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Values of f(G) for groups G of odd order with Pr(G) ≥ 11/75

ROBERT HEFFERNAN AND DESMOND MACHALE

Abstract. We augment the 2011 table of Das and Nath by finding all possible values
of the commutativity ratio f(G) for a finite group G of odd order, where another
commutativity ratio Pr(G) satisfies Pr(G) ≥ 11/75.

1. Introduction

Throughout, let G be a finite group and let Pr(G) be the probability that two elements
of G, chosen at random with replacement, commute with each other. Since Pr(G) = 1
if and only if G is abelian, Pr(G) may be regarded as a commutativity ratio for groups.

It is well known that Pr(G) = k(G)
|G| , where G has k(G) conjugacy classes. In 2011, Das

and Nath [3] found all possible values of Pr(G) where |G| is odd and Pr(G) ≥ 11
75 . They

also found the structures for G′, G′ ∩Z(G) and G/Z(G) corresponding to each of these
values of Pr(G).

We define f(G) to be

1

|G|

k(G)∑
i=1

di

where di, 1 ≤ i ≤ k(G), are the degrees of the irreducible complex representations
of G. Since f(G) = 1 if and only if G is abelian, f(G) may also be regarded as a
commutativity ratio for finite groups.

The commuting probability Pr(G) has been extensively studied [5, 9, 12, 10, 13, 11, 4]
and the ratio f(G) has also been considered by several authors [8, 7, 1, 13].

One’s intuitive feeling is that if the values of one commutativity ratio Pr(G) for a
given set of groups are ‘large’, then the values of another commutativity ratio f(G)
should be ‘large’ also. For the groups G of odd order with Pr(G) ≥ 11

75 , we find the

corresponding values of f(G) and show that if Pr(G) ≥ 11
75 , then f(G) > 15

75 .
In general

(f(G))2 ≤ Pr(G) ≤ f(G)

with equality if and only G is abelian [2].
We note that, for non-abelian G, saying Pr(G) and f(G) are ‘large’ is another way

of saying that G is close to being abelian.
Finally, it is clear that Pr(G) = 1 = f(G) = |G′| = |G/Z(G)| if and only if G is

abelian and this corresponds to row 1 of the table in [3]. So, from now on we may
assume that G is non-abelian of odd order.

We employ Philip Hall’s very useful concept of isoclinism [6], which is not specif-
ically mentioned in [3]. Two groups H and K are said to be isoclinic if there exist
isomorphisms θ : H/Z(H)→ K/Z(K) and φ : H ′ → K ′ such that the isomorphism φ is
induced by the isomorphism θ. Isoclinism is an equivalence relation on finite groups and
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the isoclinism classes are called families. Each family contains a stem group G, with
the property that G′ ⊇ Z(G). Thus, for a stem group G we have G′ ∩ Z(G) = Z(G)
and |G| = |Z(G)||G/Z(G)| = |G′ ∩ Z(G)||G/Z(G)| and these values of the orders of
stem groups can be read off from the following table taken from [3]:

Row Pr(G) G′ G′ ∩ Z(G) G/Z(G) f(G)

1 1 {1} {1} {1} 1

2 1
3

(
1 + 2

32s

)
C3 C3 (C3 × C3)

s 32s+2
32s+1

3 1
5

(
1 + 4

52s

)
C5 C5 (C5 × C5)

s 52s+4
52s+1

4 5
21 C7 {1} C7 o C3

3
7

5 55
343 C7 C7 C7 × C7

13
49

6 17
81 C9 or C3 × C3 C3 (C3 × C3) o C3

11
27

6A 17
81 C3 × C3 C3 × C3 C3 × C3 × C3

11
27

7 121
729 C3 × C3 C3 × C3 C3 × C3 × C3 × C3

25
81

8 7
39 C13 {1} C13 o C3

5
13

9 3
19 C19 {1} C19 o C3

7
19

10 29
189 C21 C3 C3 × (C7 o C3)

23
63

11 11
75 C5 × C5 {1} (C5 × C5) o C3

9
25

We aim to justify the values of f(G) appearing in the final column of this augmented
table. Both Pr(G) and f(G) are isoclinic invariants [10, 2], so we may confine our
attention in general to the case where G is a stem group.

2. Values of f(G)

Consider the unique non-abelian group Gpq of order pq, where p < q are odd primes
and p divides q − 1.

It is easy to see that Z(Gpq) is trivial and that |Gpq : G′pq| = p, since the Sylow
q-subgroup is normal with abelian factor group. Furthermore, each representation of
Gpq has degree 1 or p, since the Sylow q-subgroup is normal and abelian.

Routine calculations show that Gpq has p+ (q − 1)/p conjugacy classes so that

Pr(Gpq) =
p2 + q − 1

p2q
.

The degree equation

|G| =
k(G)∑
i=1

d2i

of Gpq is now given by

|Gpq| = p+

[
q − 1

p

]
p2

so

f(Gpq) =
p+ [(q − 1)/p] p

pq
=
p+ q − 1

pq
.

We are now in a position to fill in the values of f(G) for several rows of the table.

Row 4. Pr(G) = 5
21 ; a stem group G has order 21 = 3 · 7, so f(G) = 7+3−1

7·3 = 9
21 = 3

7 .

Row 8. Pr(G) = 7
39 ; a stem group G has order 39 = 3 ·13, so f(G) = 3+13−1

3·13 = 15
39 = 5

13 .

Row 9. Pr(G) = 3
19 ; a stem group G has order 57 = 3 · 19, so f(G) = 3+19−1

3·19 = 7
19 .
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Row 11. Pr(G) = 11
75 ; a stem group has order |Z(G)||G/Z(G)| = 75 and is the unique

non-abelian group of this order. Since the Sylow 5-subgroup is abelian, normal and of
index 3, each di = 1 or 3 for all i. Thus G has eleven conjugacy classes, so the degree
equation can only be

75 = 1 + 1 + 1 + 8 · 32.

Thus, f(G) = 3+8·3
75 = 27

75 = 9
25 .

Row 10. Pr(G) = 29
189 ; a stem group G has order 189, has 29 conjugacy classes and

|G : G′| = 189
21 = 9. The degree equation can only be

189 = 9 · 1 + 20 · 32.

So, f(G) = 9+20·3
189 = 23

63 .

Row 6. Pr(G) = 17
81 ; a stem group G has order 81 and 17 conjugacy classes. We have

|G : G′| = 9, so the only possible degree equation is

81 = 9 · 12 + 8 · 32.

Thus f(G) = 9+8·3
81 = 11

27 .

Row 6A. Pr(G) = 17
81 = 51

243 ; a stem group has order 27 · 9 = 243 and 51 conjugacy
classes. |G′| = 9, so |G : G′| = 27 and there are 24 other conjugacy classes. The only
possible degree equation is

243 = 27 · 12 + 24 · 32,

so f(G) = 27+24·3
243 = 11

27 .
Note that rows 6 and 6A are an example of different families which have the same

Pr(G) and f(G) values.

Row 5. Pr(G) = 55
343 ; a stem group G has order 73 = 343 and 55 conjugacy classes.

|G′| = 7, so |G : G′| = 49 and there are 6 other classes. Thus the only possible degree
equation is

343 = 49 · 12 + 6 · 72

and f(G) = 49+6·7
343 = 13

49 .

Row 7. Pr(G) = 121
729 ; a stem group G has order 32 ·34 = 729. |G′| = 9 and |G : G′| = 81.

G has 40 other classes.
Now, 81+40 ·9 < 729, so we must consider the possibility that G has representations

of degrees 3 and 9. Thus the degree equation is

729 = 81 + a · 32 + b · 34

for some non-negative integers a and b. We get 9a + 81b = 648 and a + b = 40. This
gives a = 36 and b = 4. So, the degree equation is

729 = 81 + 36 · 32 + 4 · 34.

Thus

f(G) =
81 + 36 · 3 + 4 · 9

729
=

25

81
=

(
5

9

)2

.

Now all that remains is to examine the extra-special 3-group and 5-group cases.
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Row 2. Pr(G) =
(
1
3

) (
1 + 2

3s

)
, s ≥ 1. Here |G′| = 3, |G′ ∩ Z(G)| = |Z(G)| = 3 and

|G/Z(G)| = 32s. So, a stem group has order 32s+1. Now, |G : G′| = 32s+1

3 = 32s and

Pr(G) = 32s
(

1 + 2/32s

32s+1

)
=

32s + 2

32s+1
.

So G has 32s + 2 classes, so we have two extra classes to consider. The degree equation
can only be

32s+1 = 32s + (3s)2 + (3s)2 .

So

f(G) =
3s + 2

3s+1

after simplification.

Row 3. Pr(G) = 1
5 + 4

52s+1 . In like manner to the above, we find

f(G) =
5s + 4

5s+1
.
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