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Aspects of Positive Scalar Curvature
and Topology 11

MARK G.WALSH

ABSTRACT. This is the second and concluding part of a survey ar-
ticle. Whether or not a smooth manifold admits a Riemannian met-
ric whose scalar curvature function is strictly positive is a problem
which has been extensively studied by geometers and topologists
alike. More recently, attention has shifted to another intriguing
problem. Given a smooth manifold which admits metrics of posi-
tive scalar curvature, what can we say about the topology of the
space of such metrics? We provide a brief survey, aimed at the non-
expert, which is intended to provide a gentle introduction to some
of the work done on these deep questions.

-

FIGURE 1. A selection of geometric structures on the sphere

4. THE SPACE OF METRICS OF POSITIVE SCALAR CURVATURE

We now consider the second of our introductory questions. What
can we say about the topology of the space of psc-metrics on a given
smooth compact manifold? Before discussing this any further it is
worth pausing to consider what we mean by a space of metrics in
the first place. Recall Fig. [I, where we depict 3 distinct metrics
on the 2-sphere, S?. Each of the three images represents a point
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in the space of metrics. One can now imagine traveling on a path
in this space to consist of an animation over time which moves one
such picture into another, continuously stretching and warping the
sphere. Although, in our minds we usually think of these shapes
extrinsically as embedded into R3, all of these metrics can be thought
of as intrinsic geometric structures on S2?. Picturing them this way
is a tougher mental exercise but worth doing, especially if one wants
to consider the space of metrics on a manifold which does not embed
in R3.

Suppose we add a constraint to our metrics on S%. We now con-
sider only metrics in this space with positive (Gaussian/scalar) cur-
vature. This subspace is certainly non-empty: the round metric has
positive curvature! Consider animations of the round metric which,
at every frame, satisfy positive curvature. The second image in Fig/[l]
seems attainable, but the third metric not so as it undoubtably has
some negative curvature. One question we might ask concerns the
connectivity of this space. Do there exist positive curvature metrics
on S? which cannot be connected by a path (through positive curva-
ture metrics) to the round metric? In other words, are there distinct
islands of positive curvature metrics? More generally, what can we
say about higher notions of connectivity such as the fundamental
group (do these islands contain lakes?) or more general homotopy
groups? What about the analogous spaces for other manifolds?

It turns out that the answer to all of these questions in the case of
S? is no. We know from work of Rosenberg and Stolz, making use
of the Uniformisation Theorem, that the space of positive curvature
metrics on the 2-dimensional sphere is actually a contractible space;
see [45]. In a sense this is not too surprising, given the strict limita-
tions placed by positive curvature. When imagining positive curva-
ture geometries on S?, it is difficult to stray too far beyond objects
like the first two pictures on Fig. [I] However, if one sufficiently
increases the dimension of the sphere, a great deal of non-trivial
topology emerges in these spaces. For example, we know from the
work of Carr in [13], that the space of positive scalar curvature met-
rics on the 7-sphere has infinitely many distinct path components.
More generally, there are large numbers of manifolds whose space
of positive scalar curvature metrics has non-trivial topological infor-
mation at multiple levels. We will now attempt to give a taste of
this story.
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We begin with some preliminary considerations. As before, M
denotes a smooth closed (compact with empty boundary) manifold
of dimension n > 2. We let R(M) denote the space of all Rie-
mannian metrics on M, under its usual C'*-topology; see chapter
1 of [47] for details about this topology. This in fact gives R(M)
the structure of an infinite dimensional Fréchet manifold; see chap-
ter 1 of [47]. This enormous, infinite dimensional space is convex
and so is, in a sense, not so interesting topologically. However,
by specifying some geometric constraint, C', we can restrict to the
subspace RY(M) < R(M) of metrics which satisfy this geometric
constraint. Of course, depending on the constraint, this subspace
may be empty. However, when non-empty, such subspaces may
be very interesting indeed from a topological point of view. There
are many geometric constraints which are of interest. For example,
those interested in positive curvature may wish to study the spaces
RE=0(M), REV(M) or R*>O(M), the open subspaces of R(M)
consisting of metrics with positive sectional, Ricci or scalar curva-
ture respectively. Alternatively, one might be interested in geometric
conditions such as non-negative, constant or negative curvature. Al-
though we will say a few words later about some alternate geometric
constraints,5| our focus here is on positive scalar curvature and on
understanding the topology of the space, R*>Y(M). This problem
has aroused considerable attention in recent years.

At this point, we should bring up another space which is closely
associated with R(M). This is the moduli-space of Riemannian
metrics, denoted M(M). Before defining it we point out that two
Riemannian metrics, ¢ and ¢ on M, are isometric if there is a
diffeomorphism ¢ : M — M so that ¢’ = ¢*g. Here, ¢*g is the “pull-
back” of the metric g under the diffeomorphism ¢ and is defined by
the formula

¢*g(u,v)y = g(dd.(u), d¢x(v))¢(m)v
where x € M, u,v € T, M and d¢, : T, M — Ty,)M is the derivative
of ¢. This determines an action of the group Diff (M), the group of
self-diffeomorphisms M — M, on R(M). The moduli space M (M)
is then obtained as the quotient of this action on R(M) and, thus,
is obtained from R(M) by identifying isometric metrics. For some,
this is a more meaningful interpretation of the space of “geometries”

° It is also interesting to drop the compactness requirement on M, although we
will not say much about non-compact manifolds here.
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on M, although this is a subject of debate. Restricting the above
action to a subspace of R(M) which satisfies a given curvature con-
straint leads to the moduli space of Riemannian metrics which sat-
isfy this constraint. In particular, we will consider the moduli space
of positive scalar curvature metrics: M*>°(M). To summarise, we
have the following commutative diagram, where the horizontal maps
denote projections while the vertical maps are inclusions.

R(M) ——— M(M)

] ]

RS>O<M) . M3>O(M)

The earliest results displaying topological non-triviality in the
space of Riemannian metrics of positive scalar curvature are due
to the landmark work of Hitchin in [29]. Given a closed smooth
spin manifold M, Hitchin showed, via the a-invariant, that the ac-
tion of the diffeomorphism group Diff(M) could be used to show
that, in certain dimensions, R*>°(M) is not path connected i.e.
7o(R*>9(M)) # 0. In fact, Hitchin also showed that R*>(M) may
not be simply connected (m(R*>°(M)) # 0). We will not discuss
the details of Hitchin’s work here, as it will take us too far afield;
for a concise discussion see [47]. One immediate consequence of
Hitchin’s work is the topological difference between R*>(M) and
M#=Y(M). As the non-triviality Hitchin exhibits arises from the ac-
tion of Diff (M), all of it disappears once we descend to the moduli
space. It is important to realise that, as later results show, it is cer-
tainly possible for topological non-triviality in R¥>%(M) to survive
in M*>%(M). This is something we will discuss shortly. However
it is worth pausing for a moment to consider the implication of two
psc-metrics which lie in distinct path components of R*>(M), being
projected to the same point in M*>%(M). It is therefore perfectly
possible for two Riemannian metrics of positive scalar curvature to
be isometric and yet not connected by a path through psc-metrics!
Intuitively, one could think of psc-metrics which are “mirror images”
of each other (and thus isometric) but for which there exists no con-
tinuous animation from one to the other which, at every frame,
satisfies the curvature constraint.

In recent years, we have learned that there is a great deal of topo-
logical non-triviality in the spaces R*>%(M) and M*>(M). These
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results usually require that M be a spin manifold, although not al-
ways. Hitchin’s results in particular have been significantly strength-
ened to deal with higher connectivity questions; see [17], [26] and
[9]. Roughly, these results make use of a particular variation of the
Dirac index, introduced by Hitchin in [29], and show that for cer-
tain closed spin manifolds, M, and certain psc-metrics, g, there are
non-trivial homomorphisms

Ak(M7 g) : ﬂ-k(RS>O<M)7g) - KOkJ—i—n—H-

The latter paper [9] by Botvinnik, Ebert and Randal-Williams con-
tains results which are particularly powerful showing that, when
the manifold dimension is at least six, this map is always non-trivial
when the codomain is non-trivial. Indeed, the non-triviality de-
tected in this paper captures not simply the non-triviality displayed
in Hitchin’s work but effectively all of the topological non-triviality
known (for spin manifolds) up to this point. Their methods are new,
highly homotopy theoretic and make use of work done by Randal-
Williams and Galatius on moduli spaces of manifolds; see [23]. At
the time of writing it appears that Perlmutter (whose work we will
briefly mention a little later) has, using techniques developed in
[44], now extended this theorem to hold for dimension 5 also. It
is important to point out however that, unlike many of the results
it subsumes, this is purely an existence result. In many papers,
including those by Crowley and Schick [17] and by Hanke, Schick
and Steimle [26], specific non-trivial elements are constructed. In-
deed, the latter paper constructs an especially interesting class of
examples, something we will say a few words about later on. Before
we can continue this discussion however, there are some important
concepts we need to introduce.

4.1. Path Connectivity, Isotopy and Concordance. As already
suggested, the logical first question when studying the topology of
the space R*>(M) (or M*>Y(M)) concerns path connectivity. Is
this space path connected? Recall that earlier we mentioned that the
space of all psc-metrics on the 2-dimensional sphere S?, R*>%(S5?),
is a contractible and therefore path-connected space; see [45]. This
theorem also implies that RP?, the only other closed 2-dimensional
manifold to admit a psc-metric, has a contractible space of psc-
metrics also. This is not so surprising given the constraints positive
scalar curvature place at this dimension. Indeed, in dimension 3
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the situation may be similar. We know from recent work of Coda-
Marques (see [16]) that the space R*>Y(S?) is path-connected, while
a number of experts have suggested that this space may well be con-
tractible also. However, as we increase the dimension n, the scalar
curvature becomes more and more flexible and so the possibility for
more exotic kinds of geometric structure increases.

In dimension 4, for example, there are examples of 4-dimensional
manifolds whose space of psc-metrics (as well as the corresponding
moduli space) has many (even infinitely many) path components; see
for example work by Ruberman in [46] and recent work by Auckly,
Kim, Melvin and Ruberman in [2]. It should be said that the meth-
ods used here, such as Seiberg-Witten theory, are specific to dimen-
sion 4 and do not apply more generally. Moreover, the manifolds
used here are non-trivial in their own right. In particular, they are
not spheres. In fact, it is still an open question as to whether the
space of psc-metrics on the 4-dimensional sphere, R*>Y(S%), is path
connected or has any non-trivial topology at all. Given that dimen-
sion 4 is very often a special case, with features and pathologies all
of its own, we will focus on more general techniques for detecting
disjoint path components of psc-metrics for manifolds in dimensions
= 9.

In order to discuss the problem properly, there are a couple of
helpful terms we must define: isotopy and concordance. Given the
frequent use of these terms in various mathematical contexts, in
particular in studying spaces of diffeomorphisms (a context which
overlaps with ours), we will add the prefix “psc.” Two psc-metrics
go and g1 in R¥>O(M) are said to be psc-isotopic if they lie in the
same path component of R¥>%(M), i.e. there is a continuous path
t — g, € R¥”Y(M), where t € [0,1], connecting gy and g;. Such a
path is called a psc-isotopy. The metrics gy and g; are said to be psc-
concordant if there exists a psc-metric g on the cylinder M x [0, 1],
which near each end M x {i}, where ¢ € {0, 1}, respectively takes
the form ¢; + dt*>. Such a metric on the cylinder is known as a
psc-concordance; see Fig. [§

It is not difficult to verify that both notions determine equivalence
relations on the set R*>°(M), the equivalence classes of psc-isotopy
being simply the path components of R*>°(M). Moreover, it fol-
lows from a relatively straightforward calculation that psc-isotopic
metrics are necessarily psc-concordant; both [21] and [25] contain
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FI1GURE 8. A psc-concordance g between gy and g;.

versions of this calculation. The idea here is to consider the “warped
product” metric g; + dt? on the cylinder M x [0, 1] arising from a
psc-isotopy {9 }rejo,1] between go and g;. Although this metric may
not have positive scalar curvature, since there may be unwelcome
negative curvature arising in the ¢-direction, it can be rescaled to suf-
ficiently slow down transition in the ¢-direction so that the positivity
of the slices can compensate and so that the resulting metric satis-
fies a product structure near the ends. Thus, given a psc-isotopy, we
can always construct a psc-concordance. This observation suggests
at least a strategy for exhibiting distinct path components of the
space R*>9(M). Namely, show that there are psc-metrics in this
space which are not psc-concordant. Given the index obstruction
discussed earlier, this turns out to be a very reasonable strategy.

Before we discuss how to exhibit distinct psc-concordance classes
(and thus distinct path components of R*>(M)), let us consider the
converse to the observation we have just made. Are psc-concordant
metrics necessarily psc-isotopic? This is an intriguing question. The
short answer is no. We know from work of Ruberman, that the
Seiberg-Witten invariant detects psc-concordant metrics which are
not psc-isotopic in the case of certain 4-dimensional manifolds; see
[46]. But, as we noted earlier, dimension 4 has some very specific
features. It might still be the case that in higher dimensions, the
two notions coincide. In particular, what about the “reasonable”
case of simply connected manifolds of dimension at least five (still
a huge class of manifolds)?

For a long time this problem remained completely open, with little
hope of progress. In [48], working in this reasonable realm of simply
connected manifolds with dimension at least five, this author gave a
partial affirmative answer to this question. The result held for a spe-
cific kind of psc-concordance arising via the Gromov-Lawson surgery
construction, a so-called Gromov-Lawson concordance (something
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we will look at shortly). But it was still completely unclear as to
how one would approach the general problem. We now have, from
substantial work by Botvinnik in [7] and [§], the following theorem.

Theorem 4.1. (Botvinnik [8]) Let M be a simply connected man-
ifold of dimension at least 5 which admits psc-metrics. Then two
psc-metrics on M are psc-concordant if and only if they are psc-
1sotopic.

Botvinnik’s work also deals with the non-simply connected case
although the story here is a little more complicated. One reason is
that, in this case, a certain space of diffeomorphisms on M x [0, 1]
may not be path-connected. This allows for the construction of more
“exotic” types of psc-concordance. The formulation of the theorem
in this case must take into account the fundamental group of the
manifold M and something called its Whitehead torsion, a notion
we will not discuss here. The proof of Botvinnik’s theorem is for-
midable, incorporating deep theorems in Differential Topology and
Geometric Analysis. This is not at all the place for an in-depth dis-
cussion of the proof. However it is worth making one remark on why
such a proof might be so difficult. Consider the possible complexity
of an arbitrary psc-concordance. The sort of psc-concordance dis-
cussed earlier, obtained by stretching a warped product metric, is
about the tamest kind of psc-concordance imaginable. It does, after
all, have a slicewise positive scalar curvature structure. But imag-
ine how such a tame psc-concordance could be made “wild,” by the
mere act of taking a connected sum, via the Surgery Theorem, with
an appropriate psc-metric on the sphere. This would not change
the topology of the cylinder, yet, if the psc-metric on the sphere was
suitably ugly, could produce a monstrous psc-concordance; see Fig.
@ below.

Indeed, it was observed by Gromov, that the problem of deciding
whether or not two psc-concordant metrics are psc-isotopic is, in
fact, algorithmically unsolvable. Gromov’s argument makes use of
the well-known fact that the problem of recognising the trivial group
from an arbitrary set of generators and relations is algorithmically
unsolvable. The idea is to build an arbitrarily complicated “unrecog-
nisable” psc-concordance which represents such an arbitrary set of
generators and relations, by means of a geometric construction us-
ing appropriate cells and attaching relations to build a representative
cellular complex. For details, see Theorem 1.1 of [§]. As Botvinnik
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original tame psc-concordance

“monster” psc-metric on sphere

FIGURE 9. A tame psc-concordance made wild by con-
nected sum with a “monster” psc-metric on the sphere.

demonstrates in his theorem, this does not mean that the problem
is impossible to solve, just that its solution requires non-algorithmic
tools, like surgery.

4.2. Positive Scalar Curvature Cobordism. For much of the
remainder of this article, we will focus on the problem of demon-
strating topological non-triviality in the space of metrics of positive
scalar curvature. An important strategy in this endeavour, is to
develop tools for constructing “interesting” examples of psc-metrics
and, in particular, interesting families of psc-metrics. By interesting,
we really mean topologically non-trivial. In the case of individual
psc-metrics, this means psc-metrics which lie in distinct path com-
ponents of the space of psc-metrics. More generally, we want to
exhibit families of psc-metrics which represent non-trivial elements
of the higher homotopy or homology groups of this space.

One approach is to make use of the action of the diffeomorphism
group. As we mentioned earlier, this was part of Hitchin’s tech-
nique in [29] where he exhibited such non-triviality at the level of
path connectivity and the fundamental group for certain spin mani-
folds. We now consider another method. The principle tool we have
for constructing examples of psc-metrics is the surgery technique
of Gromov and Lawson. Recall that, given a manifold M and a
psc-metric g on M, this technique allows us to construct explicitly a
psc-metric ¢’ on a manifold M’ which is obtained from M by surgery
in codimension at least three (an admissible surgery). In this sec-
tion, we will consider a useful strengthening of this construction.
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By way of motivation, consider a finite sequence of n-dimensional
smooth compact manifolds My, My, M, - -+, M}, where each M; is
obtained from M;_; by an admissible surgery. Thus, any psc-metric
go on My, gives rise by way of the Gromov-Lawson construction to
a collection of psc-metrics go, g1, - - - , gr on the respective manifolds.
Suppose furthermore that My = M), (in practice we would need to
identify these manifolds via some diffeomorphism M, =~ Mj, but
for the sake of exposition we ignore this). This is a sort of “cyclic”
condition on the sequence. It is important to realise that there are
many interesting ways in which surgeries can “cancel” and the orig-
inal smooth topology of M, be restored. Indeed it is even possible,
when n = 2p, that a single surgery on a p-dimensional sphere in M,
result in a manifold M; = M,. In any case, assuming the sequence
is such that M, is restored at the end, we may now compare the
psc-metrics gg and gr. Although My = M}, the psc-metric g, hav-
ing possibly undergone multiple surgeries, may look very different
from gy. So how different are these psc-metrics? Could they now lie
in different psc-isotopy classes? As we will shortly see, the answer
to this question is yes.

To better understand the effects of surgery on psc-metrics, we need
to reintroduce cobordism. Recall that a pair of smooth closed n-
dimensional manifolds M, and M; are cobordant if there is a smooth
compact (n + 1)-dimensional manifold W with 0W = M, 1 M;. We
now consider the following question.

Question 4. Given a psc-metric, gy on My, does this metric extend
to a psc-metric, g, on W which takes a product structure near the
boundary of W7 Thus, if it exists, the resulting metric g would
satisfy g = gy + dt* near My and g = g; + dt? near M, for some
psc-metric g; on Mj.

The answer to this question depends on certain topological consider-
ations. Before discussing this further we need to discuss some facts
about cobordism and surgery.

Recall that surgery preserves the cobordism type of a manifold.
Moreover, cobordant manifolds are always related by surgery. More
precisely, the fact that M, and M; are cobordant means that M,
can be obtained by successively applying finitely many surgeries
to My and vice versa. One way of achieving this is with a Morse
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function f : W — [0, 1]. This is a certain smooth function satisfying
f7Y(i) = M;, where i € {0, 1}, with only finitely many critical points
all in the interior of W and satisfying the condition that, at each
critical point w, det D?f(w) # 0. Here, D*f(w) is the Hessian of f
at w. This latter condition means that critical points of f are of the
simplest possible form and, by a lemma of Morse (see [42]), there is
a choice of local coordinates = = (x1, -+ ,z,41) near w where the
function f takes the form

p+1 n+1

floy=c=pai+ )} i,
i=1

1=p+2

where f(w) = ¢ and p € {—1,0,1,--- ;n}. The number p + 1 is
referred to as the Morse index of the critical point w. Specifically,
this is the dimension of the negative eigenspace of D?f(w) and so is
independent of any coordinate choice.

Let us assume for simplicity that w is the only critical point in
the level set f~!(c) (this can always be obtained by a minor per-
turbation of the function). Then, for some € > 0, f~![c —¢€,¢ + €]
contains only w as a critical point. Moreover the level sets f~1(c+e)
are smooth n-dimensional manifolds (since they contain no critical
points) and, most importantly, f~1(c+e¢) is obtained from f~1(c—e¢)
via a surgery on an embedded p-dimensional sphere. The cobordism
fe—e€,c+e]is called an elementary cobordism, as it involves only
one surgery. Equivalently, it is also referred to as the trace of the
surgeryon f~1(c—e). All of this means that any cobordism W can be
decomposed into a collection of elementary cobordisms. Moreover,
any surgery has a corresponding cobordism, its trace, associated to
it. Thus, the sort of sequence of surgeries we introduced to motivate
this section, are more efficiently described using cobordisms.

Let us suppose now that W is given such a decomposition into
elementary cobordisms and that each is the trace of a surgery in
codimension at least three (the key hypothesis in the Surgery Theo-
rem). This is equivalent to saying that W admits a Morse function
f: W —[0,1] in which each critical point has Morse index < n — 2;
such a Morse function is regarded as admissible. Given an admissible
Morse function, f, on W then, it follows from a theorem of Gajer in
[21] and later work by this author in [48], that the Surgery Theorem
can be strengthened to extend a psc-metric gy on M to a psc-metric
on W satisfying the product structure described above; see Fig. [10]
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This provides at least sufficient conditions for an affirmative answer
to question 4. Although there are a number of choices made in this
construction, the resulting psc-metric which is denoted g = g(go, f)
and known as a Gromouv-Lawson cobordism, depends for the most
part only on the initial psc-metric go and the Morse function f. The
extent to which the geometry of the psc-metric g (and in particular
g1) is affected by different choices of gy and f (given a fixed W) is
an interesting problem in its own right and something we will return
to shortly.

F1GURE 10. The Gromov-Lawson cobordism g arising
from an admissible Morse function f : W — [0, 1] and a
psc-metric g on My = f~1(0)

Let us return to the problem which motivated this section. When
the Gromov-Lawson construction is applied to a psc-metric over
a finite sequence of admissible surgeries which result in a mani-
fold which is the same as the starting manifold, how different are
the starting and finishing psc-metrics? Equivalently, and more suc-
cinctly, if W is a cobordism with My = My, f: W — [0,1] is an
admissible Morse function and gg is a psc-metric on M,, how “dif-
ferent” can gy and g1 = g(go, f)|a, be? In particular, could the
psc-metrics gg and ¢y be in different path components of R*(M;)?
The answer to this question is yes, as we shall now demonstrate.

4.3. Non-isotopic psc-metrics. As we have mentioned there are
many compact spin manifolds whose spin cobordism class does not
lie in the kernel of the a-homomorphism and thus do not admit
metrics of positive scalar curvature. One important example of
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such a manifold is a Bott manifold, named for its role in gener-
ating Bott periodicity. We consider such a manifold, denoted B,
an 8-dimensional simply connected spin manifold which satisfies
a([B]) = 1 € KOg = Z. Importantly, a([B]) # 0 and so B ad-
mits no psc-metrics. The topology of B is well understood; see [33]
for a geometric construction. In particular, suppose we remove a
pair of disjoint 8-dimensional disks, Dy and Dy, from B. Then the
resulting cobordism of 7-dimensional spheres, W = B\(Dy u Dy),
admits an admissible Morse function.

Recalling the Gromov-Lawson cobordism construction, we let f :
W — [0,1] denote such an admissible Morse function, Sy and S;
denote the 7-dimensional boundary spheres of the cobordism W
and gy = ds? denote the standard round metric on the Sp-boundary
sphere. We now apply the Gromov-Lawson cobordism construction.
The resulting psc-metric on W, g = g(go, f) restricts as a psc-metric
g1 on S;. Suppose now that gy and g; are psc-concordant and we
denote by h such a psc-concordance. We now obtain a contradiction:
The round psc-metric on Sy trivially extends as a psc-metric on the
disk Dy with appropriate product structure near the boundary (a
so called “torpedo” metric). By attaching the concordance h to the
other end of W, at S, we can similarly extend g; to a psc-metric on
D,. But, as Fig. suggests, this results in the construction of a
psc-metric on B, something we know to be impossible. Thus, gy and
g1 are not psc-concordant and hence not psc-isotopic. Moreover, by
“stacking” multiple copies of W and repeating this process, one can
obtain infinitely many psc-metrics in R*>°(S7) which must all lie in
distinct path components.

g1 g1 go 9o
. ‘

FiGURE 11. The impossible geometric decomposition
of B: (left to right) the disk Dy with torpedo metric,
the cobordism W with metric g, the cylinder Sy x [0, 1]
equipped the proposed concordance h between ¢; and go
and the disk D; with torpedo metric
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Although this is not quite the same as Carr’s original proof in
[13], it is very close and works for the same reasons. The argument,
generalises as Theorem below. Similar arguments, making use
of the a-invariant, have been used to show that R*>%(M) has many,
often infinitely many, path components for various compact spin
manifolds M; see for example the work of Botvinnik and Gilkey in
[12].

Theorem 4.2. (Carr [I3]) The space R*°(S*1) has infinitely
many path components when k = 2.

Interestingly, the fact that R*>°(S%*~1) has infinitely many path
components (when k > 2) has another important consequence, one
which answers an earlier question about topological non-triviality
surviving in the moduli space. It is known from work of Milnor, Ker-
vaire [35] and Cerf [14] that the space of self-diffeomorphisms of the
sphere, Diff(S™), has only finitely many path components, for all n.
Thus, at most finitely many of the path components demonstrated
by Carr are lost when we descend to the moduli space M*>9(S™),
meaning that this space also has infinitely many path components.
Indeed this fact can be shown to hold for certain other spin mani-
folds by using an invariant constructed by Kreck and Stolz, called
the s-invariant; see chapters 5 and 6 of [47] for a lively discussion
of the s-invariant and its applications. We will not define the s-
invariant save to say that it assigns a rational number s(M, g) € Q
to a pair consisting of a smooth closed manifold M with dimen-
sion n = 4k — 1 and a psc-metric g. The manifold itself must satisfy
certain other topological conditions concerning the vanishing of par-
ticular cohomology classes. Under the right circumstances, |s(M, g)|
is actually an invariant of the path component of the moduli space of
psc-metrics containing g. Thus, it can often detect when M*>0(M)
is not path connected.

4.4. Some observations about the Gromov-Lawson Cobor-
dism Construction. We return once more to the general construc-
tion, given an admissible Morse function f : W — [0, 1] on a smooth
compact cobordism W with 0W = M, 1 M; and a psc-metric gy on
My, of a Gromov-Lawson cobordism. Recall that this is a certain
psc-metric g = g(go, f) on W which extends gy and takes the form
of a product metric near the boundary dW. In the next section
we will discuss a “family” version of this construction where gy and
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f are respectively replaced by certain families of psc-metrics and
smooth functions. Here, we preempt this discussion by recalling the
question of the dependency of this construction on the choices of psc-
metric gy or Morse function f. Regarding gy, it is demonstrated in
[48] that the Gromov-Lawson cobordism construction goes through
without a hitch for a compact continuously parameterised family
of psc-metrics t — go(t) € R*%(My), where t € K and K is some
compact space. In particular, this means that if gy and gf, are psc-
isotopic metrics on M, the resulting psc-metrics g = g(go, f) and
g =3g(g), f), as well as g1 = G|y, and ¢} = ¢'|as,, are psc-isotopic in
their respective spaces of psc-metrics.

Perhaps a more interesting question concerns the choice of admissi-
ble Morse function. Before considering this, it is important to realise
that a given manifold W will admit many many different Morse func-
tions. For simplicity, let us assume that W is the cylinder My x [0, 1].
The projection functions schematically depicted in Fig. [12, which
are composed with appropriate embeddings of this cylinder, deter-
mine two very different Morse functions. Thus, the fact that the
cylinder is the (topologically) simplest cobordism does not prevent
the existence of Morse functions with a great many critical points.
Such Morse functions in turn lead to highly non-trivial decompo-
sitions of the cylinder into many non-cylindrical pieces. For such
a non-trivial (and admissible) Morse function, f, the psc-metrics
9(go, f) and g1, may be very complicated, especially when compared
with the analogous psc-metrics for the standard projection with no
critical points.

FIGURE 12. Two Morse functions on the cylinder M x
[0, 1], one with no critical points, one with many “can-
celing” critical points

Suppose we denote by Mor(W), the space (under the usual C'*-
Whitney topology) of all Morse functions W — [0, 1]. This space is
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always non-empty (in fact it is an open dense subspace of the space
of all smooth functions W — [0, 1]). We will assume that W is such
that the subspace Mor*™ (W), of admissible Morse functions, is
non-empty also. It is an important fact that two Morse functions lie
in the same path component of Mor(W) only if they have the same
number of critical points of each Morse index. Consequently, the
spaces Mor(W) and Mor®™ (W) are not path-connected. In fact
each has infinitely many path components. The difference between
Mor(W) and Mor®™™(W) is simply that path components of the
former, which contain functions with critical points whose Morse
indices are not conducive to Gromov-Lawson surgery, are removed
to obtain the latter.

Due to work of Hatcher and Igusa (see [27], [32] and [31]) it is,
under reasonable hypotheses on W (assume W is simply connected
and has dimension at least six), possible to “connect up” these path
components. By this we mean extending the spaces Mor(W) (and
Mor®™ (1)) to obtain path-connected function spaces GMor(W)
(and GMor*™(WW)). These path-connected spaces are known re-
spectively as the spaces of generalised and admissible generalised
Morse functions on W and fit into the diagram of inclusions below.

GMor* (W) — G Mor(W)

J J

Mor? (W) —— Mor(W)

A generalised Morse function is a smooth function W — [0, 1]
which as well as Morse critical points (the ones with non-degenerate
Hessian) is allowed to have a certain kind degenerate critical point
known as a birth-death singularity. Recall we pointed out that near
a Morse critical point, the function f took on a “quadratic form.”
Roughly speaking, a birth-death singularity takes on a cubical form.
So, while the function x — 22 has a Morse critical point at 0, the
function x — 23 has a birth-death critical point at 0. Birth-death
singularities are places where certain pairs of regular Morse singu-
larities can cancel along a path through smooth functions called an
unfolding. A very simple example concerns the family of real-valued
functions, f; : R — R given by the formula

filz) = 2% + ta.
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When t < 0, f; is Morse with two critical points. When t > 0, f; is
Morse with no critical points. The function fo(z) = 2? is a gener-
alised Morse function, with a lone birth-death singularity at = = 0.
As t moves from negative to positive the critical points move closer
together, collapsing at 0 only to disappear. Thus, from left to right,
a death and from right to left, a birth. We see a higher dimensional
variation of this in Fig. below, where the projection function
on the left hand image moves through a birth-death cancellation in
the middle image to obtain the projection function (with no critical
points) on the right.

F1GURE 13. The unfolding of a birth-death singularity

We now return to the question of the dependany on the choice of
admissible Morse function, f, of a Gromov-Lawson cobordism g =
g(go, f) on W. In [49], we make use of results by Hatcher and Igusa,
to describe a parameterised version of the Gromov-Lawson cobor-
dism construction which extends the original construction over a
birth-death unfolding. In effect, we show that if f;, with ¢ € [0, 1], is
a path in the space GMor®™ (1V), connecting two admissible Morse
functions on W, there is a corresponding isotopy g:(go, f:) through
psc-metrics on W extending the original construction onto gener-
alised Morse functions. In particular, we obtain that gy = g(go, fo)
and g1 = g(go, f1) are psc-isotopic. This suggests that the psc-
isotopy type of the Gromov-Lawson cobordism might be indepen-
dent of the choice of admissible Morse function. In order to show
this of course, one needs to be able to connect with such a path,
any arbitrary pair of admissible Morse functions. That is, we need
that the space GMor*™ (W) be path-connected. Fortunately, there
is a powerful theorem of Hatcher, known as the 2-Index Theorem,
which sheds considerable light on this issue; see Corollary 1.4, Chap-
ter VI of [32]. The “2-index” in the title refers to the designation of
a subspace of the space of generalised Morse functions with upper
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and lower bounds on the indices of critical points. The theorem
itself specifies levels of connectedness for such subspaces, determin-
ing that GMor®™ (W) is indeed path-connected provided W (along
with My and M) is simply connected and has dimension at least 6.
Thus, under these conditions at least, the Gromov-Lawson cobor-
dism construction is (up to psc-isotopy) independent of the choice
of admissible Morse function. Whether or not one can find non-
isotopic psc-metrics, by utilising this construction under conditions
where GMor*™ (W) is not path connected, is an interesting open
problem.

One final comment concerns the case when W = M x [0, 1]. Here,
a Gromov-Lawson cobordism g = g(go, f) is a psc-concordance of
psc-metrics gy and g1 = glayxqy on M. Such a psc-concordance
is known as a Gromouv-Lawson concordance, a specific case of the
more general notion. As a consequence of the construction just
described, we see that for simply connected manifolds of dimen-
sion > 5, Gromov-Lawson concordant psc-metrics are necessarily
psc-isotopic. Although the existence part of this result was later
subsumed by Botvinnik’s solution of the general psc-concordance
problem in [7] and [§], it is worth noting that the method used in
[49] involves the construction of an explicit psc-isotopy.

4.5. Family versions of the Gromov-Lawson construction.
The ability to exhibit multiple path components in the space of psc-
metrics, by application of the Gromov-Lawson construction, sug-
gests a role for a parameterised or “family” version of this construc-
tion in possibly recognising non-trivial higher homotopy classes of
psc-metrics. Thus, we would apply the construction to families of
psc-metrics (and in the cobordism case, families of admissible Morse
functions), with the aim of constructing families of psc-metrics which
represent non-trivial elements in the higher homotopy groups of the
space of psc-metrics.

An important first step in this regard was taken by Chernysh in
[15], who makes use of the fact that the original Gromov-Lawson
construction works on a compact family of psc-metrics to prove
the following fact: if M and M’ are mutually obtainable from each
other by surgeries in codimension > 3, then the spaces R*>(M)
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and R*>°(M") are homotopy equivalent.q The implication of this re-
sult is analogous to that of the original Surgery Theorem. It hugely
increases our pool of examples. In particular, once we obtain in-
formation about the topology of the space of psc-metrics for one
manifold M, we now have it for a huge class of manifolds which are
related to M by appropriate surgery. It is worth mentioning that,
n [52], this author proves an analogue of this result for manifolds
with boundary.

The idea behind the proof of Chernysh’s theorem is to consider
subspaces of R*>%(M) and R*>°(M"), consisting of psc-metrics which
are already “standard” near the respective surgery spheres. These
subspaces, denoted respectively R:7°(M) and R (M') are easily
seen to be homeomorphic via the act of attaching (or removing) the
standard handle on individual psc-metrics. It then suffices to show
that the inclusion RE0(M) < R¥%(M) is a homotopy equivalence.
From work of Palais in [43], we know that these spaces are domi-
nated by CW-complexes and so by a famous theorem of Whitehead
(Theorem 4.5 of [28]), it is enough to show that the relative ho-
motopy groups my(R*™Y(M), REZ0(M)) = 0 for all k. Essentially
this means showing that any continuous map ~ : D* — R*>(M),
which satisfies the condition that 7|,pr maps into R7°(M), can
be continuously adjusted (via homotopy) to a map vsq, whose im-
age is contained entirely inside R:7°(M). The important catch is
that, at each stage in the homotopy, the restriction to dD* must al-
ways be mapped into RSQO(M ). Application of the Gromov-Lawson
construction to the family of psc-metrics parameterised by v can
be shown to continuously “move” this family into the standard sub-
space Rgfdo(M ). Unfortunately, along the way, psc-metrics which are
already standard such as those parameterised by 7|,pr may be tem-
porarily moved out of R:7"(M). As the damage to these metrics is
not too severe (the Gromov-Lawson construction displaying a great
deal of symmetry) this problem is solved by replacing R:7"(M) with
a larger space of “almost standard” psc-metrics which captures all

adjustments made to a standard psc-metric by the Gromov-Lawson

6 The original proof of Chernysh’s result was, mysteriously, never published.
In [50], this author provided a shorter version of the proof, using Chernysh’s
method, but making use of the heavy lifting done in [48] regarding a parameterised
Gromov-Lawson construction. Although this paper is rather terse, an extremely
detailed version of the proof of this theorem is provided in [52].
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construction. As this space is not too much larger or more compli-
cated than R:7°(M), it is then reasonable to show that the spaces of
standard and almost standard psc-metrics are homotopy equivalent.

In [49], this author describes another family construction for pos-
itive scalar curvature metrics. The idea is to consider a smooth
fibre bundle, the fibres of which are diffeomorphic to a cobordism
W (of the type described above), over a smooth compact “base”
manifold B. The total space of this bundle, denoted FE, is equipped
with a smooth function F' : £ — B x [0,1], which restricts on
each fibre E, =~ W over b € B, as an admissible Morse function
F, = Flg, : B, — {b} x [0,1]. The function F' is known as a fi-
brewise admissible Morse function and is depicted schematically in
Fig. [14] below. This figure also includes critical points which, in the
picture, form 1-dimensional closed curves in the total space E as do
their images, the critical values, in B x [0, 1]. Of course in practice
the set of critical points (when non-empty) will have dimension the
same as the base manifold, B. As such schematic pictures are lim-
ited (especially in dimension), we have depicted this bundle as if it
were a trivial product bundle £ =~ B x W. In practice however, the
bundle need not be trivial.

Total Space F

Fibre E,
FI1GURE 14. The fibrewise admissible Morse function F'

Suppose we have a smooth family of psc-metrics B — R*>%(M),
b — go(b). It is then possible to construct a metric G' on the total
space E of the bundle which, for each b € B, restricts on the fibre
Ey as the Gromov-Lawson cobordism metric associated to the psc-
metric go(b) and the admissible Morse function Fj. Thus, G can be
used to represent a continuous family of psc-metrics on W and by
appropriate restriction, on M;. One important point here is that, as
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the bundle £ may be non-trivial, the fibres are only diffeomorphic
to W, and not canonically so. Thus, in a sense this method is
more conducive to obtaining families of psc-metrics on the moduli-
spaces of psc-metrics on W and M;. That said, a little later we
will consider applying this construction to a bundle whose total
space, near its boundary, takes the form of a product M; x [0,€) x B
with ¢ € {0,1}, even though the bundle itself is not trivial. This
means that the metric G obtained from this construction determines,
by restriction, a family of psc-metrics which unambiguously lies in
R*>0(M;). For now, let us consider an application to the moduli
space of psc-metrics.

In [10], Botvinnik, Hanke, Schick and this author exhibit non-
triviality in the higher homotopy groups of the moduli space of psc-
metrics, M*>0(M), for certain manifolds M, using this construc-
tion. Initially, we work with a variation of the moduli space which
is worth discussing. Recall that M (M), is obtained from the space
of Riemannian metrics on M, as a quotient of the pull back action of
Diff(M). We now consider a certain subgroup of Diff (M), denoted
Diff,, (M) where zyp € M is a fixed base point. This is the subgroup of
diffeomorphisms which fix xy and whose derivative at x is the iden-
tity map on T, M. Thus, elements of Diff, (M) all leave the point z
and directions emanating from this point unaltered. This point can
be thought of as a sort of “observer point” on the manifold. After
restricting the pull back action to this subgroup of observer respect-
ing diffeomorphisms, we obtain M, (M) = R(M)/Diff, (M), the
observer moduli space of Riemannian metrics on M. By replacing
R(M), with R*>%(M) (or REI>0 RS«>0(A[)), we obtain the o0b-
server moduli space of Riemannian metrics of positive scalar (Ricci,
sectional) curvature, denoted ME>O(M) (MER=V(M), MEC=0(M)).
Regarding this space, the main result of [10], is stated below.

Theorem 4.3. [10] For any k € N, there is an integer N (k) such
that for all odd n > N(k), and all manifolds M admitting a psc-
metric, g, the group m(MZY(M™), [g]) is non-trivial when i < 4k
and =0 mod 4.

In discussing the proof of this result it is important to realise
that, unlike Diff (M), the subgroup Diff, (M) acts freely on R(M).
This gives us some useful topological information about the resulting
moduli space M, (M). Consider first the case when M is the sphere,
S™. We have the following calculation, due to Farrell and Hsiang
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in [19], which helps explain some of the hypotheses of the theorem
above. For any k € N, there is an integer N (k) such that for all odd
n > N(k),

Q ifi=0 mod 4,

0  otherwise.

(Mo, (5")) ®Q = {

Thus, for appropriate ¢ and n, we now have lots of non-trivial ele-
ments in the groups m;(M,,(S")) to work with. So how does this
calculation help us? We have the inclusion

M;?O(Sn) - MCU()(SH)J
which induces homomorphisms of rational homotopy groups
(M5 (S") @ Q — mi(M,, (™) ® Q.

If, for some i = 4m, we can show that some of the non-trivial ele-
ments in Farrell and Hsiang’s calculation are in the image of such
a homomorphism, then we have exhibited non-triviality in the ob-
server moduli space by way of non-trivial elements in 7y, (M5>%(S™).
Note that the dimension n (which is required to be odd) may be
large.

In [10], we show that all of the Farrell-Hsiang elements are in
the image of such a homomorphism. The idea is as follows. From
work of Hatcher, we know that every element of m;(M,, (S")) ® Q
determines a specific S bundle over S?. These “Hatcher bundles”
come naturally equipped with fibrewise admissible Morse functions
on their total spaces; a comprehensive description is given by Gotte
in [24]. The fact that the fibres are spheres (and not manifolds with
boundary) is not a problem here. One defines the fibrewise Morse
function first on a bundle of “southern” hemispherical disks with
global minima on the south poles. On the remainder of the disk,
the function has a pair of “canceling” critical points; see Fig. for
a depiction of the gradient flow of such a function on the disk.

We then form a fibrewise “doubling” of this disk bundle and its
fibrewise Morse function to obtain a sphere bundle, the Hatcher
bundle. Away from the polar maxima and mimina, each fibre func-
tion has four remaining critical points with appropriate cancellation
properties. Regarding the metric construction we equip, in a fibre-
wise sense, a neighbourhood of each south pole with a “torpedo”
metric, before using the Gromov-Lawson cobordism construction to
extend past the critical points to a family of psc-metrics on the
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FI1GURE 15. The gradient flow of the restriction of the
Hatcher fibrewise Morse function to one hemisphere of
one spherical fibre

hemispherical disk bundle. This is then “doubled” to obtain the de-
sired fibrewise psc-metric on the total space of the Hatcher bundle,
representing a “lift” of a non-trivial element of m;(M,,(5S")) to a
necessarily non-trivial element of m;(M37%(S™)). This proves Theo-
rem 4.3|in the case when M is the sphere. To complete the proof, the
authors show that taking a fibrewise connected sum of such a repre-
sentative bundle with an n-dimensional manifold M (equipped with
a psc-metric), gives rise to non-trivial elements in m;(M3>0(M)).

One important observation about the above result is that the tech-
nique used to prove it does not make use of the index obstruction
«. Indeed, the method applies to both spin and non-spin mani-
folds, provided they admit psc-metrics and satisfy the appropriate
dimension requirements. As far as we are aware, this is the first re-
sult displaying such non-triviality in any space of psc-metrics which
does this. Returning to the regular moduli-space, we have the fol-
lowing. Using some deep arguments from algebraic topology (which
we will not discuss here), the authors show that for certain suitable
manifolds M, this non-triviality carries over to the traditional mod-
uli space M*>%(M). Interestingly, these suitable odd-dimensional
manifolds are all non-spin.

We close this section with a brief discussion of a useful strength-
ening of this family Gromov-Lawson cobordism construction. Re-
call our earlier discussion on generalised Morse functions. We now
reconsider the earlier smooth fibre bundle, with fibres diffeomor-
phic to a cobordism W, over a smooth compact “base” manifold B.
The total space of this bundle, denoted E, is now equipped with
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a smooth function F' : E — B x [0,1], which restricts on each fi-
bre E, =~ W over b € B, as an admissible generalised Morse function
Fy = F|g, : £, — {b} x[0,1]. The function F'is known as a fibrewise
admissible generalised Morse function and is depicted schematically
in Fig. below. This allows for a variation in the numbers of
critical points on fibres as certain Morse critical points may now
cancel. In this figure, which suppresses the critical points depicted
in Fig. [14] the fibres F,, E, and E. depict stages of the unfolding of
a birth-death critical point, with two critical points at F, canceling
at Ep. We now consider an application.

Total Space E

{a,b,c} x [0,1]

Fibres E,, Ey, E.

FIGURE 16. The fibrewise admissible generalised Morse
function F'

In [26], Hanke, Schick and Steimle construct a rather fascinating
collection of objects. Recall, for any 4k-dimensional spin manifold,
we can associate a number A(M ) € Z, the so-called A-genus. Tt is
well known that this topological invariant, which depends only on
the cobordism type of M, is multiplicative. That is, given a product
of manifolds M x N, we know that A(M x N) = A(M)A(N). What
was not clear was whether this multiplicitivity held in manifold bun-
dles. A fibre bundle (unless it is trivial) is of course a “twisted prod-
uct” and, like the Mobius band, only locally behaves like a regular
product. In [26], the authors demonstrate that there exist certain
manifold bundles, the fibres and base manifolds of which are com-
pact spin manifolds but where the A—genus of the total space is not
the product of the A—genera of the fibre and base. In particular,
they show that there are bundles over the sphere, the total space
of which is a spin manifold with non-zero A—genus, but with fibres
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having A= 0. Thus, we have a spin manifold with non-zero A-
genus which decomposes as a “twisted product” of spin manifolds
each with zero A—genus!

This allows for an intriguing analogue of the Bott manifold con-
struction we performed earlier. The authors show that one can con-
struct bundles of the following form. Each bundle has base manifold
a sphere, S*. and fibre a cobordism of n-dimensional spheres which
we denote Sy and S; to distinguish the bottom and top ends of the
cobordism. There are certain dimension requirements on n and k
which we will ignore. The bundle also has the property that, near
its boundary, the total space E has a product structure. Thus, the
total space has a well-defined bottom and top which take the form
S; x [0, €) x S*¥ with ¢ € {0,1}. There is thus an obvious way of cap-
ping off the ends of the total space with appropriate disk products,
D; x S*, where Dy and D; are (n + 1)-dimensional hemispheres, to
form a closed manifold £, from the total space. Crucially, the closed
spin manifold E is such that A(E) # 0.

Now, the fibres of this bundle are such that the total space admits
a fibrewise admissible generalised Morse function. Thus, given a
family of psc-metrics on Sy, parameterised by the base manifold S*,
we can apply the family Gromov-Lawson cobordism construction
(strengthened for generalised Morse functions) above to obtain a
psc-metric G on the total space E, which restricts to a family of psc-
metrics on S also parameterised by S*. For simplicity, let us assume
that the family of psc-metrics on Sy is trivial, i.e. is constantly the
round metric. Thus, at the lower end of the total space E we have a
standard cylindrical product of round metrics which easily extends
as a positive scalar curvature metric on the “southern cap” of FE.
As with the Bott manifold example earlier, we know that no such
extension is possible at the northern cap of E. This is because
A(E) # 0 and so E admits no psc-metrics. Hence, the family of
psc-metrics obtained on the sphere S7 is homotopically distinct from
the trivial one on Sy and thus constitutes a non-trivial homotopy
class in 7, (R*>Y(S™)). The authors go on to obtain a number of very
interesting results concerning non-triviality in both the space of psc-
metrics and its moduli space for certain manifolds. In particular,
they prove the following theorem.

Theorem 4.4. (Hanke, Schick, Steimle [20]) Given k € N u {0},
there is a natural number N(k) such that for all n = N(k) and
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each spin manifold M*"~*+1 admitting a psc-metric gy, the homotopy
group 7, (R*“O(M); go) contains elements of infinite order when k >
1 and infinitely many distinct elements when k = 0.

To distinguish some of the non-trivial elements constructed in this
paper from those constructed by Hitchin in [29] or by Crowley and
Schick in [I7] (all of which become trivial in the moduli space), the
authors introduce the notion of “geometrically significant” elements.
Essentially, elements of m;(R*>Y(M); go) are not geometrically sig-
nificant if they can be obtained from a single fixed psc-metric on M
via pull-back over an S*-parameterised family of oriented diffeomor-
phisms M — M. Otherwise such an element is geometrically sig-
nificant. Obviously, non-geometrically significant elements become
trivial in the homotopy groups of the moduli space M*>%(M). The
authors go on to show that many of the elements they construct are
in fact geometrically significant. In particular, in the case when the
manifold M satisfies the additional hypothesis of being the fibre of
an oriented fibre bundle over the sphere S**! whose total space has
vanishing A-genus, then the groups m(M*>9(M); [go]) also contain
elements of infinite order.

In closing this section, we should mention a very significant re-
cent result of Nathan Perlmutter concerning spaces of Morse func-
tions. In [44], he constructs something called a cobordism category
for Morse functions. We will not attempt to define the term cobor-
dism category here except to say that it (and in particular its as-
sociated classifying space) allows us to view the set all manifolds
of a particular dimension as a single “space of manifolds” and from
this distill aspects of the structure which are stable under certain
operations such as surgery. This idea, which is still relatively new,
was developed by Galatius, Madsen, Tillmann and Weiss in [22].
Here the authors use it to provide a new proof of a famous prob-
lem called the Mumford Conjecture, following the original proof by
Madsen and Weiss in [39].

Various versions of cobordism category exist which deal not sim-
ply with manifolds, but with manifolds equipped with extra struc-
ture, such as Riemannian metrics, complex or symplectic structures.
In Perlmutter’s case, he considers a category which, very roughly,
has as objects n-dimensional manifolds (embedded in a dimension-
ally large Euclidan space) and as morphisms, (n + 1)-dimensional
manifolds with boundary which form cobordisms between objects.
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Importantly these cobordisms come with a Morse function which
arises as the projection, onto a fixed axis, of an embedding of the
cobordism in Euclidean space (such as that depicted in Fig. [12)).
Perlmutter’s results extend work of Madsen and Weiss in [39] on
understanding the homotopy type of the classifying space of this
category, to deal with subcategories where the Morse functions have
bounds placed on the indices of their critical points. In particular,
Perlmutter sheds a great deal of light on the case of admissible Morse
functions. This is something which, as Perlmutter explains in his
paper, has great significance for positive scalar curvature, particu-
larly in the construction and analysis of a positive scalar curvature
cobordism category.

4.6. H-Space and Loop Space Structure. We close this section
with a very brief discussion regarding another aspect of the topol-
ogy of the space of positive scalar curvature metrics. Up to now,
our search for topological information has essentially meant a search
for non-trivial elements of the homotopy groups of the space. We
should mention that, although we have not discussed the homology
or cohomology of spaces of psc-metrics, there is certainly non-trivial
topological information there also, much of it following from that
found in the homotopy groups. Indeed, in the paper by Hanke,
Schick and Steimle above, [26], the authors explicitly show that the
infinite order elements they construct in m;(R*>(M); go) have infi-
nite order images in the corresponding homology groups, under the
Hurewicz homomorphism: m;(R*>%(M); go) — H(R*™°(M)). We
now examine the space of psc-metrics for a layer of structure which
has substantial homotopy theoretic implications. This concerns the
question of whether or not R*>%(M) admits a multiplicative H-space
structure or, more significantly, whether this space has the structure
of a loop space.

We begin with multiplication. A topological space, Z, is an H-
space if Z is equipped with a continuous multiplication map u :
Z x Z — Z and an identity element e € Z so that the maps from
Z to Z given by x — u(x,e) and x — u(e,z) are both homotopy
equivalent to the identity map z — x7| An H-space Z is said to be
homotopy commutative if the maps y and pow, where w : Z x Z —
Z x Z is the “flip” map defined by w(z,y) = (y,x), are homotopy

" There are stronger versions of this definition (see section 3.C. of [28]), however
all of these versions coincide with regard to the spaces we will consider.
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equivalent. Finally, Z is a homotopy associative H-space if the
maps from Z x Z x Z to Z given by (z,y,z) — u(p(z,y),z) and
(x,y,2) — wu(x,u(y, z)) are homotopy equivalent. The condition
that a topological space is an H-space has various implications for
its homotopy type and specifically in homology; see section 3.C.
of [28]. For example, H-space multiplication gives the cohomology
ring the structure of an algebra, a so-called Hopf algebra. Another
consequence is that the fundamental group of an H-space is always
abelian. Hence, it is worth investigating if such structure can be
found in our spaces of psc-metrics.

Recall Corollary 3.3of the Surgery Theorem. Manifolds of dimen-
sion > 3 admitting psc-metrics may be combined by the process
of connected sum to obtain new manifolds admitting psc-metrics.
Thus, we have a “geometric connected sum” construction as opposed
to a purely topological one. Consider now a pair of psc-metrics on
the sphere, 5", with n > 3. Given that a connected sum of spheres
is still a sphere, we now have a way of combining these psc-metrics,
via this geometric connected sum, to obtain a new psc-metric on
the sphere. This suggests a possible multiplicative structure on the
space of psc-metrics on S”. There are a number technical issues
to overcome. In particular, the various choices involved in the con-
nected sum construction mean that, as it stands, this operation is far
from well-defined. However, it is shown by this author in [51] that
a careful refinement of this geometric connected sum construction
leads to the following result.

Theorem 4.5. [51] When n > 3, the space R¥°(S™) is homo-
topy equivalent to a homotopy commutative, homotopy associative
H-space.

The following corollary follows from a standard fact about H-spaces
(mentioned above) when n > 3 and from the fact that R*>Y(S") is
contractible when n = 2.

Corollary 4.6. [51] When n = 2, the space R*°(S™) has abelian
fundamental group.

The idea behind the proof of Theorem |4.5|is to replace R*>Y(S")
with a particular subspace, Rgfdo(S ™), of metrics which take the form
of a standard torpedo metric near a fixed base point (the north pole
say). As discussed earlier in the proof of Chernysh’s theorem, the

inclusion R¥20(S™) < R¥Y(S") is a homotopy equivalence and so it



Positive Scalar Curvature II 85

suffices to work with the subspace. At least now there seems to be
a well-defined way of taking connected sums: just remove the caps
near the north poles of two such standard psc-metrics and glue. Of
course the problem here is that the resulting psc-metric no longer has
a standard torpedo at its north pole. We get around this problem
by using an intermediary “tripod” metric, as shown in Fig. [17]
This metric, as well as having a north pole torpedo, also has two
identical torpedo attachments in its southern hemisphere. These
southern torpedoes are used to connect distinct psc-metrics in the
space, while the northern torpedo ensures that the multiplication
is closed. The reader should view Fig. as an equation with
the highlighted tripod metric playing the role of a multiplication
sign. Verifying that this multiplication is homotopy commutative is
not so difficult, the homotopy in question being a simple rotation.
Ensuring homotopy associativity is a little more complicated and

involves a very careful sequence of geometric manouvres; details can
be found in [51].

A A A é
A
é

FIGURE 17. Mulitplying two metrics in R57°(S")

There is another level of structure, one which goes deeper than H-
space structure, which we now consider. Given a topological space
Y with a fixed base point yy € Y, we define the loop space of Y
denoted QY as the space of all continuous maps v : [0,1] — Y so
that v(0) = (1) = yo. Repeated application of this construction
yields the k-th iterated loop space QFY = Q(Q2--- (QY)) where at
each stage the new base point is simply the constant loop at the
old base point. It is a fact that every loop space is also an H-
space with the multiplication determined by concatenation of loops.
However the condition of being a loop space is stronger and an H-
space may not even be homotopy equivalent to a loop space. As
before, such structure has important topological consequences and
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knowing for example that a topological space Z has the homotopy
type of a loop space (that is Z is homotopy equivalent to QY for
some topological space Y) or better yet an iterated loop space is
very helpful in understanding homotopy type.

Bearing in mind the case of R*>%(S™), we consider the problem
of how to tell if a given H-space has the structure of a loop space.
In general, this is a complicated problem concerning certain “co-
herence” conditions on the homotopy associativity of the multipli-
cation. Roughly speaking, given an H-space Z, we compare the
different maps obtainable from a k-fold product, Z*, to Z by priori-
tizing (with appropriate brackets) the multiplication of components.
For example, in the case when k = 4, two such maps are given by:

(a,b,c,d) — (ab)(cd) and (a,b,c,d) — ((ab)c)d,

with H-space multiplication now denoted by juxtaposition. These
maps may not agree on the nose, but we would like that they are
at least homotopic. In the case when k = 3, this is precisely the
homotopy associativity condition defined above. Returning to the
case when k = 4, there are 5 maps to consider. These can be denoted
in specific fashion by vertices of a pentagonal polyhedron P; see Fig.
[18 Suppose we can specify a map

Px7Z'— Z

which restricts as these various “rebracketing” maps on the ver-
tices and, on the edges, specifies homotopies between specific vertex
maps. We then say that Z is an A4-space. More generally, for each
k there is a corresponding polyhedron which describes these higher
associativity relations, leading to the notion of an A space. This
approach was developed by James Stasheff and so these shapes are
known as Stasheff polyhedra (or sometimes as “associahedra”). A
space which is A, for all k£ is known as an A-space. It is a theorem
of Stasheff that a space is an A, -space, if and only if it is a loop
space; see Theorem 4.18 in [40].

When it comes to deciding whether or not a space is an iterated
loop space, these coherence conditions are more efficiently described
using the notion of an operad. An operad is not something we will
define here except to say that it is a collection of topological spaces
with combinatorial data. Operads (potentially) act on topological
spaces in a way which captures at a deeper level, the sort of associa-
tivity information described above. The idea of an operad arose out
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(ab)(cd)

((ab)c)d a(b(cd))
(ab)c a(bc)

(a(be))d a((bc)d)

FI1GURE 18. Stasheff polyheda for threefold and fourfold
multiplication

of work by Boardman, Vogt and May on the problem of recognising
whether a given topological space is an iterated loop space and has
since seen wide application in various areas including graph theory
and theoretical physics; see [40] for a comprehensive guide. Using
their so-called Recognition Principle (Theorem 13.1 from [41]), this
author was able to prove the following strengthening of Theorem
above.

Theorem 4.7. [51] When n = 3, R*>Y(S™) is weakly homotopy
equivalent to an n-fold loop space.

The proof involves demonstrating an action on R*>Y(S™) of a cer-
tain operad known as the operad of n-dimensional little disks and
makes use of something called the “bar-construction” on operads
and in particular Theorem 4.37 of [6]. Roughly, the bar construc-
tion allows us to replace the original operad with something which is
a little more “flexible” regarding the various geometric manoeuvres
on metrics needed to satisfy the associativity conditions required
by the operad action. Omne important point is that, although this
works fine for path connected spaces, R*>Y(S") is usually not path
connected. Thus, initially our result held only for the path compo-
nent of R*>%(S™) containing the round metric. There is however, a
way around this. The theorem holds for all of R*>%(S™) provided the
operad action induces a group structure on the set of path compo-
nents, mo(R*>Y(S™)); see Theorem 13.1 of [41]. In the end, the proof
that such a group structure existed (specifically that elements had
inverses) turned out to be a substantially difficult problem. It is true
however, but requires as heavyweight a result as the Concordance

Theorem of Botvinnik, Theorem [4.1] above.
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5. SOME RELATED WORK

As we have previously stated, positive scalar curvature is just one
of many curvature constraints we might consider. It is important
to realise that a good deal of work has been done on understanding
the topology of spaces (and moduli spaces) of metrics which satisfy
other geometric constraints. We will finish this article by taking
a brief look at some of the results concerning these other spaces,
before closing with some words on a recent and highly significant
result by Sebastian Hoelzel concerning surgery. Much of what we
discuss below is drawn from Tuschmann and Wraith’s extremely
useful book on moduli spaces of Riemannian metrics, [47].

5.1. Spaces of metrics satisfying other curvature constraints.
Early in this article we discussed the general notion of a geometric
(in particular curvature) constraint C' on Riemannian metrics on
a smooth manifold M, leading to a subspace, R (M) < R(M), of
Riemannian metrics which satisfy C'. So far we have only considered
the case when (' is the condition of having positive scalar curvature.
So what about other curvature constraints?

Without even leaving the scalar curvature, one might consider for
example the space, R*<Y(M), of all Riemannian metrics of nega-
tive scalar curvature on a smooth manifold M. Temporarily, we
will drop the compactness assumption on M and allow that M may
be compact or not. We know from a previously mentioned result
of Lohkamp [38], that for any such M with dimension n > 3, the
space R*<Y(M) is non-empty. From the Gauss-Bonnet theorem we
know that there are 2-dimensional closed manifolds for which this
does not apply: the sphere, projective plane, torus and Klein bot-
tle. Lohkamp goes on to prove a great deal more. In particular,
he proves that these non-empty spaces are actually all contractible!
Even more amazingly, these results hold just as well if we replace
negative scalar with negative Ricci curvature and the same is also
true of the corresponding negative scalar and negative Ricci curva-
ture moduli spaces. The proofs behind these facts are highly non-
trivial but at their geometric heart is the fact that negative Ricci
and scalar curvature display a great deal more flexiblity regarding
local metric adjustment than do their positive counterparts.

Continuing with the theme of negative curvature, and given the
comprehensive results by Lohkamp in the scalar and Ricci case, it
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remains to consider negative sectional curvature. This case is a little
more interesting. In the case when M is a 2-dimensional surface,
the story is intimately connected with Teichmiiller theory. Without
opening a discussion of this subject here, it can be shown that the
space, R<0(M), of negative sectional curvature metrics on a closed
oriented surface, M, with genus at least 2, is homotopy equivalent to
an object called the Teichmiiller space of M, denoted T (M). This
space, which is a complex manifold obtained as a certain quotient of
the space of complex differentiable structures on M, is known to be
contractible; see section 9 of [47]. In higher dimensions, the story is
a little different and requires an analogue of 7 (M) known as the Te-
wchmiiller space of Riemannian metrics on M. There are a number
of recent results on this subject, due to Farrell and Ontaneda (see
for example [20]), which show a multiplicity of path components and
non-triviality in the higher homotopy groups of the space R5<0(M)
(and its moduli space), for certain closed manifolds admitting hy-
perbolic metrics. Typically, the dimension of these manifolds is at
least 10.

Another interesting case concerns that of the positive Ricci cur-
vature. The earliest result concerning topological non-triviality in
spaces of such metrics concerns the moduli space of positive Ricci
curvature metrics. It is due to Kreck and Stolz and utilises their
s-invariant. Recall that, under reasonable circumstances, the s-
invariant s(M,g) € Q is an invariant of the path component of
[g] € M*°(M). Thus, it suffices to find a manifold M which has
metrics of positive Ricci curvature (such metrics necessarily have
positive scalar curvature) with distinct s-values to demonstrate that
MB=0(AT) is not path-connected. In [36], Kreck and Stolz show
that there exist closed 7-dimensional manifolds for which the moduli
space of positive Ricci curvature metrics has in fact infinitely many
path components. The manifolds themselves are part of a class of
examples, constructed by Wang and Ziller in [53], of bundles over
the manifold CP? x CP! with fibre S'. Each such manifold admits
infinitely many Einstein metrics (metrics of constant Ricci curva-
ture) with positive Einstein constant (thus positive constant Ricci
curvature). Importantly, the authors compute that for each of these
manifolds, every element of this infinite collection of positive Ricci
curvature metrics has a different s-invariant.
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A further application of the s-invariant was used by Wraith in
[58] to extend Carr’s theorem on the space of psc-metrics on spheres
of dimension 4k — 1, with k£ > 2, to the positive Ricci case. In
particular, Wraith’s result applies not just to standard spheres but to
certain exotic spheres also. In dimensions 4k — 1 with k£ > 2, Wraith
considers certain collections, denoted 0P, of smooth spheres which
are topologically the same as but not necessarily diffeomorphic to
the standard sphere. These spheres are the boundaries of certain 4k-
dimensional manifolds which are parallelisable (have trivial tangent
bundle), constructed via a process called plumbing (a topological
construction with certain similarities to surgery). Building on some
of his earlier constructive results concerning the existence of positive
Ricci curvature metrics in [55], [56] and [57], Wraith proves the
following.

Theorem 5.1. (Wraith [58]) For any sphere X%~ € bPy, with
k = 2, each of the spaces RN gnd MRIV(LR-1) hgs
infinitely many path components.

Regarding positive Ricci curvature, we should finally mention one
very recent result concerning the observer moduli space of positive
Ricci curvature metrics. Botvinnik, Wraith and this author have
recently proved a positive Ricci version of Theorem [4.3] in the case
when the underlying manifold M is the sphere S™; see [11]. Thus,
in appropriate dimensions, the space M530>0(S”) has many non-
trivial higher homotopy groups. As yet, it is unclear how this result
might be extended to other manifolds or to the regular moduli space.
The proof works for essentially the same topological reasons as the
original, however the geometric construction is very different and
relies on certain gluing results of Perelman.

There are a number of results concerning positive and also non-
negative sectional curvature for closed manifolds. Regarding posi-
tive sectional curvature, Kreck and Stolz in [36] have demonstrated
that for a certain class of closed 7-dimensional manifolds known as
Aloff-Wallach spaces (see [1] for a description), the corresponding
moduli spaces of positive sectional curvature metrics are not-path
connected. The strategy here, which again makes use of the s-
invariant, is similar to that used in the positive Ricci case for the
Wang-Ziller examples described above. Indeed, regarding this pos-
itive Ricci result, it was later shown by Kapovitch, Petrunin and
Tuschmann in [34] that there are closed 7-dimensional manifolds
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(of the class constructed by Wang and Ziller) for which the mod-
uli space of non-negative sectional curvature metrics has infinitely
many path components. A more recent example can be found in
[18]. We should also point out that there are a number of interest-
ing results concerning topological non-triviality in the moduli space
of non-negative sectional curvature metrics for certain open mani-
folds; see in particular work by Belegradek, Kwasik and Schultz [5],
Belegradek and Hu [4] and very recently Belegradek, Farrell and
Kapovitch [3].

5.2. Extending the Surgery Theorem to other curvatures.
Let us step back once more to consider the general problem of un-
derstanding the topology of a space R¢(M) of Riemannian met-
rics on a smooth manifold M which satisfy a given curvature con-
straint C. One of the key tools in understanding this problem in
the case where C' is positive scalar cuvature, is surgery and, in par-
ticular, the Surgery Theorem of Gromov-Lawson and Schoen-Yau.
Typically, stronger curvature notions do not behave as well under
surgery. The Surgery Theorem as currently stated is simply false if
we replace positive scalar curvature with positive Ricci or sectional
curvatures. However, this does not mean that there are not certain
circumstances under which a curvature condition might be preserved
by appropriate surgeries. Indeed, given the power of surgery in con-
structing examples, understanding how the Surgery Theorem might
extend for other curvature notions is an obvious priority.

One example of such an extension is due to Labbi in [37] and
concerns a notion called p-curvature. Given a smooth Riemannian
manifold M of dimension n and an integer p satisfying 0 < p < n—2,
there is a type of curvature s, defined as follows. For any x € M
and any p-dimensional plane V' < T, M, we define the p curvature
sp(x, V') to be the scalar curvature at x of the locally specified (n—p)-
dimensional submanifold determined by V*. Thus, when p = n — 2,
V-t is a 2-dimensional subspace of T, M and so this is precisely the
definition of the sectional curvature. When p =0, V = {0} € T, M
implying that V* = T, M and sy(x, {0}) = s(z), the scalar curvature
at x. The p-curvatures therefore, are a collection of increasingly
stronger curvature notions from scalar (when p = 0) all the way
up to sectional (when p = n — 2). The Ricci curvature does not
appear exactly as one of the p-curvatures but can be described in
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an equation involving the scalar curvature, sg, and s1.§ In [37], by
a careful analysis of the the construction of Gromov and Lawson in
[25], Labbi proves the following extension of the Surgery Theorem.

Theorem 5.2. (Labbi [37]) Let M and M’ be smooth manifolds of
dimension n with M’ obtained from M by a surgery in codimension
> 3+ p, where 0 < p < n — 2. Then if M admits a Riemannian
metric of positive p-curvature, so does M.

Later, an analogous extension of the Surgery Theorem with appro-
priate codimension hypotheses was worked out by Wolfson in [54]
in regard to a curvature constraint called positive k-Ricci curvature.
As these results share a common origin in the work of Gromov-
Lawson and Schoen-Yau, a natural idea would be to extrapolate the
general principle and find a theorem which subsumes all of these
individual cases. Precisely this was done in a remarkable paper by
Sebastian Hoelzel; see [30]. Hoelzel defines the idea of a curvature
condition C' which is stable under surgeries of a certain codimension
and proves a comprehensive generalisation of the original Surgery
Theorem covering all the previous curvature extensions and many
more. He further goes on to prove an extension of the classification
of simply connected manifolds of positive scalar curvature, Theorem
3.4above, to this general setting. In better understanding spaces of
metrics which satisfy a curvature constraint C', an especially nice
next step would be a “family” or paramaterised version of Hoelzel’s
theorem.
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