
Irish Math. Soc. Bulletin
Number 82, Winter 2018, 79–90
ISSN 0791-5578

Computing the Varchenko Determinant of a Bilinear
Form

HERY RANDRIAMARO

Abstract. The Varchenko determinant is the determinant of the
bilinear form associated to a real hyperplane arrangement. We show
that we can obtain the exact value of this determinant for certain
hyperplane arrangements if we know the edges which are relevant.

1. Introduction

Let x = (x1, . . . , xn) be a variable of the Euclidean space Rn, and
a1, . . . , an, b real coefficients such that (a1, . . . , an) 6= (0, . . . , 0).
A hyperplane H of Rn is a (n − 1)–dimensional affine subspace
H := {x ∈ Rn | a1x1 + · · · + anxn = b}. An arrangement of
hyperplanes in Rn is a finite set of hyperplanes. The most fa-
mous hyperplane arrangement is certainly the braid arrangement
Bn =

{
{x ∈ Rn | xi − xj = 0}

}
1≤i<j≤n. Hyperplane arrangement

theory is currently a very active area of research, combining ideas
from algebraic combinatorics, algebraic topology, and algebraic ge-
ometry. In the preface of their book [3], Orlik and Terao wrote Ar-
rangements are easily defined and may be enjoyed at levels ranging
from the recreational to the expert, yet these simple objects lead to
deep and beautiful results. Their study combines methods from many
areas of mathematics and reveals unexpected connections. The bilin-
ear form of a hyperplane arrangement defined by Varchenko confirms
their affirmation. The Varchenko determinant is the determinant of
this bilinear form.

An edge of a hyperplane arrangement A is a nonempty intersection
of some of its hyperplanes. Denote by L(A) the set of all edges of
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A. The arrangement of hyperplanes in A containing an edge E in
L(A) is

AE := {H ∈ A | E ⊆ H}.
The hyperplane arrangement in the edge E cut by A is

AE := {H ∩ E | H ∈ A, E * H}.
A chamber of a hyperplane arrangementA is a connected component
of the complement Rn \

⋃
H∈AH. Denote the set of all chambers of

A by C(A).

Assign a variable aH called weight to each hyperplane H of an ar-
rangement A. Define the weight a(E) of an edge E by

a(E) :=
∏
H∈A
E⊆H

aH .

The multiplicity of an edge E is

l(E) := n(E)p(E),

where n(E) := |C(AE)|, and p(E) is defined below.
For every edge E of codimension r, let N be an r-dimensional nor-
mal subspace to E. All hyperplanes of the resulting arrangement
(AE)N pass through the point {v} = E ∩ N . Consider the hyper-
plane arrangement which (AE)N induces in the tangent space TvN .
It determines another hyperplane arrangement PAE in the projec-
tivization of TvN .
A chamber of an arrangement is bounded with respect to a hy-
perplane if the closure of this chamber does not intersect the hy-
perplane. For any arrangement A′ in a real projective space, the
numbers of chambers which are bounded with respect to its hyper-
planes are all the same [5, Theorem 1.5], and we denote this number
by e(A′).
Finally, for an edge E in L(A), define p(E) := e(PAE).

Let RA = Z[aH |H ∈ A] be the ring of polynomials in variables aH .
The module of RA-linear combinations of chambers of the hyper-
plane arrangement A is

MA := {
∑

C∈C(A)

xCC | xC ∈ RA}.

Let H(C,D) be the set of hyperplanes separating the chambers C
and D in C(A). Define the RA-bilinear symmetric form
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B : MA ×MA → RA by

B(C,C) := 1, and B(C,D) :=
∏

H∈H(C,D)

aH if C 6= D.

The Varchenko determinant of the hyperplane arrangement A is the
determinant

detA := det
(
B(C,D)

)
C,D∈C(A)

of the matrix associated to the bilinear symmetric form B. The
formula of this determinant due to Varchenko is [6, (1.1) Theorem]

detA =
∏

E∈L(A)

(
1− a(E)2

)l(E)
.

It is, however, not feasible to directly use this formula to compute a
determinant from a certain complexity level. For example, one can
not deduce detB24 directly from it. In this article, we show that we
can work around this difficulty for certain hyperplane arrangements
if we know the edges which are relevant. In this purpose, we use
a clearer definition of the multiplicity l(E) written in an article of
Denham and Hanlon [1, 2. The Nullspace of the B Matrices]: First
choose a hyperplane H containing E. Then l(E) is half the number
of chambers C which have the property that E is the minimal edge
containing C̄ ∩H.
We determine the relevant edges in the next section. Then, we com-
pute the Varchenko determinants of some hyperplane arrangements
in the last section.

2. The Relevant Edges

In this section, we remove in the Varchenko determinant the factors(
1− a(E)2

)l(E)
such that l(E) = 0. In the edge set L(B7), for exam-

ple, we do not need to consider the edges {x ∈ R7 | x1 = x2, x4 = x5}
and {x ∈ R7 | x2 = x4 = x5, x1 = x7} whose multiplicity is 0. This
removal simplifies the computation of the Varchenko determinant.

Take a hyperplane arrangement A in Rn. We say that an edge E of
A is relevant if l(E) 6= 0. Denote the relevant edge set of A by

RA := {E ∈ LA | l(E) 6= 0}.

To determine RA, we have to consider the faces of the chambers.
Recall that the face set of a chamber C in CA resp. of the chambers
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in CA is

F(C) := {C̄∩E | E ∈ LA, C̄∩E 6= ∅} resp. F(CA) :=
⋃
C∈CA

F(C).

Define the following subset of F(C) resp. F(CA)

S(C) := {C̄∩H | H ∈ A, C̄∩H 6= ∅} resp. S(CA) :=
⋃
C∈CA

S(C).

Lemma 2.1. Let A be a hyperplane arrangement in Rn. Then

RA =
{
〈F 〉 | F ∈ S(CA)

}
.

Proof. Let F ∈ S(CA). We have,

〈F 〉 =
⋂
H∈A
F⊆H

H.

By the definition, there exist a chamber C and a hyperplane H such
that C̄ ∩H = F . Since 〈F 〉 is the minimal edge containing F , then
l
(
〈F 〉
)
≥ 1.

Now, take E ∈ LA \
{
〈F 〉 | F ∈ S(CA)

}
. Suppose that there exist

a chamber C and a hyperplane H such that E is the minimal edge
containing F = C̄ ∩ H. It means that E  〈F 〉, which impossible
since F ⊆ E. �

Remark that, in the formula l(E) = n(E)p(E), we always have
n(E) ≥ 1. So only the factor p(E) could be considered for deciding
which edges are relevant.

Proposition 2.2. Let A be a hyperplane arrangement in Rn. For
every relevant edge E, we fix a hyperplane HE of A containing it.
Then,

detA =
∏
E∈RA

(
1− a(E)2

)l(E)

with l(E) =
1

2

∣∣{C ∈ CA | 〈C̄ ∩HE〉 = E
}∣∣.

Proof. It is clear that∏
E∈LA

(
1− a(E)2

)l(E)
=
∏
E∈RA

(
1− a(E)2

)l(E)
.

Recall that l(E) is half the number of chambers C which have the
property that E is the minimal edge containing C̄ ∩ HE. From
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Lemma 2.1, we deduce that E is the minimal edge containing C̄∩HE

if and only if 〈C̄ ∩HE〉 = E. �

3. Some Varchenko Determinants

We compute some Varchenko determinants in this section. Further-
more, the Varchenko determinants of the braid arrangement, and
of the hyperplane arrangement associated to the hyperoctahedral
group were also computed by Pfeiffer, and Randriamaro [4, 6 Com-
puting the determinants of finite Coxeter groups], but by using tools
from group theory.

Central 2–Dimensional Arrangement. This is a hyperplane arrange-
ment A = {H1, . . . , Hm} in R2 such that the intersection

⋂m
i=1Hi is

the origin {0}. An example is the hyperplane arrangement associ-
ated to the dihedral group Dm having 2m elements with

Hi =
{
x ∈ R2 | x1 cos

(i− 1)π

m
+ x2 sin

(i− 1)π

m
= 0
}
.

Assign the weight ai to the hyperplane Hi. Then,
RA =

{
H1, . . . , Hm, {0}

}
, and

• a(Hi) = ai with l(Hi) = 2,
• a({0}) =

∏m
i=1 ai with l({0}) = m− 2.

Then,

detA =
(
1−

m∏
i=1

a2i
)m−2 m∏

j=1

(1− a2j)2.

General Position and the Hypercubic Arrangement. A hyperplane
arrangement Gn = {H1, . . . , Hn+1} in Rn is in general position if, for
every subset P of [n] such that |P | = p, we have dim

⋂
i∈P Hi = n−p.

This is the case for the hyperplane arrangement such that

• ∀i ∈ [n], Hi = {x ∈ Rn | xi = 0},
• Hn+1 = {x ∈ Rn | x1 + · · ·+ xn = 1}.

Assign the weight ai to the hyperplane Hi.

And for α, β in R with α 6= β, the hypercubic arrangement is the hy-
perplane arrangement Cn = {H1,α, H1,β, . . . , Hn,α, Hn,β} in Rn such
that Hi,α resp.β = {x ∈ Rn | xi = α resp. β}.
Assign the weight ai,α resp. ai,β to the hyperplane Hi,α resp. Hi,β.

Both hyperplane arrangements have the property

∀H ∈ Gn resp. Cn, ∀C ∈ C(Gn) resp. C(Cn), 〈C∩H〉 = H or 〈C∩H〉 = ∅.
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From Lemma 2.1, we deduce that R(Gn) = Gn, and R(Cn) = Cn.
Moreover, since |Gn| = 2n − 1, and |Cn| = 3n, then∣∣{C ∈ Gn | H ∈ Gn, 〈C ∩H〉 = H}

∣∣ = 2n − 2

and
∣∣{C ∈ Cn | H ∈ Cn, 〈C ∩H〉 = H}

∣∣ = 2× 3n−1.

Thus

detGn =
n∏
i=1

(1−a2i )2
n−1−1 and det Cn =

n∏
i=1

(1−a2i,α)3
n−1

(1−a2i,β)3
n−1
.

Braid Arrangement. This consists of the
(
n
2

)
hyperplanes

Hi,j = {x ∈ Rn | xi − xj = 0}, with 1 ≤ i < j ≤ n. We assign the
weight ai,j to the hyperplane Hi,j.

Proposition 3.1. Let n ≥ 2. We have

detBn =
∏
I∈2[n]
|I|≥2

(
1−

∏
{i,j}∈(I2)

a2i,j

)(|I|−2)! (n−|I|+1)!

.

This determinant was also calculated by Duchamp et al. [2, 6.4.2
A Decomposition of Bn] using the diagonal solutions of the Yang-
Baxter equation.

Each chamber of Bn is defined by {x ∈ Rn | xσ(1) > xσ(2) > · · · >
xσ(n)}, where σ is a permutation of [n]. We write {xσ(1) > xσ(2) >
· · · > xσ(n)} for simplicity.
Let I = {i1, . . . , ir} be a subset of [n], with |I| ≥ 2. Denote by E(I)
the edge

E(I) :=
⋂

{i,j}∈({i1,...,ir}2 )

Hi,j.

Lemma 3.2. Let n ≥ 2. We have

R(Bn) =
{
E(I) | I ⊆ [n], |I| ≥ 2

}
.

Proof. Consider a hyperplane Hs,t of Bn, and a permutation σ of [n]
such that σ(i) = s and σ(j) = t with i < j. Then,〈

Hs,t∩{xσ(1) > xσ(2) > · · · > xσ(n)}
〉

=
〈
{xσ(1) > · · · > xσ(i) = · · · = xσ(j) > · · · > xσ(n)}

〉
= {x ∈ Rn | xσ(i) = xσ(i+1) = · · · = xσ(j)}
= E

(
{σ(i), σ(i+ 1), . . . , σ(j)}

)
.
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Hence, E
(
{σ(i), σ(i+1), . . . , σ(j)}

)
is the minimal edge containing

the face His,it ∩ {xσ(1) > xσ(2) > · · · > xσ(n)}. �

Lemma 3.3. Let I ⊆ [n]. Then, l
(
E(I)

)
= (|I| − 2)! (n− |I|+ 1)!.

Proof. Let Hi1,ir be a hyperplane containing E(I). We have to count
the chambers {xσ(1) > xσ(2) > · · · > xσ(n)} such that〈

Hi1,ir ∩ {xσ(1) > xσ(2) > · · · > xσ(n)}
〉

= E(I).

Let ν be a permutation of {2, . . . , r−1}. These chambers correspond
to the chambers having the forms

{· · · > xi1 > xiν(2) > · · · > xiν(r−1) > xir > . . . }
and {· · · > xir > xiν(2) > · · · > xiν(r−1) > xi1 > . . . }.

Because of the coefficient 1
2 in the multiplicity, we just need to con-

sider the chambers

{xσ(1) > xσ(2) > · · · > xσ(n)}
= {· · · > xi1 > xiν(2) > · · · > xiν(r−1) > xir > . . . }.

Let i ∈ [n] such that σ(i) = i1. We have:

• (n− r)! possibilities for the sequence(
σ(1), . . . , σ(i− 1), σ(i+ r), . . . , σ(n)

)
,

• (r − 2)! possibilities for the sequence(
σ(i+ 1), . . . , σ(i+ r − 2)

)
,

• and n − r + 1 possibilities to choose i since we must have
i ∈ [n− r + 1].

Then l
(
E(I)

)
= (n−r)!×(r−2)!×(n−r+1) = (r−2)! (n−r+1)!. �

We obtain Proposition 3.1 by combining Proposition 2.2 and
Lemma 3.3.

Hyperplane Arrangement Associated to Hyperoctahedral Group. Let

[±n] := {−n, . . . ,−2,−1, 1, 2, . . . , n}. Denote 2[±n] the subset of
2[±n] having the following properties:

• the elements of 2[±n] are the elements {i1, . . . , it} of 2[±n] such
that |ir| 6= |is| if r 6= s,

• and if {i1, . . . , it} ∈ 2[±n], then {−i1, . . . ,−it} /∈ 2[±n].
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For example,

2[±3] =
{
∅, {1}, {2}, {3},
{1, 2}, {−1, 2}, {1, 3}, {−1, 3}, {2, 3}, {−2, 3},
{1, 2, 3}, {−1, 2, 3}, {−1,−2, 3}, {1,−2, 3}

}
.

The hyperplane arrangement On associated to the hyperoctahedral
group Bn consists of

• the
(
n
2

)
hyperplanes Hi,j = {x ∈ Rn | xi − xj = 0} with

1 ≤ i < j ≤ n,
• the

(
n
2

)
hyperplanes H−i,j = {x ∈ Rn | xi + xj = 0} with

1 ≤ i < j ≤ n,
• the n hyperplanes Hi = {x ∈ Rn | xi = 0} with i ∈ [n].

We assign the weights ai,j to the hyperplanes Hi,j, the weights a−i,j
to the hyperplanes H−i,j, and the weights ai to the hyperplanes Hi.

Proposition 3.4. Let n ≥ 2. We have

detOn =
∏

J∈2[±n]
|J |≥2

(
1−

∏
{i,j}∈(J2)

a2i,j

)2n−|J|+1 (|J |−2)! (n−|J |+1)!

∏
I∈2[n]
|I|≥1

(
1−

∏
i∈I

a2i
∏

{i,j}∈(I2)

a2i,j a
2
−i,j

)2n−1 (|I|−1)! (n−|I|)!
.

Each chamber of On is defined by

{x ∈ Rn | ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0},

where εi ∈ [±1] and σ is a permutation of [n].

For J = {ε1i1, ε2i2, . . . , εrir} ∈ 2[±n], with |J | ≥ 2, denote E(J) the
edge

E(J) := {x ∈ Rn | ε1xi1 = ε2xi2 = · · · = εrxir}.
And for I = {i1, i2, . . . , ir} ⊆ 2[n], with r ≥ 1, denote E(I0) the edge

E(I0) := {x ∈ Rn | xi1 = xi2 = · · · = xir = 0}.

Lemma 3.5. Let n ≥ 2. We have

R(On) =
{
E(J) | J ∈ 2[±n], |J | ≥ 2

}
∪
{
E(I0) | I ∈ 2[n], |I| ≥ 1

}
.

Proof. Consider a hyperplane Hεss,εtt of On, and a permutation σ of
[n] such that σ(i) = s and σ(j) = t with i < j. If
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• {εss, εtt} = {εiσ(i), εjσ(j)}, then〈
Hεss,εtt ∩ {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}

〉
=
〈
{ε1xσ(1) > · · · > εixσ(i) = · · · = εjxσ(j) > · · · > εnxσ(n) > 0}

〉
= {εixσ(i) = εi+1xσ(i+1) = · · · = εjxσ(j)}
= E

(
{εiσ(i), εi+1σ(i+ 1), . . . , εjσ(j)}

)
.

• {εsis, εtit} 6= {εiσ(i), εjσ(j)}, then〈
Hεss,εtt ∩ {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}

〉
=
〈
{ε1xσ(1) > · · · > εi−1xσ(i−1) > xσ(i) = · · · = xσ(n) = 0}

〉
= {xσ(i) = xσ(i+1) = · · · = xσ(n) = 0}
= E

(
{0, σ(i), σ(i+ 1), . . . , σ(n)}

)
.

Consider a hyperplane Hu of On, and a permutation σ of [n] such
that σ(i) = u. Then,〈

Hu ∩ {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
〉

=
〈
{ε1xσ(1) > · · · > εi−1xσ(i−1) > xσ(i) = · · · = xσ(n) = 0}

〉
= {xσ(i) = xσ(i+1) = · · · = xσ(n) = 0}
= E

(
{0, σ(i), σ(i+ 1), . . . , σ(n)}

)
.

�

Lemma 3.6. Let E(J), E(I0) ∈ R(On). Then,

a
(
E(J)

)
=

∏
{s,t}∈(J2)

as,t

with l
(
E(J)

)
= 2n−|J |+1(|J | − 2)! (n− |J |+ 1)!,

a
(
E(I0)

)
=
∏
u∈I

au
∏

{s,t}∈(I2)

as,ta−s,t

with l
(
E(I0)

)
= 2n−1(|I| − 1)! (n− |I|)!.

Proof. We have

a
(
E(J)

)
=

∏
H∈On
E(J)⊆H

a(H) =
∏

{s,t}∈(J2)

as,t,
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and
a
(
E(I0)

)
=

∏
H∈On
E(I0)⊆H

a(H) =
∏
u∈I

au
∏

{s,t}∈(I2)

as,ta−s,t.

To the edge E(J), assign the hyperplane Hε1i1, εrir containing it. We
first have to count the chambers {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) >
0} such that〈

Hε1i1, εrir ∩ {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
〉

= E(J).

Let ν be a permutation of {2, . . . , r−1}. These chambers correspond
to the chambers having the forms

{· · · > ε1xi1 > εν(2)xiν(2) > · · · > εν(r−1)xiν(r−1) > εrxir > . . . },
{· · · > εrxir > εν(2)xiν(2) > · · · > εν(r−1)xiν(r−1) > ε1xi1 > . . . },
{· · · > −ε1xi1 > εν(2)xiν(2) > · · · > εν(r−1)xiν(r−1) > −εrxir > . . . },
and

{· · · > −εrxir > εν(2)xiν(2) > · · · > εν(r−1)xiν(r−1) > −ε1xi1 > . . . }.

Because of the coefficient 1
2 in the multiplicity and the symmetry of

the signed permutation, we just need to consider the chambers

{ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
= {· · · > ε1xi1 > εν(2)xiν(2) > · · · > εν(r−1)xiν(r−1) > εrxir > . . . }

and multiply the obtained cardinality by 2. Let i ∈ [n] such that
σ(i) = i1. We have:

• 2n−r(n− r)! possibilities for the sequence(
ε1σ(1), . . . , εi−1σ(i− 1), εi+rσ(i+ r), . . . , εnσ(n)

)
,

• (r − 2)! possibilities for the sequence(
εi+1σ(i+ 1), . . . , εi+r−2σ(i+ r − 2)

)
,

• and n − r + 1 possibilities to choose i since we must have
i ∈ [n− r + 1].

Then

l
(
E(J)

)
= 2× 2n−r(n− r)!× (r − 2)!× (n− r + 1)

= 2n−r+1(r − 2)!(n− r + 1)!.

To the edge E(I0), assign the hyperplane Hir containing it. Now, we
have to count the chambers {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
such that〈

Hir ∩ {ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
〉

= E(I0).
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Let ν be a permutation of [r − 1]. Those chambers correspond to
the chambers having the forms

{· · · > xir > εν(r−1)xiν(r−1) > · · · > εν(2)xiν(2) > εν(1)xiν(1) > 0}
and {· · · > −xir > εν(r−1)xiν(r−1) > · · · > εν(2)xiν(2) > εν(1)xiν(1) > 0}.

Because of the coefficient 1
2 in the multiplicity, we just need to con-

sider the chambers

{ε1xσ(1) > ε2xσ(2) > · · · > εnxσ(n) > 0}
= {· · · > xir > εν(r−1)xiν(r−1) > · · · > εν(2)xiν(2) > εν(1)xiν(1) > 0}.

We have:

• 2n−r(n− r)! possibilities for the sequence(
ε1σ(1), . . . , εn−rσ(n− r)

)
,

• and 2r−1(r − 1)! possibilities for the sequence(
(εn−r+2σ(n− r + 2), . . . , εnσ(n)

)
.

Then l
(
E(I0)

)
= 2n−r(n−r)!×2r−1(r−1)! = 2n−1(r−1)!(n−r)!. �

We obtain Proposition 3.4 by combining Proposition 2.2 and
Lemma 3.6.
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