standard way to approximate
√
2 is to use Heron’s algorithm, or equiv-

alently the Newton–Raphson method applied to the function f(x) = x2 − 2 with initial guess

x1 = p1/q1 = 1/1. This updates via

xk+1 =
pk+1

qk+1
=

p2k + 2q2k
2pkqk

.

We claim that computing x2n will generate a rational number sufficiently close to
√
2 to agree

to n decimal places. Encoding this as a FRACTRAN program is our second main result.

Theorem B. Starting at 2n · 89, the following FRACTRAN code terminates at 2
√
2(n):

4979909

89
,
227, 123, 851

466
,
233

239
,
11809

23533
,
241

251
,
60, 993

1687
,
267

723
,
267

257
,
17355

2827
,
277

267
,
271

277
,
3047

1355
,

241

277
,
2959

1205
,
233

241
,
283

233
,
859579

8207
,
283

281
,
24278273

18961
,
307

283
,
313

5833
,
3170

2191
,
313

317
,
331

313
,
2359

1655
,

307

331
,
311

307
,
8903

622
,
347

307
,

359

14227
,
3350

15437
,
359

353
,
367

359
,
16039

16515
,
367

347
,
17101

694
,
379

347
,
397

9475
,
389

397
,
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Lemma 7.1. Suppose that f is a smooth function on [1, 2] with |f ′| ≥ L and |f ′′| < M for

some L, M > 0. If f(r) = 0, then the error which arises from applying the Newton-Raphson

algorithm to f , starting at x1, N times is given by

|xN+1 − r| < M

2L
|xN − r|2.

Proof of Theorem B. To compute the n-th decimal digit of
√
2, we need to estimate ǫN :=

|xN −
√
2|. For later use ǫ1 = 1

2 . By induction, it is clear that xk ∈ [1, 2] for all k ∈ N.

Applying the standard error estimates for Newton’s method with f(x) = x2 − 2, we have

|f ′′| = 2 and 2 ≤ |f ′(x)| ≤ 4 on [1, 2]. We iterate the error bound from Lemma 7.1 to obtain

ǫN <

(
1

2

)
ǫ2N−1 <

(
1

4

)
ǫ4N−2 . . . <

ǫ2N1
2N

=
1

23N
.

This shows that

ǫN <
1

10n+1
⇐⇒ 1

23N
<

1

10n+1

which clearly holds if N = 2n. With this error bound xN and
√
2 must agree up to the n-th

decimal place, once we know that 10np2n
q2n

is not an integer.

To establish this last claim, assume to the contrary that

10n(p22n−1 + 2q22n−1)

2p2n−1q2n−1
(5)

is an integer. With p1 = q1 = 1, it follows pn is odd and qn is even for all n > 1. Let λ be

a prime divisor of q2n−1. Then λ = 5 or λ|p22n−1 + 2q22n−1, in which case λ|p2n−1. So every

prime divisor of q2n−1 aside from 5 divides into p2n−1, meaning we can write

p2n−1

q2n−1
=

µ

5j

where µ is an even integer with gcd(5, µ) = 1. Feeding this into Equation (5) yields

10n(p22n−1 + 2q22n−1)

2p2n−1q2n−1
=

10n(µ2 + 2(52j))
2µ
5j

∈ N

which implies that

53j+n2n

µ
∈ N,

whence µ = 2r for some r ∈ N. Putting this all together yields

p2n−1

q2n−1
=

2r

5j
.

Cross-multipying yields a contradiction as it implies an even number is equal to an odd one. �
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APPENDIX: CONVERTING A FLOW CHART INTO A FRACTRAN CODE

The following code converts our flow charts into their corresponding list of FRACTRAN frac-

tions. For a single node in the flow chart, we write a line describing to what node it is con-

nected and through what fraction. Line 17 then shows how you convert that line into a series

of fractions. This is described more in Section 8 of [2]. In a single line the order in which the

connections are listed handles the hierarchy of the arrows.

#Each l i n e s h o u l d be P , a / b−>Q, c / d−>R , . . .

wi th open ( ’ f r a c n . t x t ’ ) a s f i l e :

f r a c t i o n L i s t = l i s t ( )

f r a c t i o n F a c t o r e d = l i s t ( )

f o r l i n e in f i l e :

e n t r i e s = l i n e . s p l i t ( ’ , ’ )

P = e n t r i e s [ 0 ]

f o r e n t r y in e n t r i e s [ 1 : ] :

p r i n t ( e n t r y )

a , temp = e n t r y . s p l i t ( ’ / ’ )

b ,Q = temp . s p l i t ( ’−> ’ )

Q = Q. s t r i p ( )

f r a c t i o n F a c t o r e d . append ( a+ ’ * ’+Q+ ’ / ’+b+ ’ * ’+P )

aQ = s t r ( i n t ( a )* i n t (Q) )

bP = s t r ( i n t ( b )* i n t ( P ) )

f r a c t i o n L i s t . append ( aQ+ ’ / ’+bP )

p r i n t ( f r a c t i o n F a c t o r e d )

p r i n t ( f r a c t i o n L i s t )

w i th open ( ’ f r a c t i o n s . t x t ’ , ’w’ ) a s f i l e :

f i l e . w r i t e ( ’ , ’ . j o i n ( f r a c t i o n L i s t ) )

w i th open ( ’ f r a c t i o n s F a c t o r e d . t x t ’ , ’w’ ) a s f i l e :

f i l e . w r i t e ( ’ , ’ . j o i n ( f r a c t i o n F a c t o r e d ) )
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Commutators of the Unilateral shift and adjoint for reproducing kernel

Hilbert spaces on the disk

NATHAN PARKER

Abstract. We generalise the result of Berger and Shaw [2] the trace formula for
Hardy Hilbert space to a larger class of rotation invariant Hilbert function spaces on
the unit disk. We also demonstrate many meaningful examples of these Hilbert spaces
by computing the inner products. We also extend to a wider class than the unilateral
shift, that is, weighted shifts under certain restrictions.

1. Introduction

This paper proves an extension of the Berger-Shaw theorem regarding the trace
formula for the shift and its adjoint. Berger and Shaw dealt with the Hardy Hilbert
space on the disk while we extend to a class of rotation invariant Hilbert function
spaces on the disk; remarkably, all these trace formulas involve Dirichlet space. A
recent summary of the historical progress made relating to the trace formula can be
found in [12].

2. Reproducing Kernel Hilbert Spaces on the Disk

Definition 2.1 (Reproducing kernel Hilbert space). A reproducing kernel Hilbert space
RKHS on a domain D ⊆ C is a complex Hilbert space H of functions on D such that
the maps of point evaluations f → f(z) are continuous linear functionals. For all z ∈ D
there exists a unique Kz ∈ H such that 〈f,Kz〉 = f(z). Let K(z, w) = 〈Kw,Kz〉H .

Lemma 2.2. Let H be a RKHS:

(1) Suppose that z → Kz is a weakly continuous map D → H. Then the function
(z, w) → K(z, w) is continuous for all z, w.

(2) Suppose further that ∫

Γ
K(z, w)dz = 0

for all contours Γ in D. Then f(z) = 〈f,Kz〉 is holomorphic on D.

Proof. (1) By the weak continuity of z → Kz, the map z → 〈f,Kz〉 is continuous
for all f ∈ H. We let f = Kw and we have z → 〈Kw,Kz〉 = K(z, w) continuous.
The same argument holds for w and, by symmetry, we have joint continuity of
the map.

(2) This is due to Morera’s theorem.
�
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Definition 2.3 (Rotation Invariance). For the open unit disc D, say that a reproducing
kernel Hilbert space is rotation invariant if Rθ : f(z) 7→ f(eiθz) gives a linear isometric
isomorphism on H.

An invertible isometry is a unitary, so R−θ = R†
θ.

Definition 2.4 (Dirichlet Space). The Dirichlet space D on the unit disk D is the space
of holomorphic functions such that, for all f ∈ D, we have∫

D

|f ′(z)|2dA(z) < ∞.

The inner product is given by

〈f, g〉D = f(0)g(0) +
1

π

∫

D

f ′(z)g′(z) dA(z).

The Dirichlet space D gives a RKHS on D. Let D0 be the closed linear subspace

D0 = {f ∈ D : f(0) = 0} of D. The orthonormal basis of D0 is given by
{

1√
n
zn
}∞

n=1
.

Let

f(z) =

∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n,

then

〈f, g〉 =
∞∑

n=1

(n+ 1)anbn.

From here onwards we assume (αn)
∞
n=0 is a sequence of positive real numbers.

Definition 2.5. For each sequence α = (αn)
∞
n=0 such that

lim sup
n→∞

(αn)
1
n = 1,

let Hα be the Hilbert space whose elements are power series f, g ∈ Hα given by

f(z) =

∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n

with inner product given by

〈f, g〉Hα =
∞∑

n=0

anbnαn.

3. Main Theorem

Theorem 3.1. Let α = (αn)
∞
n=0 obey

lim
n→∞

αn+1

αn
= 1

and suppose that α is concave or convex. The following properties hold:

(1) Hα is a rotation invariant Hilbert space.
(2) Hα has reproducing kernel

Kw(z) =
∞∑

n=0

wnzn

αn
.

(3) Let S be the unilateral shift Sf(z) = zf(z). Then S is a bounded linear operator
on Hα.
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(4) The adjoint shift S† on Hα acting on

f(z) =
∞∑

n=0

anz
n

is given by

S†f(z) =
∞∑

n=0

αn+1

αn
an+1z

n.

(5) The commutator of S and S† is trace class and for all polynomials f and g

〈〈f, g〉〉Han
= tr

(
g(S)†f(S)− f(S)g(S)†

)
=

1

π

∫

D

f ′(z)g′(z) dA(z).

Proof. (1) We have

‖f(eiθz)‖2Hα
=

∞∑

n=0

|aneinθ|2αn = ||f ||2Hα
.

(2) We have

f(w) =
∞∑

n=0

anw
n =

∞∑

n=0

αnan
wn

αn
= 〈f,Kw〉Hα .

Hence

Kw(z) =
∞∑

n=0

wnzn

αn
.

(3) Firstly, we have S(λf + g) = z(λf + g) = λzf + zg = λSf + Sg hence S is
linear. Now we have

‖f‖2Hα
=

∞∑

n=0

|a2n|αn

and

‖Sf‖2Hα
=

∞∑

n=0

|a2n|αn+1 =
∞∑

n=0

|a2n|αn
αn+1

αn
.

Hence, since we know the series obtained by

sup
n∈N0

{
αn+1

αn

} ∞∑

n=0

|a2n|αn

is convergent, and we have

sup
n∈N0

{
αn+1

αn

} ∞∑

n=0

|a2n|αn ≥
∞∑

n=0

|a2n|αn
αn+1

αn
,

we must have

‖Sf‖2Hα
≤ sup

n∈N0

{
αn+1

αn

}
||f ||2Hα

.

Hence S is a bounded operator.
(4) The adjoint shift must satisfy 〈Sf, g〉Hα = 〈f, S†g〉Hα . We have

〈Sf, g〉Hα =
∞∑

n=1

an−1bnαn, 〈f, S†g〉Hα =
∞∑

n=0

anbn+1αn+1

and these are equal by change of indices. Hence, the operator described must
be the adjoint shift.



38 PARKER

(5) We first consider f(z) = g(z) = zm and consider the operation on elements of
the orthogonal basis {zn}∞n=0. We have:

zn zn+m αn+m

αn
znSm (S†)m

.

Also:

zn
n−m+ 1

2
+|n−m+ 1

2
|

2(n−m+ 1
2
)

αn

αn−m
zn−m n−m+ 1

2
+|n−m+ 1

2
|

2(n−m+ 1
2
)

αn

αn−m
zn

(S†)m Sm

.

Hence we split into two cases to compute the trace. For m > n,(
S†mSm − SmS†m

)
zn =

αn+m

αn
zn.

For m ≤ n we have
(
S†mSm − SmS†m

)
zn =

(
αn+m

αn
− αn

αn−m

)
zn.

Hence we have

tr
(
S†mSm − SmS†m

)
=

m−1∑

n=0

αn+m

αn
+

∞∑

n=m

αn+m

αn
− αn

αn−m
. (1)

We proceed to show this is absolutely convergent. Since α is convex, the se-
quence αn+1

αn
is non-increasing by 4.1 of [9], hence the series in (1) contains all

positive terms and the series is absolutely convergent. In this case the series
mostly cancels and we are left with

lim
N→∞

N∑

n=N−m+1

αn+m

αn
= m

due to our ratio test assumption of

lim
n→∞

αn

αn+1
= 1.

The concave case is similar. Hence we have

tr
(
S†mSm − SmS†m

)
= m.

Hence [S†m, Sm] may be represented by a diagonal matrix with respect to the

orthonormal basis
{

zn√
αn

}∞

n=0
of Hα. This is the same orthonormal basis as D0

hence these Hilbert spaces are equal and the inner products are identical. This
proves this part of the theorem.

�

4. Generalisation to Weighted Shift

Definition 4.1. Given a Hilbert space H with orthonormal basis {zn}∞n=0 and a weight
r = {rn}∞n=0 of complex numbers where supn |rn| < ∞, a weighted shift on H is an
operator Sr ∈ B(H) defined by Srzn = rnzn+1

Theorem 4.2. Let α = (αn)
∞
n=0 obey

lim
n→∞

αn+1

αn
= 1

and suppose α is concave or convex. Further suppose Sr is a weighted shift for which

lim
n→∞

|rn| = 1.
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The commutator of Sr and S†
r is trace class for all polynomials f and g and we have

〈〈f, g〉〉rHan
= tr

(
g(Sr)

†f(Sr)− f(Sr)g(Sr)
†
)
=

1

π

∫

D

f ′(z)g′(z) dA(z).

Proof. We begin by explicitly stating the adjoint shift S†
r on f ∈ Hα. We have

S†
rf =

∞∑

n=0

αn+1

αn
an+1rnz

n.

We now mimic the proof of the unilateral case; consider f(z) = g(z) = zm. We have
the following:

zn
∏n+m−1

i=n riz
n+m

∏n+m−1
i=n |ri|2 αn+m

αn
zn

Sm
r (S†

r)
m

.

Also:

zn
n−1∏

i=n−m

ri
n−m+ 1

2 + |n−m+ 1
2 |

2(n−m+ 1
2)

αn

αn−m
zn−m(S†

r)
m

n−1∏

i=n−m

|ri|2
n−m+ 1

2 + |n−m+ 1
2 |

2(n−m+ 1
2)

αn

αn−m
zn

Sm
r

We split into two cases to compute the trace. For m > n,

(
S†
r
m
Sm
r − Sm

r S†
r
m
)
zn =

n+m−1∏

i=n

|ri|2
αn+m

αn
zn.

For m ≤ n we have

(
S†
r
m
Sm
r − Sm

r S†
r
m
)
zn =

(
n+m−1∏

i=n

|ri|2
αn+m

αn
−

n−1∏

i=n=m

|ri|2
αn

αn−m

)
zn.

Hence we have

tr
(
S†
r
m
Sm
r − Sm

r S†
r
m
)
=

m−1∑

n=0

n+m−1∏

i=n

|ri|2
αn+m

αn
+

∞∑

n=m

n+m−1∏

i=n

|ri|2
αn+m

αn
−

n−1∏

i=n−m

|ri|2
αn

αn−m
.

By similar arguments we are left with

lim
N→∞

N∑

n=N−m+1

n+m−1∏

i=n

|ri|2
αn+m

αn
.

By our assumption on the limits of the weights, this also uniformly converges to m and
the same argument holds on the orthonormal bases. �

5. Examples

Definition 5.1 (Polylogarithm function). The polylogarithm function defined for n ∈ N

and |z| < 1 is given by

Lin(z) =

∞∑

k=1

zk

kn
.
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This is extended to C by analytic continuation. We observe that these functions have
the property

Lin+1(z) =

∫ z

0

Li(t)

t
dt

and Li1(z) = − ln(1− z).

Example 5.2. For the sequences αn in the top line of the given table, the corresponding
RKHS on the disc has orthonormal basis, reproducing kernel and inner product given
on successive lines below αn. Given γ > −2 and Γ is Euler’s gamma function and our
αn may be zero for up to finitely many elements.

αn 1 n n+ 1 n2(n− 1)

ONB {zn}∞n=0

{
1√
n
zn
}∞

n=1

{
1√
n+1

zn
}∞

n=0

{
1

n
√
n−1

}∞

n=2

Kw(z)
wz

1−wz − ln(1− wz) − ln(1−wz)
wz − 1 2wz + ln

(
(1− wz)1−wz

)
− Li2(wz)

〈., .〉 H2(D) D0 D 1
π

∫

D

f ′′(z)g′′(z)dA(z)

αn
1
n

1
n+1

Γ(β+1)

(γ+2n+2)(1+β)

ONB {√nzn}∞n=1

{√
n+ 1zn

}∞
n=0

{
(γ+2n+2)

1+β
2√

Γ(β+1)
zn
}∞

n=0

Kw(z)
wz

(1−wz)2
wz(2−wz)
(1−wz)2

∞∑

n=1

(γ + 2n+ 2)(1+β)

(n− k + 1)Γ(β + 1)
wnzn

〈., .〉 A2(D)0 A2(D)

∫

D

f(z)g(z)|z|γ (log 1/|z|)β dA(z)

π

αn
(n−k+1)Γ(β+1)

(γ+2n+2)(1+β)

k∏

i=2

(n− k + i)2

ONB

{
(γ+2n+2)

(1+β)
2√

(n−k+1)Γ(β+1)

k∏

i=2

1

(n− k + i)
zn

}∞

n=k

Kw(z)
∞∑

n=k

(γ + 2n+ 2)(1+β)

(n− k + 1)Γ(β + 1)

k∏

i=2

1

(n− k + i)2
wnzn

〈., .〉
∫

D

f (k)(z)g(k)(z)|z|γ (log 1/|z|)β dA(z)

π

Proof. We show computation of the reproducing kernels and inner products. Let ζ = wz
so that we have |ζ| ≤ 1.

• αn = n2(n− 1). We have

Kw(z) =
∞∑

n=2

ζn

n2(n− 1)
.

We differentiate to obtain

d

dζ
Kw(z) =

∞∑

n=2

ζn−1

n(n− 1)
=

∞∑

n=2

ζn−1

n− 1
−

∞∑

n=2

ζn−1

n
.
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By change of indices we obtain:

d

dζ
Kw(z) =

∞∑

n=1

ζn

n
−

∞∑

n=1

ζn

n+ 1
.

These are computed similarly by differentiating using the geometric series for-
mula, with a change of index for the second term. We hence obtain

d

dζ
Kw(z) = − ln(1− ζ) +

ln(1− ζ)

ζ
+ 1

which we integrate by [4] (2.711), (6.254) to obtain

Kw(z) = 2ζ + (1− ζ) ln(1− ζ)− Li2(ζ).

• αn = (n−k+1)Γ(β+1)

(γ+2n+2)(1+β)

k∏

i=2

(n− k + i)2. We have

Kw(z) =
1

Γ(β + 1)

∞∑

n=k

ζn(γ + 2n+ 2)β+1

n− k + 1

k∏

i=2

1

(n− k + i)2
.

This can be computed for any integral values β, k for example we consider, β = 2
and k = 3. We obtain

1

2

∞∑

n=3

ζn
(γ + 2n+ 2)2

(n− 2)(n− 1)2n2
.

By partial fractions we obtain:

1

8

∞∑

n=3

ζn
(
γ2 + 12γ + 36

n− 2
+

4γ2 + 16γ

n− 1
− 2γ2 + 8γ + 8

n2
−

5γ2 + 28γ + 36

n
− 4γ2 + 32γ + 64

(n− 1)2

)
.

We use standard series formulae results to obtain:

1

8

(
− (γ2 + 12γ + 36)(ζ2 ln(1− ζ))− (4γ2 + 16γ)(ζ ln(1− ζ) + ζ2)+

(2γ2 + 8γ + 8)

(
ζ +

ζ2

4
− Li2(ζ)

)
+ (5γ2 + 28γ + 36)

(
ln(1− ζ)+

ζ +
ζ2

2

)
+ (4γ2 + 32γ + 64)(ζ2 − ζ Li2(ζ))

)
.

We see we can calculate these for any values as shown. �

6. Closing Remarks

The result of our main theorem here gives an instance of the Carey Pincus formula,
that is, if T = X + iY is such that X,Y are bounded self-adjoint operators where the
commutator [X,Y ] is trace class and T acts on a Hilbert space H, then for any pair of
polynomials

p(x, y) =

n∑

j,k=1

ajkx
jyk, q(x, y) =

n∑

j,k=1

bjkx
jyk,

there exists a positive, integrable, compactly supported function gT : R2 → R known
as the principal function such that

tr[p(X,Y ), q(X,Y )] =
1

2πi

∫

C

(
∂p

∂x

∂q

∂y
− ∂p

∂y

∂q

∂x

)
gT (x, y)dxdy.
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Specifically, when H obeys our assumptions, we obtain that gT = 1. Variations of this
trace formula are used in the context of invariant subspaces of Hilbert space. Some
discussion is found in [7] and [6]. We note that the sequences discussed here are natural
to consider; by 4.1 of [10] we have that such sequences arise from Fourier transforms of
L1 functions.
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Wiring Switches to More Light Bulbs

STEPHEN M. BUCKLEY AND ANTHONY G. O’FARRELL

Abstract. Given n buttons and n bulbs so that the ith button toggles the ith bulb
and perhaps some other bulbs, we compute the sharp lower bound on the number of
bulbs that can be lit regardless of the action of the buttons. In the previous article
we dealt with the case where each button affects at most 2 or 3 bulbs. In the present
article we give sharp lower bounds for up to 4 or 5 wires per switch, and we show that
the sharp asymptotic bound for an arbitrary number of wires is 1

2
. (Even if you’ve

found their buttons, you can please no more than half the people all the time!)

1. Introduction

1.1. The function µ(m,n). This article is a continuation of [2], and we refer to that
article for motivation and context. The focus of our attention is the function µ(n,m),
which counts the minimum number of bulbs that can always be lit by some switching
choice when each of n bulbs has a dedicated button (=switch) that switches it and up
to m− 1 other bulbs on or off. The problem is rephrased in precise terms using vectors
and matrices over F2, the field with two elements, as follows:

Each conceivable wiring from n buttons to r bulbs may be represented by an element
of the set M(n, r,F2) of all n × r matrices over F2, by letting column i represent the
effect of button i. Replacing n and r by their maximum, and filling in with zeros, we
might as well use square matrices, so for us a wiring corresponds to a directed graph G
on n vertices, represented by an n× n matrix W over F2. A column vector in F

n
2 may

represent either the state (lit or unlit) of the n bulbs, or a choice (press or don’t press)
for n buttons. The effect of switch choice x on state c gives state Wx+ c.

We are focussed on wirings with 1 on the diagonal, and we call these admissible
wirings, but we shall have occasional use for inadmissible wirings.

The Hamming norm | · | : Fn
2 → Z≥0 is defined by letting |u| be the the number of 1

entries in u. We define M(W, c) := max{ |Wx+ c| : x ∈ Zn
2 }; it represents the maximal

number of bulbs that can be lit by a choice of switches, given initial state c.
Given a wiring W , the associated degree of vertex i is the Hamming norm of the i-th

column of W (the out-degree of node i in the graph G, the number of bulbs affected by
button i). The degree of W is the maximum associated degree.

For any n ∈ N, and any set A of n× n matrices over F2, we define

µA = min{M(W, 0) | W ∈ A} ,
νA = min{M(W, c) | W ∈ A, c ∈ F

n
2}.

For n,m ≥ 1, let A(n,m) be the set of n×n matrices over F2 that have 1s all along the
diagonal and satisfy deg(W ) ≤ m. For n ≥ m ≥ 1, let A∗(n,m) be the set of matrices
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44 BUCKLEY AND O’FARRELL

in A(n,m) for which deg(i) = m, for all i ∈ S. The class of all admissible wirings on n
vertices is A(n) := A(n, n).

The functions we study are:

µ(n,m) := µA(n,m) , µ∗(n,m):= µA∗(n,m) , µ(n) := µ(n, n) ,

ν(n,m) := νA(n,m) , ν∗(n,m) := νA∗(n,m) , ν(n) := ν(n, n) ,

It is convenient to define µ(0,m) = 0 for all m ∈ N. Given n ≥ m, we have the following
trivial inequalities:

ν(n,m) ≤ ν∗(n,m) ≤ µ∗(n,m)(1.1.1)

ν(n,m) ≤ µ(n,m) ≤ µ∗(n,m)(1.1.2)

1.2. Results. General formulae for ν and ν∗, and formulae for µ(·,m) and µ∗(·,m) for
m = 2, 3 were determined in [2]. We’ll summarise these in Section 2 below, but right
now we mention only that if m = 2, 3, then µ(n,m) and µ∗(n,m) are asymptotic to
2n/3 as n → ∞. By contrast, we will see that for m = 4, 5, both functions µ(n,m) and
µ∗(n,m) are asymptotic to 4n/7. In fact we have the following result:

Theorem 1.1. Let n ∈ N.

(a) For j = 4, 5, µ(n, j) is given by the equation

µ(n, j) =





⌈
4n

7

⌉
, n 6= 7k − 2 for some k ∈ N,

⌈
4n

7

⌉
+ 1 = 4k, n = 7k − 2 for some k ∈ N.

(b) If n ≥ 3, then µ∗(n, 4) = 2

⌈
2n

7

⌉
, the least even integer not less than µ(n, 4).

It is not hard to show that µ(n,m) ≥ n/2 for all n,m ∈ N. This is asymptotically
sharp according to the following result.

Theorem 1.2. lim
n→∞

µ(n)/n = 1/2.

In fact, this shows that
µ(n)

ν(n)
→ 1 (cf. Theorem C below).

1.3. Outline. The article is organized as follows. After some introductory material
in Section 2, we consider µ(n,m) and µ∗(n,m) for numbers of the form (n,m) =
(2k+1 − 1, 2k) in Section 3. This special case involves a wiring related to Hadamard
matrices, and allows us to deduce Theorem 1.2.

In Section 4, we give an explicit upper bound U(n,m) for µ(n,m). This upper bound
has the appearance of being rather sharp: indeed, we know of no pair (n,m) such that
µ(n,m) < U(n,m). Whether µ(n,m) = U(n,m) for all n,m is an interesting open
question. The upper bound U(n,m) sheds light on the formulae for µ(n,m) given
above and in Section 2 which, although convenient for understanding the asymptotics
of µ(n,m) as n → ∞, do not seem to follow any clear pattern as m changes. The
sequence U(n, n) is connected to OEIS sequence A046699, which is of meta-Fibonacci
type, and has a number of combinatorial descriptions in terms of trees.

In Section 5, we prove that if µ(·,m) = U(·,m) for m = 2k − 2, then this equation
also holds for m = 2k + i, i ∈ {−1, 0, 1}. Theorem 1.1(a) will follow immediately from
this result but Theorem 1.1(b) still requires a proof, which can be found in Section 6.
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2. A recap of previous results and ideas

For ease of reference, we state and label some results from [2]. We need them either
for proofs or for comparison purposes.

2.1. Theorems from [2]. We begin by listing the three main results in [2]: in the
order listed below, these were Theorems 1.1, 1.2, and 3.2 in that article.

Theorem A. Let n ∈ N.

(a) µ(n, 2) =

⌈
2n

3

⌉
.

(b) If n ≥ 2, then µ∗(n, 2) = 2
⌈n
3

⌉
, the least even integer not less than µ(n, 2).

Theorem B. Let n ∈ N.

(a) µ(n, 3) = µ(n, 2).
(b) If n ≥ 3, then

µ∗(n, 3) =

{
4k − 1, n = 6k − 3 for some k ∈ N,

µ(n, 3), otherwise.

Note that µ∗(n, 3) = µ(n, 3) + 1 in the exceptional case n = 6k − 3.

Theorem C. Let n,m ∈ N, m > 1.

(a) ν(n) = ν(n,m) =
⌈n
2

⌉
.

(b) If n ≥ m, then

ν∗(n,m) =

{
ν(n,m) + 1, if n is even and m odd,

ν(n,m), otherwise.

In particular, ν∗(n, 2) = ν∗(n) = ν(n) for all n > 1.

2.2. Lemmas from [2]. The next four results were, in the order listed below, Lemmas
3.1, 5.1, and 5.2, and Corollary 3.3 in [2].

Lemma D. Let n ∈ N. For all W ∈ A(n) and c ∈ F
n
2 , the mean value of |Mx+ c| over

all x ∈ F
n
2 is n/2. In particular, M(W, c) ≥ n/2 and M(W, c) > n/2 if the cardinality

of {i ∈ [1, n] ∩ N | ci = 1} is not n/2.

Lemma E. Let m ≥ 2 and n ≥ 1. Then either µ(n+m,m) = µ(n+m,m− 1), or

µ(n+m,m) ≥ µ(n,m) + ν(m) = µ(n,m) +
⌈m
2

⌉
.

Lemma F. Let n,m, n′ ∈ N, with n ≥ m. Then

µ∗(n+ n′,m+ 1) ≤ µ∗(n,m) + n′ .

Corollary G. If λ is any one of the four functions µ, µ∗, ν, or ν∗, then λ(·,m) is
sublinear for all m:

(2.2.1) λ(n1 + n2,m) ≤ λ(n1,m) + λ(n2,m) ,

as long as this equation makes sense (i.e. we need n1, n2 ≥ m if λ = µ∗ or λ = ν∗).
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2.3. Edge functions. Associated with the graph G is its vertex set S (which we treat
as an initial segment S(n) := {1, . . . , n} of the set N of natural numbers) and the edge
function F : S → 2S , where j ∈ F (i) if there is an edge from i to j, and the backward
edge function F−1 : S → 2S , where j ∈ F−1(i) if there is an edge from j to i. We extend
the definitions of F and F−1 to 2S in the usual way: F (T ) and F−1(T ) are the unions of
F (i) or F−1(i), respectively, over all i ∈ T ⊂ S. We say that T ⊂ S is forward invariant
if F (T ) ⊂ T , or backward invariant if F−1(T ) ⊂ T . Given a wiring W , associated graph
G, and T ⊂ S, we denote by WT and GT the subwiring and subgraph, respectively,
associated with the vertices in T : more precisely, WT is the matrix obtained by deleting
all rows and columns of W other than those with index in T , and GT is obtained by
retaining only the vertices in T and those edges in G between vertices in T .

2.4. Pivoting. We now recall the concept of pivoting, as introduced in [2, Section 5].
Pivoting about a vertex i, 1 ≤ i ≤ n, is a way of changing the given wiring W to a
special wiring W i such that M(W i, c) ≤ M(W, c). Additionally, pivoting preserves the
classes A(n,m) and A∗(n,m).

Let us fix a wiring W = (wi,j) on n vertices, and let F : S → 2S denote the edge
function associated to W , where S = S(n). Given T ⊂ S, and i ∈ S, we define W i,T by
replacing the jth column of W by its ith column whenever j ∈ F (i) \ T . We refer to
the wiring W i,T as the pivot of W about i relative to T . If T is nonempty, we refer to
this process as partial pivoting, while if T is empty we call it (full) pivoting and write
Gi, W i, and F i for the resulting graph, matrix, and edge function, respectively.

As in [2], we use the notation K̂r to denote an augmented complete graph on r
vertices, i.e. a complete graph augmented by a loop at each vertex. Full pivoting about
vertex i just rewires F (i) so that it becomes a K̂deg(i), which is thus a forward-invariant

subgraph of W i.
We refer to a forward-invariant K̂r subgraph of a wiring graph W as an Fr (relative

to W ).
For t ∈ {0, 1}, we denote by tp×q the p × q matrix all of whose entries equal t, and

let tp = tp×p. The matrix of a K̂r, is 1r×r. This is (of course) different from the r × r
identity matrix Ir, except when r = 1.

Pivoting relative to any T is a process with several nice properties: it has the non-
increasing property M(W i,T , c) ≤ M(W, c), it preserves membership of the classes
A(n,m) and A∗(n,m), and if F i,T is the edge function of W i,T , then F i,T (i) = F (i)
is an augmented complete subgraph of the associated graph Gi,T , but might not be
forward invariant in Gi,T .

2.5. Graphical conventions. We continue the graphical conventions introduced in
[2]. Thus, we do not show loops or the internal edges in a K̂r, and a single arrow

issuing from K̂r represents r edges, one from each vertex in the K̂r, all sharing the
same target. If several arrows from a K̂r point to some K̂s, then distinct arrows have
distinct targets (so the number of arrows will not exceed s). For instance, Figure 1

shows three views of a K̂6. Notice how the 36 directed edges of the K̂6 are hidden to
varying degrees in this figure, and how the arrows represent multiple edges — two each
in the version with K̂2s, and three each in the version with K̂3s. To reduce clutter
further, we introduce the additional convention that an two-headed arc stands for a
pair of arrows, one in each direction. This gives the two more views of K̂6 shown in
Figure 2 in which individual two-headed arcs stand for up to six directed edges in the
K̂6.
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Figure 1. Views of K̂6

[h]

2

2
2 33

Figure 2. More views of K̂6

3. The case (n,m) = (2k+1 − 1, 2k)

3.1. We begin with some observations for general n,m that will be useful here or in
later sections. Trivially, µ(n,m) is nonincreasing as a function of m, but it is also easy
to see that it is also nondecreasing as a function of n: given a wiring W ∈ A(n,m) such
that |Wx| ≤ µ(n,m) for all x ∈ F

n
2 , it may be that vertex n has degree 1, in which case

it is clear that if W ′ is obtained by eliminating the last row and column of W , then
|W ′x′| ≤ µ(n,m) for all x′ ∈ F

n−1
2 .

If instead vertex n has degree larger than 1 then, by pivoting if necessary, we may
assume that vertex n forms a part of a forward invariant K̂j for some j > 1. Because
the effect of pressing vertex n is the same as the effect of pressing any other vertex in
the K̂j , the set of vectors Wx, as x = (x1, . . . , xn)

t ranges over all vectors in F
n
2 for

which xn = 0, coincides with the set of vectors Wx as x ranges over all of Fn
2 . It follows

that if we define W ′ as in the previous case, then |W ′x′| ≤ µ(n,m) for all x′ ∈ F
n−1
2 .

In contrast, we do not know whether or not µ∗(n,m) is an nondecreasing
function of n.

3.2. Another easily proven inequality is:

(3.2.1) µ(n+ 1,m) ≤ µ(n,m) + 1 .

To see this, we need only consider the matrix W ∈ A(n+1,m) which has block diagonal
form diag(W ′, I1), where W ′ ∈ A(n,m) satisfies M(W ′, 0) = µ(n,m).

3.3. We now prove a pair of closely related lemmas. We will only use the second one
in this section, but we will need the first one later.
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Lemma 3.1. Let m,m′, n ∈ N and m ≤ n. Then

µ(nm′,mm′) ≤ m′µ(n,m)

µ∗(nm′,mm′) ≤ m′µ∗(n,m)

Proof. Essentially the same proof works for µ and µ∗, so we write down only the one for
µ. LetW ∈ A(n,m) be such thatM(W, 0) = µ(n,m). We construct a new matrixW ′ by
replacing each entry wi,j in W by an m′×m′ block, each of whose entries is wi,j , i.e. W

′

is the Kronecker product W
⊗

1m′×m′ . It is readily verified that W ∈ A(nm′,mm′).
The graph of W is obtained by replacing each vertex j in the original graph G by m′

new vertices which we will label (j, j′), 1 ≤ j′ ≤ m′. Pressing vertex (j, j′) changes the
status of some other vertex (i, i′) if and only if pressing j changes the status of vertex
i in the original graph. In the new wiring W ′, each bulb of W has been replaced by
a bank of m′ bulbs, all of which are switched synchronously by any of their associated
switches and it is clear that M(W ′, 0) = m′M(W, 0). �

Figure 3 illustrates the proof that µ∗(18, 9) ≤ 3µ∗(6, 3)(= 12), i.e. the case n = 6,
m = 3, m′ = 3. The graph W is the graph from Figure 12 in [2], the wiring example

2

3

3

6

9

Figure 3. W and W ′

which concludes the proof that µ∗(6, 3) = 4. To construct W ′, each vertex of W has

been replaced by a K̂3 and each edge by three edges, one to each vertex of the K̂3 that
replaces the original target. Thus, the original K̂2 and K̂3 become a K̂6 and a K̂9,
respectively. In terms of bulbs and switches, each bulb becomes a bank of 3 bulbs, and
each switch a bank of 3 switches, all having the same effect.

It is also possible to view the new wiring W ′ as a row of m′ copies of W , suitably
wired together, and when we think of it in this way we refer to the copies as clones of W .
Figure 4 shows this view of the above example. The view in Figure 4 is comparatively
cluttered, but it is still substantially less messy than the full wiring graph, which has
162 directed edges.

Lemma 3.2. Let n,m,m′ ∈ N with m′m ≥ n+1. Then µ(m′n+1,m′m) ≤ m′µ(n,m).

Proof. Let W ∈ A(n,m) be such that M(W, 0) = µ(n,m). As in the previous lemma,
we construct a new matrix W ′ = W

⊗
1m′×m′ . The wiring W ′ is a wiring for m′n

vertices which can be split into n banks of m′ vertices that are always in sync (either
all on or all off). We add one last vertex v and get a new wiring by connecting v to
itself and to one vertex from each of the m′ sets of clones. In terms of matrices, this
can be achieved by defining a matrix with block form

(3.3.1) W ′′ =

(
W ′ V

01×m′n I1

)
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Figure 4. W ′

where V = (vi) is a m′n × 1 column vector with vi = 1 if i is a multiple of m′,
and vi = 0 otherwise. Using the inequality m′m ≥ n + 1, it is readily verified that
W ∈ A(m′n+ 1,m′m).

If we do not press v, then it is clear (as in the previous proof) that we can light at
most m′M(W, 0) = m′µ(n,m). Suppose therefore that we press v (together with some
combination of other vertices). Partitioning each set of m′ clones into two subsets S′

and S′′, where S′′ has cardinality 2 and includes the vertex which is toggled by v, it is
clear that all vertices in each of the S′ sets remain in sync, that precisely one vertex in
each S′′ is lit, and that v itself is lit. Thus, we can light at most (m′−2)µ(n,m)+n+1
if v is pressed. Since we know from Lemma D that µ(n,m) = M(W, 0) > n/2, we have
n+ 1 ≤ 2µ(n,m), and so (m′ − 2)µ(n,m) + n+ 1 ≤ m′µ(n,m), and we are done. �

3.4. We now state our first main result for m close to a power of 2.

Theorem 3.3. For all k ∈ N, and m ≥ 2k,

µ(2k+1 − 1,m) = µ∗(2k+1 − 1, 2k) = 2k .

3.5. Using this theorem, it is easy to deduce Theorem 1.2, i.e. limn→∞ µ(n)/n = 1/2:

Proof of Theorem 1.2. Lemma D implies that lim infn→∞ µ(n)/n ≥ 1/2, so it suffices to
show that lim supn→∞ µ(n)/n ≤ 1/2. Fixing k ∈ N, let us assume that n > p := 2k+1−1.
We write n = ap+r, where a ∈ N and 0 ≤ r ≤ p−1. By inequality (2.2.1), Theorem 3.3,
and the fact that µ(·, ·) is nondecreasing in its first argument and nonincreasing in its
second, we see that

µ(n) ≤ µ(n, 2k) ≤ aµ(p, 2k) + µ(r, 2k) ≤ (a+ 1)2k .

Letting n → ∞, it follows easily that lim supn→∞ µ(n)/n ≤ 2k/(2k+1 − 1). Since k
can be chosen to be arbitrarily large, it follows that lim supn→∞ µ(n)/n ≤ 1/2, as
required. �
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3.6. Sylvester-Hadamard matrices. Before proving Theorem 3.3, we need to dis-
cuss the Sylvester-Hadamard matrices, which are defined as follows:

H2 =

(
1 1
1 −1

)

and inductively H2k is given in block form by

H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
.

Equivalently, H2k is the Kronecker product H2
⊗

H2k−1 .
Let h be the rescaled Haar function given by h(t) = 1 if ⌊t⌋ is even and h(t) = −1

otherwise. Let hp(t) = h(2−pt) for all p ∈ N, so that each function hp is periodic. It is

straightforward to verify that for fixed k ∈ N and 1 ≤ j ≤ 2k, the jth column (ai,j)
2k
i=1

of H2k is always given by a pointwise product of one or more of the column vectors

(hp(i − 1))2
k

i=1, 1 ≤ p ≤ k, and that any such product gives some column of H2k . It
follows that a pointwise product of any number of the columns of H2k is another column
of H2k , a fact that will be useful in the following proof.

3.7. Proof of Theorem 3.3.

Proof. By Lemma D and the fact that µ(·, ·) is nonincreasing in its second argument, we
have that µ∗(2k+1 − 1, 2k) ≥ µ(2k+1 − 1,m) ≥ 2k. Conversely, by taking n = 2j+1 − 1,
m = 2j , and m′ = 2 in Lemma 3.2, we deduce inductively µ(2k+1 − 1, 2k) ≤ 2k, and so
µ(2k+1 − 1,m) ≤ 2k.

It remains to get the same upper bound for µ∗(2k+1 − 1, 2k). For this, we need to
work a little harder. Fix k and let n = 2k+1 − 1. We claim that if we delete the first
row and column of the Sylvester-Hadamard matrix H2k+1 , and change each 1 entry to
a 0 and each −1 to a 1, then we get an n× n matrix W = Wk over F2 such that each
column of W has exactly 2k ones, and such that the pointwise sum of any two columns
of W is another column of W or is a column of zeros.

The fact that any pointwise product of columns of H2k+1 is another column of that
same matrix means that any pointwise product of columns of H2k+1 has either zero or
2k entries equal to −1. Pointwise products for H2k+1 correspond to pointwise sums mod
2 for W , so the claim is established.

It follows from the claim that for each x ∈ F
n
2 , the vector Wx is some column of W ,

so |Wx| = 2k or 0.
For k ∈ N, the graph with matrix Wk does not have a loop at each vertex, i.e. it

corresponds to an inadmissible wiring. But if V is any matrix all of whose columns are
columns of Wk, and which has only 1’s on the diagonal, then V ∈ A∗(n, 2k) and for
each x ∈ F

n
2 we have |V x| = 2k or 0 (because V x = WPx for some projection P ), so

we deduce that M(V, 0) = 2k. The simplest way to construct such a matrix V from
W is to repeat columns 1,2,4 and so on, respectively, once, twice, four times, etc. In
other words, take column i of V equal to column 2j of V whenever 2j ≤ i < 2j+1. This
concludes the proof. �

3.8. Towers Vk. The matrix V = Vk in the foregoing proof has the property that the
nonzero entries occur in blocks that are of the form 1r×r, where r runs through powers
of 2. Graphically, this wiring V corresponds to a tower of k + 1 augmented complete
graphs, one of degree equal to each power of 2, as illustrated (sideways on) in Figure 5.
The corresponding matrix is
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42
8

Figure 5. V3




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




The transition from Wk to Vk in the proof can be described by a sequence of pivots: A
first pivot produces a forward-invariant K̂2k , then a partial pivot with respect to the K̂2k

produces a Ĥ2k−1 , and so on. The process converts a rather symmetrical inadmissible
graph into an asymmetric admissible tower. Alternative constructions that amount to
multiplying Wk by a permutation matrix convert the inadmissible graph to a symmetric
admissible graph without a proper forward-invariant subgraph. Figure 6 shows an
example, obtained by permuting the columns of V2 to the order (1, 2, 5, 6, 3, 4, 7) (As
usual, the loops at the vertices are not shown.) This could be illustrated rather prettily
on a regular tetrahedron by placing 1 at the apex, the 2, 4, 6 as the vertices of the base
triangle, and placing the remaining three points on the edges halfway up, with 5 on the
edge 1 − 2, 7 on 1 − 4, and 3 on 1 − 6. All the arrows can then be drawn on faces of
the tetrahedron.

3.9. Remark. Note that there are Hadamard matrices H4n of dimension 4n for many
n ∈ N, not just powers of 2; in fact, they are conjectured to exist for all dimensions
4n [10]. Since by definition the rows of an Hadamard matrix are pairwise orthogonal,
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Figure 6. An alternative V for k = 2

one might wish to use Ht
4n as we used the symmetric Sylvester-Hadamard matrices.

However, this is not possible for several reasons: we do not in general have a complete
row and column of 1s suitable for deleting (although there is always an equivalent
Hadamard matrix with this property), there may not be −1s along the diagonal of an
associated minor, and some pointwise products of more than two columns of H4n may
have more than 2n entries equal to −1 (even if n is a power of 2). For instance, in the
Paley-Hadamard matrix

P =




1 1 1 1 1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1
−1 −1 −1 1 −1 1 1 1




,

the pointwise product of columns 2, 3, and 5 contains all −1s, except from the first
entry. For all these reasons, the method for Sylvester-Hadamard matrices does not in
other cases produce a W ∈ A(4n− 1, 2n), let alone W such that M(W, 0) = 2n.

3.10. Codes. Hadamard matrices generate Hadamard codes, which have a certain

optimality property. Recall that the code associated with H2k has 2k+1 codewords
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that make up a group G < (F2k
2 ,+). The above wiring W ∈ A∗(2k − 1, 2k−1) can

by constructed from the code as follows. First, let H < G be the order 2 subgroup
generated by (1, . . . , 1)t ∈ G, and select the element in each coset of H, other than
H itself, that has a 0 in the first coordinate. Discarding the first coordinate of each
selected codeword yields a set of projected codewords that give the columns of W .

It would be interesting to know if there are any further connections between optimal
codes and optimal wirings. There is a reason to expect that (near-)optimal linear codes
may be associated with (near-)optimal wirings: a near-optimal linear code is one in
which the minimum over all codewords w of the Hamming distance |w| is about as
large as possible, so if we take many of these codewords as the columns of the wiring
matrix (perhaps after discarding one or more coordinates, as we did for Hadamard
codes), we get a matrix for which |Wx| is fairly large, except for the relatively few times
when Wx = 0. A relatively large minimum nonzero value for |Wx| should therefore be
associated with a relatively small maximum value for |Wx|, since Lemma D says that
the average of |Wx| over all x ∈ F

n
2 is n/2.

4. An upper bound for µ(n,m)

In this section, we establish an upper bound U(n,m) for µ(n,m) in all cases. This
upper bound seems rather sharp, insofar as we know of no values n,m for which µ(n,m)
and U(n,m) differ. We also investigate U(n,m) and a related nondecreasing sequence
(a(n))∞n=1 which we use to define U .

4.1. The sequence a(n). We first define (a(n)) by the following inductive process:

a(1) = 1 ,

a(2k − 1 + i) = 2k−1 + a(i) , 1 ≤ i ≤ 2k − 1, k ∈ N ,

a(2k+1 − 1) = 2k , k ∈ N .

Thus (a(n)) begins:

1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 14,

15, 16, 16, 16, 16, 16, 17, . . .

It is not hard to verify that the above sequence has the following alternative description:
it is the nondecreasing sequence consisting of all positive integers, where the frequency
of each integer n is the 2-adic norm of 2n.

Note that a(n) ≤ 2k whenever n ≤ 2k+1 − 1.
If we add an extra 1 term to the beginning of the sequence (a(n)), we get a sequence

(b(n)) listed in the OEIS (Online Encyclopedia of Integer Sequences) as A046699 [1].
The sequence (bn) is defined by the initial conditions b(1) = b(2) = 1, and the following
recurrence relation:

b(n) = b(n− b(n− 1)) + b(n− 1− b(n− 2)) , n > 2 .

It can be deduced from this that (a(n)) satisfies the same recurrence relation as (b(n)):
we just need to modify the initial conditions. We leave the verification of this to the
reader, with the hint that it is straightforward to deduce it from the two inequalities
a(n) > n/2 and a(n+ 1) ≤ a(n) + 1.

Such so-called meta-Fibonacci sequences go back to D. Hofstadter [7, p. 137], and are
generally considered to be rather mysterious. Indeed, one of them was the subject of a
$10 000 prize offered by the late J. Conway [4]. However (a(n)) and (b(n)) are clearly
rather tame members of this family, and one or other has appeared elsewhere in the
context of binary trees; see [9], [5], [3], and [6].
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4.2. The function U . Having defined (a(n)), we are now ready to define our upper
bound function U . Given positive integers n and m, we choose the nonnegative integer
k for which 2k ≤ m < 2k+1, and we let q and r be the integers with n = (2k+1−1)q+ r,
with q ≥ 0 and 1 ≤ r < 2k+1. Thus, q and r are the usual integral quotient and
remainder when n is divided by 2k+1 − 1, except when the remainder is zero, and in
that case r = 2k+1−1 and q = (n−r)/(2k+1−1). We then define U(n,m) = q2k+a(r).

Note that given n andm, the integers k, r, q so defined are unique, and that U(n,m) ≥
a(n). Following our usual notation, we write U(n) = U(n, n), so that U(n) is just an
alternative notation for a(n).

Proposition 4.1. We have µ(n,m) ≤ U(n,m) for all n,m ∈ N.

Proof. The result is trivially true when m = 1. We prove the result for 2k ≤ m < 2k+1

by induction on k. Assuming µ(·,m) ≤ U(·,m) for 2k−1 ≤ m < 2k, we need to prove
that this estimate also holds for 2k ≤ m < 2k+1. From now on, we assume that
2k ≤ m < 2k+1 − 1.

Sublinearity of µ(·,m) and the inductive hypothesis gives µ(n, 2k − 1) ≤ 2k for all
n < 2k+1 − 1. Since any wiring with a vertex of degree at least 2k allows us to light at
least 2k vertices, we must have

µ(n,m) = µ(n, 2k − 1) ≤ U(n, 2k − 1) = U(n,m)

for n < 2k+1 − 1. If n = 2k+1 − 1, then Theorem 3.3 yields

µ(n,m) = µ(n, 2k) = 2k = U(n,m) .

Finally, the required inequality follows readily for all n ≥ 2k+1 by using the case n <
2k+1 and sublinearity of µ(·,m). Thus, we have proven the inductive step, and we are
done. �

4.3. Sublinearity. Equation (2.2.1) says that µ(·,m) is sublinear for all m. We now
prove the same for U(·,m)

Theorem 4.2. For all n1, n2,m ∈ N, we have U(n1 + n2,m) ≤ U(n1,m) + U(n2,m).

Proof. Since U(·,m) is unchanged as m varies over a dyadic block, it suffices to assume
that m = 2k for some k ≥ 0. We will show that U(n, 2k) = µ′(n, 2k), where µ′(n, 2k) =
µA′(n,2k) and A′(n, 2k) is an appropriate set of wiring matrices W ∈ M(n, n;F2) that has

the following closure property: if Wi ∈ A′(ni, 2
k) for i = 1, 2, then the block diagonal

matrix

W =

(
W1 0
0 W2

)

lies in A′(n1 + n2, 2
k). In terms of wirings, this just says that a disjoint union of two

wirings in this class for given m = 2k also lies in this class for the same value of m.
Sublinearity then follows easily from the definition of µ′ and this closure property.

To define A′(n, 2k), we first define Wj for each j ≥ 0 to be some wiring in A∗(2j+1 −
1, 2j) such that M(W, 0) = µ∗(2j+1 − 1, 2j) = 2j ; this exists by Theorem 3.3. We
now define A′(n, 2k) to be the collection of matrices W ∈ M(n, n;F2) that are of block
diagonal form with nj ≥ 0 diagonal blocks of type Wj for some 0 ≤ j ≤ k. Thus,

n =
∑k

j=0 nj(2
j+1 − 1).

We first show that µ′(n, 2k) ≤ U(n, 2k). Taking k = 0, it is clear that U(n, 1) =
µ′(n, 1) = n; note that the identity matrix is the only element of A′(n, 1). We therefore
assume that k > 0.

If n < 2k+1−1, then U(n, 2k) = U(n, 2k−1), so by choosingW ∈ A′(n, 2k−1) satisfying
M(W, 0) = U(n, 2k−1), we get

µ′(n, 2k) ≤ µ′(n, 2k−1) ≤ U(n, 2k−1) = U(n, 2k) .
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If n = 2k+1 − 1, then µ′(n, 2k) ≤ M(Wk, 0) = 2k = U(n, 2k).
Finally if n > 2k+1 − 1, then we simply write n = q(2k+1 − 1) + r in the usual

way and select a wiring W that decomposes into q copies of Wk plus one copy of
a wiring W ′ ∈ A′(r, 2k) satisfying M(W ′, 0) = U(r, 2k) to deduce that µ′(n, 2k) ≤
q2k + U(r, 2k) = U(n, 2k), as required.

We now prove the opposite inequality by induction. As mentioned above, the case
k = 0 is clear. Suppose that µ′(·, 2j) = U(·, 2j) for all 0 ≤ j < k, and suppose
that µ′(n′, 2k) = U(n′, 2k) for all n′ < n, n′ ∈ N. Let W ∈ A′(n, 2k) be such that
M(W, 0) < U(n, 2k). Since U(n, 2k) ≤ U(n, 2k−1) = µ′(n, 2k−1), W must have a vertex
of degree 2k which is part of a Wk. Let W ′ be the subwiring obtained from W by
removing this Wk, and so W ′ ∈ A′(n− 2k, 2k). Now M(Wk, 0) = 2k and by minimality
of n, we have M(W ′, 0) ≥ U(n − 2k, 2k), so M(W, 0) ≥ U(n − 2k, 2k) + 2k ≥ U(n, 2k),
as required. �

Since U(n,m) = a(n) whenever there exists k ∈ N such that n/2 < 2k ≤ m, it follows
that (a(n)) is also sublinear, a fact we now record.

Corollary 4.3. For all n1, n2 ∈ N, we have a(n1 + n2) ≤ a(n1) + a(n2).

5. Results for m near a power of 2

5.1. In this section, we give some results for 2k − 2 ≤ m ≤ 2k + 1. Our first result
follows rather easily from Theorem 3.3.

Proposition 5.1. For all 2 ≤ k ∈ N, we have µ(·, 2k − 1) = µ(·, 2k − 2).

Proof. Let m := 2k − 1. By Proposition 4.1, we have µ(n,m − 1) ≤ 2k−1 + 1 ≤ m for
all n ≤ 2k. It follows that µ(n,m) = µ(n,m − 1) for n ≤ 2k, since any wiring W with
a degree m vertex satisfies M(W, 0) ≥ m.

Suppose inductively that µ(n′,m) = µ(n′,m−1) for all 1 ≤ n′ < n, where n > 2k, and
we wish to extend this equation to n′ = n. By Lemma E, either µ(n,m) = µ(n,m− 1)
and we have established the inductive step, or

µ(n,m) ≥ µ(n−m,m) + 2k−1 = µ(n−m,m− 1) + 2k−1

and so

µ(n−m,m− 1) + 2k−1 ≤ µ(n,m)

≤ µ(n,m− 1)(trivial estimate)

≤ µ(n−m,m− 1) + µ(m,m− 1)(sublinearity)

≤ µ(n−m,m− 1) + µ(m, 2k−1)(trivial estimate)

= µ(n−m,m− 1) + 2k−1 .(by Theorem 3.3)

The inductive step, and so the lemma, follows from equality of the first and last lines. �

Theorem 5.2. Let m = 2k for some k ∈ N, and suppose that µ(·,m−1) = U(·,m−1).
Then µ(·, p) = U(·, p) also holds for p = m and p = m + 1. In particular, µ(·,m) =
µ(·,m+ 1).

Proof. Proposition 4.1 tells us that µ(·, ·) ≤ U(·, ·), so we must prove inequalities in the
opposite direction. For k = 1, the desired conclusion follows from Theorems A and B,
so we assume that k > 1.

We first consider the case p = m. Suppose for the sake of contradiction that m =
2k > 2 is such that µ(·,m) 6= U(·,m), even though µ(·,m − 1) = U(·,m − 1). Also
for the sake of contradiction, assume that n ∈ N is the smallest number such that
µ(n,m) < U(n,m), and that W ∈ A(n,m) is such that M(W, 0) < U(n,m). Since
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µ(n,m−1) = U(n,m−1) ≥ U(n,m), it follows that W must contain a vertex of degree
m. This certainly implies that M(W, 0) ≥ m = U(2m− 1,m), so n ≥ 2m.

We write n = q(2m − 1) + r, where q, r ∈ N and r < 2m. By induction we have
M(W, 0) < qm+ µ(r,m). We may also assume that we cannot increase the number of
Fm subgraphs in W by any amount of pivoting; recall that an Fm is a forward invariant
augmented complete subgraph on m vertices.

We now carry out what for later reference we call a Partition by Degree argument:
we partition the set of n vertices into subsets A and B, where A consists of all vertices
that lie in an Fm, and B consists of all other vertices. Let us write nA, nB for the
cardinalities of A and B, respectively.

Since we cannot increase the number of Fm subgraphs by pivoting, we have WB ∈
A(nB,m− 1). Since we can light all vertices in A by pressing one vertex in every Fm,
we must have

nA < U(n,m) = qm+ µ(r,m) ≤ (q + 1)m.

But nA is a multiple of m, so nA ≤ qm. Alternatively, we can first light at least
µ(nB,m− 1) of the B-vertices followed by at least ν(nB,m) ≥ nA/2 of the A-vertices,
and so

(5.1.1) µ(nB,m− 1) + nA/2 < qm+ µ(r,m) .

Suppose nA = qm, and so nB = n−qm = q(m−1)+r. By assumption, µ(nB,m−1) =
qm/2 + µ(r,m− 1), and so

µ(nB,m− 1) + nA/2 = qm+ µ(r,m− 1) ≥ qm+ µ(r,m) ,

contradicting (5.1.1). If nA is smaller than qm, it must be smaller by q′m for some
q′ ∈ N, thus increasing µ(nB,m− 1) by at least q′m/2:

µ(n− qm− q′m,m− 1) ≥ µ(n− qm− q′(m− 1),m− 1) = µ(n− qm,m− 1) +
q′m
2

.

Thus, µ(nB,m− 1) + nA/2 is at least as large as in the case nA = qm, and we still get
a contradiction.

We next prove that µ(n,m + 1) = µ(n,m). Again for the sake of contradiction,
we suppose that m = 2k > 2 is such that µ(·,m + 1) 6= U(·,m + 1), even though
µ(·, p) = U(·, p) when p = m − 1. This last equation holds also for p = m by the first
part of the proof. Note that U(n,m+ 1) = U(n,m) = µ(n,m).

Suppose also for the sake of contradiction that n is minimal for the inequality

µ(n,m+ 1) < U(n,m+ 1) = µ(n,m) .

Now, U(n,m + 1) ≤ m + 1 for n ≤ 2m, so as in the first part of the proof, we must
have n > 2m. We again write n = q(2m − 1) + r, where q, r ∈ N and r < 2m. Let
W ∈ A(n,m+1) be such thatM(W, 0) = µ(n,m+1), and we assume that the number of
Fm+1s cannot be increased by pivoting, and that the only possible pivoting operations

that may increase the number of K̂m subgraphs are those that decrease the number of
Fm+1 subgraphs; recall that a K̂m is an augmented complete subgraph on m vertices
(which is not necessarily forward invariant).

We carry out another Partition by Degree argument, with A consisting of all vertices
that lie in a K̂m or an Fm+1, and WB ∈ A(nB,m − 1). Now, W must be a vertex of
degree m+1, since M(W, 0) < µ(n,m), and so W contains at least one Fm+1. Suppose
that there are at least two Fm+1s. We can light at least µ(n − 2m − 2,m + 1) of the
other vertices, followed by at least 2ν(m + 1) = m + 2 of the vertices in the pair of
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Fm+1s. Now

µ(n− 2m− 2,m+ 1) +m+ 2 = U(n− 2m− 2,m+ 1) +m+ 2(minimality of n)

= U(n− 3,m) + 2

= µ(n− 3,m) + µ(3,m)

≥ µ(n,m) ,(sublinearity)

contradicting the fact that µ(n,m+ 1) < µ(n,m).
Thus, there is precisely one Fm+1, and nA is equivalent to 1 mod m. We distinguish

between those K̂ms that are forward invariant, which we denote as usual by Fm, and
those that are not, which we denote by Nm. The one external link of each Nm is to
the Fm+1, since otherwise we could pivot to get a second Fm+1. Furthermore, any two
Nms must link to the same vertex in the Fm+1, since if this were not the case, we could
pivot about a vertex in one Nm to get a wiring with one Nm linked to a second Nm,
which in turn links to a Fm+1, and such a configuration would allow us to get a second
Fm+1 by pivoting about the vertex in the first Nm.

It follows that we can light all except possibly one of the vertices in A, and so
nA−1 < qm+µ(r,m−1) ≤ (q+1)m, which self-improves to nA ≤ qm+1. Alternatively,
as in the first part of the proof, we get

(5.1.2) µ(nB,m− 1) + (nA + 1)/2 < qm+ µ(r,m− 1) .

Suppose nA = qm + 1, and so nB = q(m − 1) + r − 1. By the inductive hypothesis,
µ(nB,m− 1) = qm/2 + µ(r − 1,m− 1), and so by Lemma F,

µ(nB,m−1)+(nA+1)/2 = qm+µ(r−1,m−1)+1 ≥ qm+µ(r,m) = qm+µ(r,m−1),

contradicting (5.1.2). The case where nA is smaller than qm is ruled out as in the first
part of the proof. �

5.2. Partition by degree arguments. Since we will be seeing other variations of
the above Partition by Degree arguments, let us describe the common features of these
arguments, so that we can be sketchy in all subsequent uses of it. Given a wiring W on
n vertices, we partition the set of vertices into two subsets, typically called A and B,
and we denote the cardinality of A and B by nA and nB, respectively. The wiring will
be initially pivoted so that A is forward invariant and WA will consist only of K̂js for

various j ≥ 2k. There will be very few links between different K̂js in A, allowing us to

light almost all except at most n0 of the vertices in A by pressing one vertex in each K̂j ;
for instance, n0 was either 0 or 1 in the two Partition by Degree arguments in the above
proof. This gives the bound nA ≤ K−n0, where K equals either µ(n,m) or an assumed
value of µ(n,m) from which we wish to derive a contradiction. By the structure of A,
we often know that nA has a certain value mod 2k, allowing us to improve the estimate
nA ≤ K − n0 to nA ≤ n1 for some n1 ≤ K − n0.

By somehow maximizing the number of K̂js in A, we arrange for the restricted wiring

WB to lie in A(nB,m
′) for some m′ ≤ 2k−1, so we may light at least µ(nB,m

′) of these
vertices followed by at least ν(nA) vertices in A. This gives the inequality

(5.2.1) µ(nB,m
′) + ν(nA) ≤ K

The aim of the Partition by Degree argument is now either to derive a contradiction,
or to show that nA = n1. To do this, we first consider the possibility that nA = n1,
and we typically deduce that µ(n − n1,m

′) + ν(n1) either equals or exceeds K. If
instead we allow nA to decrease below n1, then nA typically must be decreased by a
multiple of 2k, and µ(nB,m

′) increases by at least as much as µ(nA) decreases. Thus, if
µ(n−n1,m

′)+ν(K1) > K, we get a contradiction to (5.2.1) also for any value of nA less
than n1, and we are done. In other instances of this argument, µ(n−n1,m

′)+ν(K1) =
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K, but taking a value of nA smaller than K1 increases µ(nB,m
′) strictly more than

µ(nA) decreases, so we conclude that nA must equal n1 and nB = n − n1, as we are
seeking to prove in such instances.

5.3. A technical lemma. We now give a lemma which makes no mentions of wirings
and vertices but which we will need later. In this lemma, |u| denotes the Hamming
norm of a vector u ∈ F

N
2 , as defined in Section 1.

Lemma 5.3. Let n, N and M be positive integers. Then the following are equivalent:
(1) There exist vectors aj = (ai,j)

N
i=1 ∈ F

N
2 , 1 ≤ j ≤ n such that

(5.3.1)

∣∣∣∣∣∣

n∑

j=1

λjaj

∣∣∣∣∣∣
= M ∈ N , for all λ = (λj) ∈ Fn := F

n
2 \ {0} .

(2) M = 2n−1q for some q ∈ N, and N ≥ 2M − 21−nM .
Assuming these conditions are fulfilled, all solutions (ai,j) to (5.3.1) are equivalent mod-
ulo permutations of the i and j indices.

Proof. Assuming the conditions (2) are fulfilled, with M = 2n−1q, we see that N ≥
(2n − 1)q, so we can allocate (2n − 1)q vertices into 2n − 1 pairwise disjoint sets of

q vertices each. We label these sets Sk for 1 ≤ k ≤ 2n − 1, and write S =
⋃2n−1

i=1 Sk.
Writing dn−1;k . . . d1;kd0;k for the binary expansion of 1 ≤ k ≤ 2n−1, we let ai,j := dj−1;k

for all i ∈ Sk, and ai,j = 0 of i /∈ S. It is readily verified that (5.3.1) holds with this
choice of (ai,j).

Conversely, suppose that A := (ai,j) satisfy (5.3.1). Note that this condition implies
the same condition with n replaced by any number 1 ≤ n′ ≤ n, and if we take n′ = n−1,
we can replace an−1 by either an or an−1+an and the condition remains true. For each
u = (uj) ∈ Fn, we write Sn(u;A) for the set of indices 1 ≤ i ≤ n such that ai,j = uj for
all j. Trivially, such sets Sn(u;A) are pairwise disjoint. Writing #(·) for set cardinality,
we claim that #(Sn(u;A)) = 21−nM . Since #(Fn) = 2n − 1, it follows from the claim
that N ≥ 2M−21−nM . Also, the fact that #(Sn(u;A)) is independent of u ∈ Fn means
that there is essentially only one such solution, modulo permutations of the indices, so
the result follows from the claim. We prove this by induction on n.

If n = 1, the claim is trivial. For n = 2, note that |a1+a2| = |a1|+ |a2|−2K = 2M−
2K, where K is the number of indices i for which ai,1 = ai,2 = 1. Since 2M − 2K = M ,
we must have K = M/2. This readily implies the result for n = 2.

Suppose inductively that the result is true for n < m, where m > 2, and we want to
prove it for n = m. Let us define the following matrices

A1 = (ai,j) 1≤i≤N
1≤j≤m−2

, A2 = (ai,j) 1≤i≤N
1≤j≤m−1

, A3 = (bi,j) 1≤i≤N
1≤j≤m−1

, A4 = (ci,j) 1≤i≤N
1≤j≤m−1

,

where

bi,j =

{
ai,j , j ≤ m− 2 ,

ai,m, j = m− 1 ,

ci,j =

{
ai,j , j ≤ m− 2 ,

ai,m−1 + ai,m, j = m− 1 ,

We assume that A := (ai,j)1≤i≤N
1≤j≤m

satisfies (5.3.1) for n = m, so certainly As satisfies

(5.3.1) for 1 ≤ s ≤ 4 (for n = m− 2 or n = m− 1).
By the inductive assumption #(Sm−1(u;As)) = 22−mM for each u ∈ Fm−1 and

2 ≤ s ≤ 4. Considering separately those u = (u′, um−1, um) ∈ Fm−2 × F1 × F1 = Fm
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such that u′ 6= 0 and u′ = 0, we can in both cases argue as for n = 2 above that
#(Sm(u)) = 21−nM , as required. �

5.4. Towers again. We return to the special wirings Vk discussed in Subsection 3.8.
For the rest of this section, a Ki will mean a K̂2i , i.e. an augmented complete graph on
2i vertices. The wiring Vk ∈ A∗(2k+1−1, 2k) consists of augmented complete subgraphs
K0, K1, K2,. . .,Kk, such that each vertex of each Ki toggles zero vertices in Kj for

j < i and toggles 2j−1 vertices in each Kj , i < j ≤ k. In addition the set of vertices

toggled in Kj by any Ki vertex for i < j is independent of which vertex in Ki is chosen,
so we may as well restrict ourselves to considering vertex press sets where we are allowed
to press only one vertex, which we call the designated vertex, in each Ki. We say that
Ki is activated if its designated vertex is pressed. Thus, each Ki can be viewed as a
single switch which toggles 2j−1 indices in Kj for each j > i. We assume that this

wiring is arranged so that activating one or more of the Ki, i < j, always lights exactly
2j−1 of the vertices in Kj . This is possible by Lemma 5.3. In view of the uniqueness in
Lemma 5.3, this defines the wiring Vk uniquely up to relabeling of the vertices within
each Kj , 1 ≤ j ≤ k.

The next theorem generalises our remark that the Sylvester-Hadamard wiringWk can
be pivoted to obtain Vk. In this theorem, we push further with the ideas in the proof of
Theorem 5.2 to show that if µ(·, p) = U(·, p) for p < 2k then, modulo (full and partial)
pivoting, there really is only one optimal wiring in A(n, 2k) for each n = q(2k+1 − 1),
q ∈ N, namely q disjoint copies of Vk.

Theorem 5.4. Suppose that µ(·, p) = U(·, p) for all p < m := 2k, for some k ∈ N.
If n = q(2m − 1) for some q ∈ N, and if W ∈ A(n,m) is such that M(W, 0) =
µ(n,m), then W can be pivoted to the block diagonal wiring diag(Vk, . . . , Vk), where
Vk ∈ A∗(2m−1,m) is as above; both full and partial pivoting operations may be required.

Proof. We will construct a chain of restricted wirings, so let us write Wk in place of W
for our initial wiring, and we also write Nk in place of n. We assume without loss of
generality that Wk has the property that no additional Kk subgraphs can be obtained
by pivoting. We denote by Bk the set of all Nk vertices.

We do a Partition by Degree argument, partitioning the Nk vertices into two sets:
Ak, of cardinality nk, contains all vertices in any Kk, and Bk−1, of cardinality Nk−1,
contains all the other vertices. We denote by Wk−1 the wiring Wk restricted to Bk−1.
Then, Wk−1 ∈ A(Nk−1, 2

k−1), since otherwise we could create an extra Kk by pivoting.
As usual, we have nk ≤ µ(n, 2k) = q2k and

(5.4.1) µ(Nk−1, 2
k − 1) +

nk

2
≤ µ(n, 2k) = q2k .

The first inequality forces nk ≤ q2k, so Nk−1 ≥ q(2k − 1). If Nk−1 = q(2k − 1), we
get equality in (5.4.1), but this inequality cannot hold if nk < q2k, since it would force
the inequality U(i2k, 2k−1) ≤ i2k−1 for some i ∈ N, which itself can be reduced to
U(i, 2k−1) ≤ 0, i ∈ N, which we know to be false. Thus, the only possible value for
(nk, Nk−1) is (q2

k, q(2k − 1)).
The fact that this choice of (nk, Nk−1) only satisfies (5.4.1) with equality means that

we can analyze the wiring more closely and rule out any wiring that creates any slippage
in the left-hand side bounds. In particular, if there were a vertex in Wk−1 of degree

j > 2k−1, we could pivot about it relative to Ak to get a K̂j . Vertices in the K̂j have

at most 2k − j links outside the K̂j , which must all be in Ak because of the pivoting

process). By pressing a K̂j vertex and then one vertex in every Kk, we light all the

vertices in the K̂j and all except at most 2k−j vertices in Ak, thus giving a contradiction
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since q2k − (2k − j) + j > q2k. A Kk−1 also leads to a contradiction unless its vertices
link to exactly 2k−1 vertices in Ak.

Thus, Wk−1 ∈ A(q(2k − 1), 2k−1) and (5.4.1) forces M(Wk−1, 0) = µ(q(2k − 1), 2k−1).
Thus, Wk−1 satisfies assumptions similar to those of Wk, but with k replaced by k− 1.
We can continue this process, creating a chain of restricted wirings Wj and associated

partition sets Aj consisting of the vertices in q copies of Kj and Bj of cardinality
Nj−1 = q(2j − 1) such that Wj−1 := WBj1

∈ A(Nj−1, 2
j−1), for j = 0, . . . , k.

Since all Kjs are obtained by (partial or full) pivoting, all vertices in any one Kj link
to the same set of vertices. As in the discussion of Vk before this theorem, we may as
well restrict to vertex press sets where we are only allowed to press a single designated
vertex in each Kj , and we say that Kj is activated if its designated vertex is pressed.

We also talk about a Kj being switched if its designated vertex is one of the vertices
given by a perturbation y of an existing vertex press set x, thus yielding a vertex press
set x+ y.

For 1 ≤ j ≤ k, we know that the designated vertex in any one Kj−1 links to 2j−1

vertices in Aj . By activating every Kj−1, and then activating any Kjs in which fewer
than 2j−1 vertices are lit, we could light strictly more than q2j = µ(Nj , 2

j) vertices in

Aj if there were at least one Kj that had either strictly more, or strictly less, than 2j−1

lit vertices after every Kj−1 had been activated. It follows that the links from any two
different Kj−1s must be to distinct sets of vertices in Aj , and that these links must be

evenly distributed, in the sense that there must be 2j−1 of them in each Kj .

Suppose now that 1 < j ≤ k. By activating every Kj−2 and every Kj , we light q2
j−2

vertices in Aj−2 and the same number in Aj−1, and arguing as above we see that there

must be exactly 2j−1 vertices lit in each Kj . We can continue this argument to deduce
inductively that any one vertex in Aj′ is linked to exactly 2j−1 vertices in Aj if j ≥ j′,
and to no vertices in Aj if j < j′. Furthermore there are links to 2j−1 vertices in any

given Kj from designated Kj′ vertices whenever j
′ < j.

We next prove that all of these Kjs are arranged in Vks. This is trivial if k = 1, since

each K0 has only one link to A1, and each K1 has a link from one of the K0s. Suppose
inductively that all the Ajs for j ≤ k − 1 are arranged into q copies of Vk−1. We wish
to prove the same with k − 1 replaced by k.

We fix one particular Kk−1, which we call Lk−1 and, for each 0 ≤ j < k−1, denote by
Lj the copy of Kj that is linked to Lk−1. The sets Lj , 0 ≤ j ≤ k − 1 lie in a particular
copy of Vk−1 that we will call Uk−1. For each 0 ≤ j < k − 1, let xj be the vertex press

sets where we activate every Kk−1 other than Lk−1, and we also activate Lj . By the

properties of the Vk−1, this results in having 2k−1 vertices lit in each Vk−1, and some
vertices in Ak are also lit as a result of the 2k−1 links from each Kk−1 and from Lj into

Ak. By then activating any Kk where fewer than half of the vertices are lit, we get at
least q(2k−1 + 2k−1) = q2k vertices lit in Bk, the maximum amount allowed.

But we would get strictly more than this if the vertex press set xj resulted in any

number of lit vertices other than 2k−1 in any Ak. Thus, xj must result in q2k−1 lit

vertices in Ak, with exactly 2k−1 of these in each Kk. But there are only 2k−1 links
from each Kk or from Lj to Ak, so it must be that no two of these links are to the same

vertex in Ak, since otherwise there would be fewer than q2k−1 vertices lit in Ak as a
result of xj .

Consider more generally a vertex press set x where we press the designated vertex in
Kk−1 in all cases except Lk−1, and we also press the designated vertex in one or more of
the sets Lj , 0 ≤ j ≤ k−1. For all such x, we get 2k−1 lit vertices in each Vk−1, so again

we must have q2k−1 lit vertices in Ak, with exactly 2k−1 of these in each Kk. Since we
have seen that the links to Ak from Uk−1 are disjoint from the links to Ak from every
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Kk−1 other than Lk−1, it follows that any nontrivial combination of activations of the
sets Lj , 0 ≤ j ≤ k − 1 toggles the same number of vertices in each Kk and 2k−1 such

vertices across the union all all Kks.
Denoting by Lk some particular Kk where nontrivial combination of activations of

the sets Lj toggle at least one vertex, we assume the number of such toggles is M .
Viewing our designated vertices in Lj as switches for 0 ≤ j ≤ k − 1, we now apply

Lemma 5.3 and the fact that 1 ≤ M ≤ 2k−1 to deduce that M = 2k−1. This uses up
all the available links from Uk−1 to Ak. Now Uk−1 is a fixed but arbitrary Vk−1, so it
follows that each Vk−1 is linked only to a single Kk, and so our full wiring consists of q
copies of Vk, as required. �

6. The cases m = 4, 5

6.1. In this section, we prove Theorem 1.1. Throughout, an n-optimal wiring is a
wiring W ∈ A(n,m) for which M(W, 0) = µ(n,m); the parameter m is in all such cases
understood.

Proof of Theorem 1.1. Part (a) can be restated as µ(·, p) = U(·, p) for p = 4, 5. It is
readily verified from Theorem B(a) that µ(·, p) = U(·, p) when p = 3, so it extends to
p = 4, 5 by Theorem 5.2.

We now prove Part (b). The desired formula for µ∗(n, 4) − 4k, n = 7k + i ≥ 4, is
given by ai in the following table:

i 1 2 3 4 5 6 7

ai 2 2 2 4 4 4 4

It is readily verified that ai equals the least even integer not less than µ(7k+i, 4)−4k.
Since pressing any vertex for a wiring in A∗(n, 4) preserves the parity of the number of
lit vertices, µ(7k + i, 4) must be even. Thus µ∗(n, 4) ≥ 4k + ai.

We now prove the converse by induction. The nontrivial part is to prove it for
4 ≤ n ≤ 10. Once this is proved, it follows inductively for all n = 7k + i > 10 using
(2.2.1):

µ∗(7k + i, 4) ≤ µ∗(7(k − 1) + i, 4) + µ∗(7, 4) ≤ (4(k − 1) + ai) + 4 = 4k + ai .

It remains to prove that µ∗(n, 4) ≤ 4k + ai when 4 ≤ n ≤ 10. Trivially µ∗(4, 4) = 4
and

µ∗(5, 4) ≤ µ∗(4, 3) + 1 = 4 (Lemma F) ,

µ∗(6, 4) ≤ 2µ∗(3, 2) = 4 (Lemma 3.1) ,

µ∗(7, 4) = 4 (Theorem 3.3) ,

µ∗(8, 4) ≤ µ∗(7, 3) + 1 = 6 (Lemma F) ,

µ∗(9, 4) ≤ µ∗(8, 3) + 1 = 7 (Lemma F) .

All except the last of these is sharp, and parity considerations allow us to improve the
last one to the sharp µ∗(9, 4) ≤ 6.
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Finally, µ∗(10, 4) ≤ 6 follows by consideration of the wiring

W10 =




1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
1 0 0 0 0 0 1 1 1 1
0 1 1 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1




(cf. Figure 7 All columns except columns 1, 2, 4, and 7 are duplicates of these columns,

2 3 4

Figure 7. W10

so we can restrict ourselves to sets of vertex presses involving only these four vertices.
With this restriction, we can proceed to list all sixteen possible values of x, and deduce
that M(W10, 0) = 6. �

6.2. Let us mention an alternative, more instructive, way of proving that M(W10, 0) ≤
6. Again, we may restrict ourselves to pressing only some combination of vertices 1,2,4,
and 7. Note first that W10 consists of one copy each of a K̂1, K̂2, K̂3, and K̂4 (vertices

1, 2–3, 4–6, and 7–10, respectively), and K̂i is connected to K̂j only if i < j. The
subwiring for vertices 1–3 is such that we can never light all three vertices (by parity,
since all vertices have degree 2), and to get only one unlit vertex, we must press vertex

1 and/or vertex 2. But all three of these possibilities throws both the K̂3 and K̂4 out of

sync since the links from vertices 1 and 2 into the K̂3 are different from each other, and
similarly for the links into the K̂4. Furthermore, the K̂3 and K̂4 vertices remain out
of sync regardless of whether we press vertices 4, 7, or both. Thus, the unlit vertices
always include either all of 1–3, or at least one vertex each from 1–3, 4–6, and 7–10.
Thus, M(W10, 0) ≤ 7 and parity considerations improve this to M(W10, 0) ≤ 6.

6.3. Questions. So far, we know this:

Theorem 6.1. For m ∈ N, m ≤ 5, we have µ(·,m) = U(·,m).

This naturally prompts the following question, which we cannot answer.

Question 6.2. Is it true that µ(·,m) = U(·,m) when m > 5?

Theorem 3.3 states that if m is a power of 2, then there exists wirings for (n,m) =
(2m − 1,m) that are optimal in the sense that µ∗(n,m) and µ(n,m) both equal to
(n + 1)/2 (the smallest possible value for µ(n,m) according to Lemma D). This is
evidence that powers of 2 are significant boundaries for the behavior of m 7→ µ(·,m)
and m 7→ µ∗(·,m). This fact motivates the following pair of open questions with which
we close the article. Note that the first one is simply a weaker version of Question 6.2.
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Question 6.3. Is it true that µ(n,m) is independent of m for all 2k ≤ m ≤ 2k+1 − 1,
k ∈ N?

The answer to the above question is affirmative if we restrict to m ≤ 5.

Question 6.4. Is it true that µ(n,m1)− µ∗(n,m2) is bounded independent of n, k ∈ N

for all 2k ≤ m1,m2 ≤ 2k+1 − 1, k ∈ N?

The answer to this last question is affirmative if we restrict to m1,m2 ≤ 4.
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What is geometric function theory (or GFT for brevity)? Saying it is the “geomet-
ric bits of function theory” sounds like an unhelpful rearrangement of the words. A
little more precise is “the parts of mathematics that utilize the theory of conformal
mappings in the plane or their generalizations to higher dimensions and metric spaces”.
A broader attempt would be “the study of mappings that distort geometry by only
a bounded amount”. However, perhaps it is safest to paraphrase US Supreme Court
Justice Stewart’s description of a different topic: “I know it when I see it”.

Assuming I know geometric function theory when I see it, I will list several topics I
consider to be part of, or very close to, GFT (a highly personal and debatable list).
• Complex dynamics: The Fatou set of a polynomial p is defined as the largest
open set where the iterates of p form a normal family, a concept at the center of
geometric function theory. The Julia set is the complement; the set where the iterates
are “chaotic”. Any non-linear polynomial introduces some geometric distortion, which
we might expect to accumulate as we iterate p, but because the iterates of small disks
are conformal (as long as they avoid critical points), the distortion remains uniformly
bounded by Koebe’s 1/4-theorem, another central pillar of GFT. This explains the
approximately self-similar character of Julia sets and the importance of understanding
the critical orbits. Approximation results, such as Runge’s theorem, are often used to
create examples with novel properties, and the connectedness of the Mandelbrot set
follows from constructing the Riemann map onto its complement. Thus holomorphic
dynamics incorporates many tools of GFT.
• Hyperbolic manifolds: The disk has a natural hyperbolic metric and the Schwarz
lemma says that holomorphic self-maps of the unit disk, D, are contractions for this
metric, binding GFT tightly to hyperbolic geometry. By the uniformization theorem,
most Riemann surfaces are of the form R = D/G where G is a discrete group of Möbius
transformations acting on the disk (called a Fuchsian group). These are hyperbolic
isometries of the disk, and they extend to a group of isometries on the hyperbolic upper
half-plane (this is called a Kleinian group), giving a quotient that is a hyperbolic 3-
manifold. Replacing the disk by others planar domains (usually with a fractal boundary)
gives rise to other hyperbolic 3-manifolds. The study of such Kleinian groups and
hyperbolic 3-manifolds is a rich mixture of GFT and topology, much of it inspired by
the work of William Thurston.
• Brownian motion: A Brownian motion is a random continuous path in the plane
(although it also makes sense in other dimensions). This seems firmly within real anal-
ysis and probability theory, but Brownian motion in a planar domain Ω is conformally
invariant: it is mapped to another Brownian path by any conformal map on Ω. This
means that theorems about the the first hitting distribution of Brownian motion on
the boundary of a domain (called harmonic measure) can, in the simply connected
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case, often be reduced to results about the boundary behavior of conformal mappings
f : D → Ω. This allows the tools of GFT to be applied, often with spectacular results.
For example, Makarov used this approach to prove that harmonic measure on simply
connected domains is always 1-dimensional in a precise sense, even if the boundary
of Ω is not, e.g., it is a fractal. Extending such results to higher dimensions has been
daunting, but remarkable recent progress has occurred because of advances in harmonic
analysis, PDE and geometric measure theory.
• SLE: A Brownian motion is allowed to intersect itself, but defining random Jordan
curves (non-self-intersecting paths) is much harder, and was not successfully done until
Oded Schramm invented SLE [Sch00] using random conformal maps. He applied a
differential equation of Loewner (very classic GFT) using Brownian motion as data.
Schramm called these “stochastic Loewner Evolutions” but they are now known as
“Schramm-Loewner evolutions”, and for the last twenty years SLE has been one of the
hottest topics in mathematics and physics (several Fields medals for related work).
• Traveling salesman theorem: The classical traveling salesman problem (TSP) in
computer science is to find the shortest path that visits each point of a given finite set,
but there is also an analytical version that asks which infinite sets E can be visited
by some finite length curve. Peter Jones [Jon90] defined an infinite series whose terms
measure how close E is to lying on a straight line at different points and scales and
proved that the shortest curve containing E has length bounded by a fixed multiple
of this series. Jones’s theorem has been extended to higher dimensions, Hilbert space
and certain metric spaces, but his original proof was based on conformal maps and
other basic tools of GFT, and has itself become a pillar of modern GFT with numerous
applications to Julia sets, metric space analysis, Kleinian groups and Brownian motion.

Tom Carroll’s book Geometric Function Theory does not deal directly with any of
the applications of GFT mentioned above, but it does prepare a student for the study
of all these topics by presenting many of the essential tools: spherical and hyperbolic
geometry, normal families, the Riemann mapping theorem, Runge’s approximation the-
orem, the distortion properties of conformal mappings (including Koebe’s 1/4-theorem),
Carathéodory convergence, and the uniformization theorem. Several of these topics can
be found in other textbooks, though they are not generally covered in an undergraduate
course. For example, the results on univalent functions and Carathéodory convergence
are usually only found in more advanced books, such as [GM08] or [Pom92], and Car-
roll’s book is an excellent preparation for reading these graduate level texts.

One non-standard example that caught my eye is Theorem 9.4, that says a Euclidean
disk (which is obviously convex for the Euclidean metric) is also convex for the hyper-
bolic metric on any simply connected planar domain Ω containing D. This is a very
pretty result of Jørgensen, and it is certainly a prototypical result of geometric func-
tion theory, but not one I have seen in a textbook before. Jørgensen’s theorem follows
a discussion of the differential equation ∆u = e2u satisfied by the hyperbolic metric,
another important topic not usually covered by a first course in complex analysis.

Another nice feature is the inclusion of Zalcman’s lemma, along with more standard
results about normal families, such as the theorems of Marty and Montel. Zalcman’s
lemma says that a family of holomorphic maps is not normal if we can extract a sub-
sequence that has “blow-ups” that converge to a non-constant limit in a precise sense.
The result is elementary, but extremely useful in holomorphic dynamics, but is not
often included in introductory textbooks.

I do have a few minor quibbles. For example, conformal maps from the disk to a
Jordan domain extend continuously to the boundary, but Carroll only proves this in a
special case he calls “geometrically simple”. A remark on page 175 gives the impression
that this includes all Jordan domains, but this is not true; even a mild mannered fractal
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curve like the von Koch snowflake is not simple in the sense of Definition 6.4 (and much
worse behavior is possible). Moreover, Carroll’s proof takes eight pages, whereas the
general case takes only two pages in [GM08] (assuming the Jordan curve theorem) and
seven pages in [Mar19] (including a proof of the Jordan curve theorem).

There are 121 exercises, but I would have preferred even more. For example, the
chapter on Runge’s theorem has only three problems, and none utilize Runge’s theorem
itself. This is a pity, since Runge’s theorem is a marvelous machine for generating unex-
pected examples, e.g., a sequence of polynomials converging pointwise on the plane to a
discontinuous limit, a holomorphic function on the disk that has radial limits nowhere
on the boundary, or a “universal” entire function whose translates can approximate any
entire function. Learning Runge’s theorem should include learning how to wield it.

A notable feature of Carroll’s book is that it is carefully written, with plenty of
discussion, motivation and extended explanations, in addition to the actual proofs; it
has a conversational tone, and it is well suited for independent reading. This aspect
is enhanced because it also contains introductions to many of the necessary parts of
geometry and topology, as well as providing solutions to all the exercises. I recently
taught complex analysis for first year PhD students, covering most of Marshall’s more
concise text [Mar19] in one semester, by assuming material from the parallel real analysis
and topology classes. Several undergraduates attempted this class, but because of the
rapid pace I set, only a few continued for the whole semester. In the future, I would
recommend such students take our standard undergraduate complex variables course,
followed by a reading course from Carroll’s book. Such a plan would leave them well
prepared to tackle books, papers or research projects in the areas mentioned earlier
in this review. There are few (if any) books that fill the gap between the standard
undergraduate material and more advanced texts as well as Carroll’s book does. I am
currently teaching a graduate course on quasiconformal mappings, and I recommended
his book to any students needing to brush up on the essential prerequisites from classical
GFT. It is a well organized, well written gateway to an enormous number of exciting
topics in modern mathematics.
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As the title suggests this book details a national scandal centred on Euclidean ge-
ometry in schools. Specifically, the book is concerned with changes to the geometry
syllabus for the Inter. Cert. and later the Junior Cert. from the 1940s to the late 1980s
and how these changes were influenced by the opinion of the Department of Education
inspectorate rather than professional mathematicians and teachers. What is particu-
larly surprising is the length of time these problems were allowed to persist across two
syllabuses from the mid 1960s to the late 1980s with ramifications that extend to the
present day.

Mac Donald has split the book into four sections: Setting, Phase One, Phase Two,
and Aftermath. The first of these, Setting, places a recently independent Ireland in
a changing world mathematically when it comes to geometry education. At the time
Ireland was primarily promoting the education of the Irish language and had separate
Intermediate Certificate mathematics for boys and girls, with the girls’ syllabus called
‘Elementary Mathematics (for girls only)’ and of a lower standard than the ‘Mathemat-
ics’ syllabus for boys. I found this to be a very interesting and accessible introduction
to the state of education in Ireland post-independence. Some aspects of this will be
familiar to many readers but that does not detract from the book and undoubtedly
there will still be something new for everyone.

At the time, an international debate was taking place about how to reform the
mathematics syllabus in secondary schools. Some mathematicians endorsed models
that sought to ‘fix’ Euclid such as Hilbert’s axioms, whereas others sought to replace
the geometry of Euclid with a linear algebra based approach. Georges Papy was a
prominent figure in the latter movement.

The Phase One section of the book outlines how the Department of Education in-
spectorate reacted to these international developments and the policy of the government
of the day. The resulting syllabus, which Mac Donald calls Syllabus II, had some pos-
itive aspects: it removed ‘Elementary Mathematics (for girls only)’, it ran at a lower
and higher level ensuring girls had access to the more advanced material, while less able
boys could take the lower level. This also happened at a time when secondary education
became free to Leaving Certificate level, and a common Intermediate Certificate was
introduced for secondary and vocational schools. However, for the geometry content
of Syllabus II, the inspectorate developed a hybrid system where existing aspects of
Euclid ran alongside parts of Papy’s mathematics.

Syllabus II was met with a large number of teachers who were unfamiliar and un-
prepared to teach this new mathematics, while no textbook in English was available to
teachers of Syllabus II until two years after its introduction. This resulted in a lot of
confusion for teachers and for students.
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In Phase Two, Mac Donald outlines the development of Syllabus III. After seven
years of Syllabus II, the Department of Education inspectorate decided to double-down
on the use of Papy’s mathematics in places, while also not following it entirely. Papy’s
mathematics seems to require being followed precisely or not at all. This led to a
logically unsound mathematics syllabus with undefined terms and theorems that could
not be proved from the course material. This happened against the protests of many
university lecturers, most notably Prof. Anthony O’Farrell and Prof. Patrick Barry,
who were quick to point out the flaws within Syllabus III. Yet despite all this, Syllabus
III ran for fourteen years. This seems to be due to a concentration of power in the
inspectorate when writing these syllabuses. The inspectors seemed to be confident in
their ability to design a mathematical system by borrowing parts from several others.
They did not recognise the flaws in their system, and were unwilling to listen to any
dissenting voices from professional mathematicians when they pointed out these flaws.
The inspectorate did not feel they needed to listen to these mathematicians because
students sitting the Inter. Cert. were not going directly to university and these were
therefore none of their concern.

The fact that this could happen in the first place and then persist for so long is, as
Mac Donald states, a national scandal. The ramifications of these syllabuses are still
being felt today with elements of them remaining in subsequent syllabuses and many of
the teachers working today having themselves been taught with this flawed geometry.

The book is extremely well-researched. To support her work Mac Donald uses sum-
maries of committee meetings, articles, conference reports, records from the Dáil, and
interviews. These sources add a lot of colour to the argument. However, at times,
particularly in the Phase One and Phase Two sections of the book, it can be difficult
to keep track of the various timelines and organisations. For a book that provides a
detailed history on a topic spanning about fifty years, this is probably inevitable. It
is worth persevering through these periods as Mac Donald does tie things together
in the end and she helpfully provides a list of all the abbreviations at the beginning
of the book. The book is also nicely supplemented with appendices of the geometry
syllabuses discussed and extracts from the various geometric models that were under
consideration.

I think anyone with an interest in the history of secondary school education in Ireland
would find this to be a good and insightful read.
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Problems

Let us start with a thank you to all contributors, and then a call for more problems; at
the moment the problem bank is running low.

The first of this edition’s problems comes courtesy of Finbarr Holland of University
College Cork.

Problem 95.1. Suppose p is a positive integer, and

un =
ppn (n!)p

(pn)!n(p−1)/2
, (n = 1, 2, . . .).

Prove that (un)n≥1 is a strictly decreasing sequence, and determine its limit.

The second problem was sent in by Tran Quang Hung of the Vietnam National
University at Hanoi, Vietnam. Given points X,Y in Euclidean space, the ray XY is

the set of points Z satisfying
−−→
XZ = t

−−→
XY for some t ≥ 0. Similarly the opposite ray of

XY is the set of points W satisfying
−−→
XW = −t

−−→
XY .

Problem 95.2. Let A be a regular polytope in n-dimensional Euclidean space En with
n ≥ 2. Let O be the centroid of A, and S a hypersphere in E

n with O in its interior.
Let {Ai}i∈I be the set of vertices of A. For all i ∈ I, say ray OAi meets S at Bi, and
the opposite ray of OAi meets S at Ci.

Prove that ∑

i∈I
|OBi| =

∑

i∈I
|OCi|.

Finally a problem fromMarian Urs̆arescu, “Roman–Vodă”, National College, Roman,
Romania. As standard, r and R denote the inradius and circumradius, respectively.

Problem 95.3. In ∆ABC, show that:

(
b

c
+

c

b

)
cos2

A

2
+
(a
c
+

c

a

)
cos2

B

2
+
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a

b
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a

)
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2
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r
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Solutions

Here are solutions to the problems from Bulletin Number 93. In taking over from
Ian Short, I may have inadvertently lost some solutions, my apologies if this is the case.

The first problem was solved by the North Kildare Problem Club.

Problem 93.1 . Find a simple closed curve in the plane that does not have an inscribed
regular pentagon.

Solution 93.1. Take the boundary T of a regular triangle. Suppose the regular pentagon
P is inscribed in T . Since no three vertices of P are collinear, there must be at least
two vertices of P on each of two sides of T , and hence the angle between two lines
joining pairs of vertices of P must be a multiple of π/3. But in fact all such angles are
multiples of π/10. �

The second problem was solved by Yagub N. Aliyev, of ADA University, Baku, Azer-
baijan; and the North Kildare Problem Club. We provide the solution of Yagub:

Problem 93.2 . Determine the least positive integer n for which a continued fraction

1

b1 +
1

b2 +
1

b3 + · · ·+ 1

bn
has value ∞, where bi are Gaussian integers each of modulus greater than 1.

Solution 93.2. n = 1 is impossible, because

1

b1
= ∞ ⇐⇒ b1 = 0.

n = 2 is also impossible, because

1

b1 +
1
b2

= ∞ ⇐⇒ b1 +
1

b2
= 0 ⇐⇒ b1b2 = −1,

which implies that |b1b2| = 1 but |b1b2| = |b1| · |b2| > 1, a contradiction.

n = 3 is possible, with, e.g. b1 = 1 + i, b2 = −1 + i, b3 = 1 + i. �
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