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Pedro Nunes and the Retrogression of the Sun

PETER LYNCH

What has been will be again, what has been done will be done

again; there is nothing new under the sun. Ecclesiastes 1:9

Introduction

In northern latitudes we are used to the Sun rising in the East,
following a smooth and even course through the southern sky and
setting in the West. The idea that the compass bearing of the
Sun might reverse seems fanciful. But that was precisely what Por-
tuguese mathematician Pedro Nunes showed in 1537. Nunes made
an amazing prediction: in certain circumstances, the shadow cast
by the gnomon of a sun dial moves backwards.

Nunes’ prediction was counter-intuitive. We are all familiar with
the steady progress of the Sun across the sky and we expect the az-
imuthal angle or compass bearing to increase steadily. If the shadow
on the sun dial moves backwards, the Sun must reverse direction or
retrogress. Nunes’ discovery came long before Newton or Galileo or
Kepler, and Copernicus had not yet published his heliocentric the-
ory. The retrogression had never been seen by anyone and it was a
remarkable example of the power of mathematics to predict physical
behaviour. Nunes himself had not seen the effect, nor had any of
the tropical navigators or explorers whom he asked.

Nunes was aware of the link between solar regression and the bib-
lical episode of the sun dial of Ahaz (Isaiah, 38:7–9). However, what
he predicted was a natural phenomenon, requiring no miracle. It was
several centuries before anyone claimed to have observed the reversal
(Leitão, 2017). In a book published in Lisbon (Nunes, 1537), Nunes
showed how, under certain circumstances, the azimuth of the Sun
changes direction twice during the day, moving first forwards, then
backwards and finally forwards again. To witness this, the observer
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must be located at a latitude lower than that of the Sun, that is, in
the tropics with the Sun closer to the pole. Nunes was completely
confident about his prediction:

“This is something surprising but it cannot be de-
nied because it is demonstrated with mathematical
certainty and evidence.” (Quoted from Leitão, 2017).

Leitão, who has made a detailed study of Nunes’ works, reviewed
the method used by him. While Nunes’ arguments are mathemati-
cally sound, they are difficult to follow, so we will demonstrate the
retrogression in a more transparent way below. But first, let us look
at Pedro Nunes himself.

Pedro Nunes (1502–1578)

Pedro Nunes (also known as Petrus Nonius), a Portuguese cos-
mographer and one of the greatest mathematicians of his time, is
best known for his contributions to navigation and to cartography.
Nunes studied at the University of Salamanca in Spain, a univer-
sity already 300 years old at that time. He returned to Lisbon and
was later appointed Professor of Mathematics at the University of
Coimbra. In 1533 he qualified as a doctor of medicine and in 1547
he was appointed Chief Royal Cosmographer.

Nunes had great skill in solving problems in spherical trigonome-
try. This enabled him to introduce improvements to the Ptolemaic
system of astronomy, which was still current at that time (Coperni-
cus did not publish his theory until just before his death in 1543).
Nunes also worked on problems in mechanics.

Much of Nunes’ research was in the area of navigation, a subject
of great importance in Portugal during that period: sea trade was
the main source of Portuguese wealth. Nunes understood how a ship
sailing on a fixed compass bearing would not follow a great circle
route but a spiraling course called a loxodrome or rhumb line that
winds in decreasing loops towards the pole. Nunes taught navigation
skills to some of the great Portuguese explorers. He has a place
of prominence on the Monument to the Portuguese Discoveries in
Lisbon, which shows several famous navigators (Figs. 1 and 2).

Analysis of Solar Retrogression

Nunes demonstrated the retrogression using spherical trigonom-
etry. This was long before Newton’s laws or differential calculus
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Figure 1. Monument to the Portuguese Discoveries, Lisbon.

Figure 2. Pedro Nunes (1502–1578) (detail of Monu-
ment to Portuguese Discoveries, Lisbon).

were available. In this section we derive the condition for the phe-
nomenon, using a simple transformation and elementary differential
calculus. An expression is found for the azimuth of the Sun as a
function of the time. For reversal to occur, the derivative of this
function must vanish. The condition follows immediately from this.
The result has been known for centuries (e.g., Morrison, 1898) but
the derivation below is simpler than most previous accounts.
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Frames of Reference. We begin with a cartesian frame (x, y, z) fixed
relative to Earth and rotating with it. The origin is at the centre
of the Earth and the x-axis passes through the point where the
prime meridian intersects the equator. There is an associated polar
coordinate frame (r, θ, λ) with colatitude θ and longitude λ. The
latitude is φ = π

2 − θ.
We assume that the Sun is at a fixed latitude φS. If its longitude

at Noon is λO, then its longitude at time t is λS = λO − Ω(t − tO)
where Ω is the angular velocity of Earth. Given the distance A from
Earth to Sun, the cartesian coordinates of the Sun are

(xS, yS, zS) = (A cosλS cosφS, A sinλS cosφS, A sinφS) . (1)

The coordinates of the observation point PO are (xO, yO, zO) and
from these the polar coordinates are easily found: (a, θO, λO) where
a is the Earth’s radius. There is no loss of generality in assuming
that the observatory is on the prime meridian. Then its latitude
and longitude are (φO, λO) = (π2 − θO, 0).

We define local cartesian coordinates (X, Y, Z) at the observation
point by rotating the (x, y, z) frame about the y-axis through an
angle equal to the colatitude θO. The Z-axis then points vertically
upward through PO. Moving the origin to PO, the (X, Y ) plane be-
comes tangent to the Earth at this point. The cartesian coordinates
of the Sun in the new system are given by the affine transformationXS

YS
ZS

 =

cos θO 0 − sin θO
0 1 0

sin θO 0 cos θO

xSyS
zS

−
0

0
a

 .

In fact, since the distance to the Sun is enormous relative to the
radius of the Earth, we can omit the last term (0, 0, a)T without
significant error. Then, in terms of the latitude of the observation
point, the solar coordinates areXS

YS
ZS

 =

sinφO 0 − cosφO
0 1 0

cosφO 0 sinφO

xSyS
zS

 . (2)

The latitude and longitude of the Sun in the rotated system are

ΦS = arcsin[ZS/A] , ΛS = arctan[YS/XS] (3)

and the azimuth and elevation (or altitude) of the Sun are

α = π − ΛS , e = ΦS . (4)
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Variation of the Azimuthal Angle. To demonstrate the circumstances
in which retrogression of the Sun occurs, we take the time derivative
of the azimuthal angle of the Sun. This is given by (4). We use (3)
to express the Sun’s latitude and longitude in the rotated cartesian
frame and then the transformation (2) for the original cartesian co-
ordinates. Finally, (1) gives an expression for the azimuth in terms
of the variables {λS, φS, φO}. The two latitudes are fixed in time
while the longitude λS varies as λS = −Ω(t − tO), where tO is the
time at Noon.

If the Sun is to retrogress, the time derivative of the azimuth must
vanish. We find that

tan ΛS =
YS
XS

=
sinλS cosφS

cosλS cosφS sinφO − sinφS cosφO

The vanishing of the derivative leads, after some manipulation, to
the equation

cosλS =
tanφO
tanφS

(5)

Clearly, there will be an azimuth at which the derivative vanishes
only if the right hand side is less than unity, that is, if

φO < φS .

This means that retrogression will be seen only if the observation
point is between the Equator and the latitude of the Sun. In par-
ticular, it must be in the tropics. Eq. (5) corresponds to Eq. (5) in
Morrison (1898).

Numerical Results. We consider the daily path of the Sun at the
time of the Summer solstice (φS = 23.5◦N) for observations from
an extra-tropical point (φO = 40◦N) and a point within the trop-
ics (φO = 20◦N). The elevation and azimuth are easily computed
from the formulae above. We plot the zenith angle (the complement
of the elevation) and azimuth for the extra-tropical observation in
Fig. 3. The observation point is at the centre, and the course of the
Sun is shown by the curve. It is clear that the azimuth increases
monotonically from sunrise to sunset, as we would expect.

In Fig. 4 we plot the zenith angle and azimuth for the observation
point within the tropics (φO = 20◦N). At Noon, the Sun is to the
North of the central point and the azimuthal angle is decreasing
rapidly. This is the retrogression phenomenon.
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Figure 3. Path of the Sun at the Summer solstice for
an observation point at 40◦N. The angular coordinate is
the azimuth or compass bearing, α. The radial coordi-
nate is the zenith angle (the complement of the eleva-
tion). SR: Sunrise; SS: Sunset.
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Figure 4. Path of the Sun at the Summer solstice for
an observation point at 20◦N. The angular coordinate is
the azimuth or compass bearing, α. The radial coordi-
nate is the zenith angle (the complement of the eleva-
tion). SR: Sunrise; SS: Sunset.
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The azimuth and elevation of the Sun are plotted in Fig. 5 for the
two observation points. It is clear that when φO = 40◦ (top right
panel) the azimuth increases monotonically, while when φO = 20◦

(bottom right panel) the azimuth increases from sunrise until about
10:00, then decreases until 14:00 and finally increases until sunset.

6 8 10 12 14 16 18

10

20

30

40

50

60

70

Elevation

6 8 10 12 14 16 18

50

100

150

200

250

300

Azimuth

6 8 10 12 14 16 18

20

40

60

80

Elevation

6 8 10 12 14 16 18

-50

50

Azimuth

Figure 5. Solar elevation and azimuth, as functions of
time from sunrise to sunset, for observation points at
40◦N (top row) and 20◦N (bottom row). Left: Solar
elevation. Right: Solar azimuth.
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Figure 6. Path of the Sun at the Summer solstice for
a observation point at 20◦N. Angular coordinate is the
azimuth or compass bearing. Radial coordinate is the
zenith angle. SR: Sunrise. Only the morning segment
of the Sun’s track is shown.

To give more fine detail, we plot the Sun’s course during the morn-
ing, as seen from the tropical observatory, in Fig. 6. The radial lines
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are spaced five degrees apart, and we see that the azimuth at sun-
rise is close to 65◦. It increases to around 77◦ by mid-morning and
then decreases to zero at Noon. For the specific values φO = 20◦

and φS = 23.5◦, the condition (5) gives the turning longitude as
λS = 33.17◦ corresponding to an azimuth of 77.4◦ and an elevation
of 59.1◦. This is in excellent agreement with the numerical solution
shown in Fig. 6.
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