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Aspects of Positive Scalar Curvature and Topology I
MARK G. WALSH

ABSTRACT. Whether or not a smooth manifold admits a Riemann-
ian metric whose scalar curvature function is strictly positive is
a problem which has been extensively studied by geometers and
topologists alike. More recently, attention has shifted to another
intriguing problem. Given a smooth manifold which admits met-
rics of positive scalar curvature, what can we say about the topology
of the space of such metrics? We provide a brief survey, aimed at
the non-expert, which is intended to provide a gentle introduction
to some of the work done on these deep questions.

1. INTRODUCTION

A central problem in modern geometry concerns the relationship
between curvature and topology. A topological space may take many
geometric forms. For example, while a sphere is usually thought of
as round, one may alter its shape in various ways and still maintain
the topological condition of being a sphere; see Fig[l]. A large part of
modern geometry therefore concerns the problem of finding a “good”
geometry for some topological form, given a plethora of possibilities.
By a good geometry, one may mean geometries with a particular
property, concerning symmetry or curvature perhaps. Given such a
geometric constraint, say constant curvature, the problem is to find
examples of topological shapes which admit such geometries and to
understand what the topological obstructions are in the ones that
do not. For example, the round geometry is a constant curvature
geometry on the sphere. It is also an example of a positive curvature
geometry, the curvature itself being simply the reciprocal of the
radius squared. A torus on the other hand can never be made to
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have everywhere positive curvature no matter how we deform it.
This latter fact follows from the classic theorem of Gauss-Bonnet, a
theorem we will return to very shortly.

\

FIGURE 1. A selection of geometric structures on the sphere

Although there are a great many topological spaces one might
consider, we will focus here on smooth compact manifolds. Usually,
we are interested only in closed manifolds (those without boundary)
although later we will discuss the case of manifolds with boundary.
So what of the geometry? Given a smooth manifold M, of dimension
n, the smooth structure on M assigns to each point x € M, an n-
dimensional real vector space, T, M, known as the tangent space
to M at x. These tangent spaces vary smoothly on M and their
disjoint union, TM := | |,.,; T»M, forms a vector bundle over M,
known as the tangent bundle to M. It is possible to assign to each
x € M, a smoothly varying inner product {,-), on T, M. Such a
choice of smoothly varying inner product is known as a Riemannian
metric on M. It gives rise to a distance function (in the metric space
sense) on M, but also allows for the measurement of angles and in
particular, curvature. Any smooth manifold admits a multitude
of possible Riemannian metrics each one determining a geometric
structure on M. Once equipped with such a structure, the smooth
manifold M is said to be a Riemannian manifold. Although there
are other types of metric beyond the Riemannian and other types
of geometric structure beyond this, in this article we will regard a
geometric structure on M to be a choice of Riemannian metric.

In this context, the initial problem we mentioned can be restated
as follows: given a smooth compact manifold M and a geometric
constraint, can we find a Riemannian metric on M which satisfies
this constraint? This is a very broad question and one which has
motivated an enormous amount of research over the years. In this
article, we will discuss this problem for one particular geometric con-
straint: positive scalar curvature. Thus, we consider the following
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question.

Question 1. Given a smooth compact manifold M, can we find a
Riemannian metric, g, whose associated scalar curvature function,
sy« M — R, is strictly positive at all points on M7 In other words,
does M admit a metric of positive scalar curvature (psc-metric)?

Before defining the scalar curvature function, or providing any jus-
tification as to why this geometric constraint is even interesting, let
us consider a further question which is of significant current interest.

Question 2. In the case when M admits a psc-metric, what can
we say about the topology of the space of all psc-metrics on M?
In particular, is this space path-connected? What about its higher
homotopy or homology groups?

The first of these questions, the existence problem, has been studied
extensively for several decades and a great deal is now understood on
this matter. Much less is known about the second problem; however
in recent years there have been some significant breakthroughs. The
purpose of this article is to provide a brief survey on these problems
which lie in an intriguing overlap of geometry, topology and analysis.
This survey is not intended to be comprehensive. Such an undertak-
ing would require the combined efforts of many experts and result in
a voluminous article. Instead, it is intended to give the non-expert a
taste of what is happening in a very interesting area of mathematics.

Acknowledgements. [ am very grateful to Boris Botvinnik at the
University of Oregon, and David Wraith and Anthony O’Farrell at
Maynooth University, for their helpful comments and suggestions.
Much of this article was written while I was an associate professor at
Wichita State University. I would like to thank my former colleagues
there for their friendship and support over the years.

2. WHY POSITIVE SCALAR CURVATURE?

We begin with the case of a 2-dimensional Riemannian manifold
M. The scalar curvature, s : M — R, is a smooth function which
agrees up to a multiple of 2 with the classical Gaussian curvature,
K : M — R. More precisely, s = 2K. Recall that, in the case when
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M is obtained as an embedded submanifold of R?, the Gaussian
curvature at any point x € M, K(z), is the product of the pair of
principal curvatures at x. At this level, scalar curvature is a fairly
intuitive concept. Round spheres have positive scalar curvature as
principal curvatures have the same sign. Planes and cylinders have
zero scalar curvature as at least one of the principal curvatures is
zero. Finally, a saddle surface displays scalar curvature which is
negative as principal curvatures in this case have opposite signs; see
FigP2l Importantly, this type of curvature is intrinsic to the surface
itself and does not depend on the way the surface is embedded in
Euclidean space. Hence, the flat plane and the round cylinder, both
have the same flat scalar curvature, even though extrinsically they
curve differently in R3.

Qo A P

FIGURE 2. Two dimensional regions of positive, zero
and negative scalar curvature

Geometrically then, positive scalar curvature can be thought to
make a surface close in on itself whereas negative scalar curvature
causes it to spread out. The topological consequences of this are
evident from the classical theorem of Gauss-Bonnet. This theorem
relates the scalar curvature s, of a compact oriented Riemannian
2-manifold M, with its Euler characteristic x (M) by the formula

1

— — v(M).
ol x(M)

Recall that y(M) is an integer obtained by the formula y (M) =
v —e+ f where v,e and f are respectively the numbers of vertices,
edges and faces of a triangulation of M. That this formula is in-
dependent of the triangulation and gives a well-defined topological
invariant is well-known. It follows that a closed surface with zero
Euler characteristic, such as a torus, does not admit a metric of
strictly positive (or negative) scalar curvature. Similarly, a surface
with positive Euler characteristic such as a sphere cannot have scalar
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curvature which is everywhere non-positive. From the Uniformisa-
tion Theorem we know that every closed surface admits a metric
of constant scalar curvature; see theorem 1.7 of [58]. This implies
the following classification result: a closed surface admits a metric
of positive, zero or negative scalar curvature if and only if its Fuler
characteristic 1s respectively positive, zero or negative.

In higher dimensions, the relationship between curvature and topol-
ogy is much more complicated. The scalar curvature is one of three
intrinsic curvatures which are commonly studied, the others being
the Ricci and sectional curvatures. These curvatures vary greatly
in the amount of geometric information they carry. The sectional
curvature is the strongest and contains the most geometric infor-
mation. At each point x € M, where M is a Riemannian mani-
fold, the sectional curvature K, is a smooth real valued function
on the space of all 2-dimensional subspaces of the tangent space
T.M. Each 2-dimensional subspace V < T, M is tangent to a lo-
cally specified 2-dimensional Riemannian submanifold of M. The
sectional curvature K,(V) is simply the classical Gaussian curva-
ture of this 2-dimensional Riemannian submanifold at x. The Ricci
and scalar curvatures are successively weaker curvature notions and
are obtained as follows. Let {ej,es, -+ ,e,} be an orthonormal basis
for T, M. Assuming i # j, we define K,(e;,e;) to be the sectional
curvature at the point x of the plane spanned by e; and e;. For each
i, we define Ric,(e;) by the formula

Ric,(e;) = Z K. (e, e;).

J:J#1

This extends linearly to specify a quadratic form on 7, M. Thus for
some v € T, M, we define the Ricci curvature at x in the direction v
to be Ric,(v). Finally, we obtain the scalar curvature at x, s(x) by
the formula

s(z) = ZRicx(ei) = QZKx(ei,ej).

1<j

When we say, for example, that a Riemannian manifold M has
positive (zero, negative etc) sectional curvature, we mean that for
every point x € M and every 2-plane V < T, M, the number K, (V)
is positive (zero, negative etc). The analogous statements for Ricci
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and scalar curvature are defined similarly. It follows from the suc-
cessive averaging in the formulae above that conditions such as posi-
tivity or negativity of the sectional curvature necessarily hold for the
subsequent Ricci and then scalar curvatures. The converse however
is not true.

It is important to understand that conditions such as strict posi-
tivity or negativity of the sectional or even Ricci curvatures impose
severe topological restrictions on the underlying manifold. For ex-
ample, it follows from the theorem of Bonnet-Meyers that a Rie-
mannian manifold whose Ricci curvature is bounded below by a
positive constant, is necessarily compact and has finite fundamen-
tal group; see theorem 11.7 of [58]. The scalar curvature however,
is a substantially weaker notion than the sectional or even Ricci
curvatures. In particular, topological invariants such as the size of
the fundamental group do not by themselves prevent positivity of
the scalar curvature, unlike in the Ricci and sectional cases. In fact,
given any compact manifold M, the product manifold M x S?, where
5?2 is the two dimensional sphere, admits a psc-metric. This is be-
cause of the way the scalar curvature function splits over a product
metric as a sum of the scalar curvatures on the individual factor
metrics. By equipping the sphere with a round metric of sufficiently
small radius, we can increase the curvature on the sphere factor to
compensate for any negativity arising from M.

Given the extent of the averaging process in obtaining the scalar
curvature, especially in high dimensions, it seems surprising that
any geometric information survives at all. Interestingly, there is
one piece of geometric information the scalar curvature does carry,
concerning the volume growth of geodesic balls. In particular, the
scalar curvature s(z) at a point z of an n-dimensional Riemannian
manifold M, appears as a constant in an expansion

Vol(By(z,€)) s(z)

Vol(Bg (0, €)) 6nt2)

comparing the volume of a geodesic ball in M with the correspond-
ing ball in Euclidean space; see [34]. Thus, positive scalar curvature
implies that small geodesic balls have less volume than their Eu-
clidean counterparts while for negative scalar curvature this inequal-
ity is reversed. This, at least at the local level, coincides with our
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2-dimensional intuitions about the way surfaces respectively close in
or spread out under positive or negative curvature.

We now return to the question which formed the title of this sec-
tion: why positive scalar curvature? At this point, the reader may
well ask: given its geometric weakness, why care about scalar cur-
vature at all? And why positivity? Why do we not consider metrics
of negative, non-negative or zero scalar curvature? Regarding the
first question, in lower dimensions such as 2,3 and 4, the scalar cur-
vature is still geometrically quite significant. In particular, it plays
an important role in general relativity; see for example chapter 3
of [7]. As for the second and third questions, a partial justifica-
tion is that there are no obstructions to the existence of metrics of
negative scalar curvature in dimensions > 3; see [60]. Furthermore,
any closed manifold which admits a metric whose scalar curvature
is non-negative and not identically zero, always admits a metric of
positive scalar curvature. This follows from the Trichotomy Theo-
rem of Kazdan and Warner; see [52] and [53] (for a more thorough
discussion of this matter, see section 2 of [76]). In the case of positive
scalar curvature however, it is a fact that there are obstructions in
dimensions > 3. Not all of these smooth compact manifolds admit
Riemannian metrics of positive scalar curvature. This remarkable
observation is discussed in the next section.

3. THE EXISTENCE QUESTION

We now focus on the first of the two questions posed in the intro-
duction. When does a given smooth compact n-dimensional man-
ifold admit a metric of positive scalar curvature? The case when
the dimension n = 2 is the classical situation described above and
so the question is completely answered. Note that when n = 1, the
scalar curvature is not defined as one-dimensional manifolds have
no intrinsic curvature. We therefore focus on the case when n > 3.

3.1. The Obstructive Side. In the early 1960s, André Lichnerow-
icz discovered an obstruction to the existence of positive scalar cur-
vature metrics in the case of certain manifolds; see [59]. These man-
ifolds, among other things, satisfy the condition of being spin. As
the reader may gather from this term, the notion of spin manifold
has strong connections to Physics. In fact, the fundamental formula
used by Lichnerowicz to demonstrate this obstruction was actually
derived independently by Erwin Schrodinger in 1932; see [82] (also
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section 3.3 of [29]).}| We will state a version of this formula (in a case
suitable for our purposes) shortly. Before doing so, we should say a
few words about spin manifolds.

Spin, in the case of manifolds, is rather a technical notion to define.
Here, we will provide only a casual description of one interpretation;
for a detailed account the reader should consult [57]. Spin is essen-
tially a strengthening of the condition of orientability and so we will
begin by recalling what it means to say that a smooth manifold is
orientable. Suppose on a smooth manifold M, we are given a point
x € M, a basis for T;, M and a directed loop starting and ending at x.
Let’s assume for simplicity that the loop is an embedded circle. It
is possible to continuously move the basis around the loop to obtain
a new basis at T, M by a process called parallel translation. This
is depicted in Figf3] below where the finishing basis is depicted with
dashed lines. There are many ways to do this although a particu-
larly nice one arises from a choice of Riemannian metric. We say
that the manifold M is orientable, if for any such quadruple of point,
basis, loop and translation, the starting and finishing bases at T, M
have the same orientation. Thus, the linear transformation of T, M
which moves the starting basis to the finishing basis has positive

determinant. Notice how this is not possible for certain loops on a
Mobius band; see Figld]

F1GURE 3. Translating a basis around a loop on an ori-
entable manifold to obtain a new basis.

An equivalent formulation of orientability is as follows: the tan-
gent bundle over any loop is trivial. That is, there is an isomorphism
between T'M (restricted to the loop) and a product of the loop with
R"™. In particular, this necessitates that the normal bundle, N, the

T am grateful to Thomas Schick for bringing to my attention Schrodinger’s
role in this story.



Positive Scalar Curvature 53

F1GURE 4. Comparing the translation of a basis around
a loop on a cylinder and a Mobius band.

subbundle of TM consisting of (n — 1)-dimensional subspaces or-
thogonal to the loop, is also trivial (isomorphic to a product of the
loop with R"™1). It is possible to identify this normal bundle with
a small “tubular” neighbourhood of the loop. In the case of a loop
with trivial normal bundle, the tubular neighbourhood is topologi-
cally just a product of the loop with the (n — 1)-dimensional disk,
S1 x D" 1. Thus, in the case of a two dimensional surface, a trivial
normal bundle would correspond to a tubular neighbourhood which
is, topologically, a regular cylindrical band of the type shown on the
left of Figldl Loops whose tubular neighborhoods are Mobius bands
correspond to loops with non-trivial normal bundles. A surface with
such loops is therefore non-orientable. In fact, non-orientable sur-
faces are simply surfaces which contain Mc6bius bands.

In that it concerns loops, orientability can be thought of as a 1-
dimensional notion. Spin is in a sense a 2-dimensional strengthening
of this. To simplify matters, let us assume that M is a simply con-
nected manifold with dimension n > 5. Simply connected manifolds
are necessarily orientable. We now suppose we have an embedded
two-dimensional sphere S? < M, with 2 € S?. This embedded
sphere can be thought of as a sort of “2-dimensional loop.” The
manifold M is said to be spin if given any basis for T, M, this basis
can be extended continuously to obtain a family of bases over the
embedded sphere. This determines a trivialisation of the tangent
bundle restricted to the embedded sphere. Another interpretation
(which is more useful for our purposes) concerns the normal bundle
to the embedded sphere. A spin manifold is one for which every
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embedded 2-dimensional sphere has trivial normal bundle.] This in-
terpretation will be particularly relevant later on when we discuss
the role of surgery.

Just as we may specify an orientation on an orientable manifold,
on a spin manifold we may specify something called a spin structure.
Let us suppose now that M is a Riemannian spin manifold (with a
specified spin structure). Such a manifold contains a wealth of inter-
esting algebraic and geometric information. In particular, there ex-
ists a certain vector bundle over M known as the spinor bundle.JWe
will not describe the construction of the spinor bundle here, except
to say that its construction involves, for each x € M, replacing each
tangent space T, M with a certain finite-dimensional complex vec-
tor space S, which is also a module over an algebra, known as the
Clifford algebra of T,,M; see Part 1 of [3] for a readable introduction
to Clifford algebras/modules. The construction of a Clifford algebra
allows one to specify a geometrically significant multiplicative (al-
gebra) structure on certain inner product spaces. When applied, for
example, to R? with the usual Euclidean dot product, it produces the
quaternion algebra. In our case, Clifford algebras are associated, for
each z € M, to the tangent space T, M with multiplication arising
ultimately from the inner product on T, M given by the Riemann-
ian structure. This Clifford multiplication captures a great deal of
information about the algebraic behaviour and symmetries of the
curvature associated to the Riemannian metric. Put bluntly, it al-
lows us to see things about the curvature which we would otherwise
miss. We will return to this point in a moment.

Sections of the spinor bundle are known as spinor fields and so,
denoting by S — M the spinor bundle itself, we consider the vector
space I'S' of all sections of this bundle. This is an infinite dimen-
sional vector space, the construction of which is described in detail
in [57]. On this vector space, one can define a certain first order
linear differential operator, D : I'S — I'S, known as the Dirac op-
erator. Importantly, this operator is elliptic and self-adjoint. As
the name suggests it was invented by the physicist Paul Dirac. One
of the motivations behind the construction of this operator was a

2 Without the hypothesis that the manifold is simply connected and of dimen-
sion at least 5, these interpretations do not quite work. See chapter 2 of [57] for
a more thorough description.

3 Spinors themselves are objects which are of great interest in Physics, describ-
ing intrinsic angular momentum or “spin” of subatomic particles.
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need to find a first order linear differential operator which squares
as the Laplacian. In regular Euclidean space, this is exactly what
happens. In our case, things are a little more complicated. The reg-
ular Laplacian is now replaced by an object known as the connection
Laplacian on the spinor bundle S — M. A connection on a smooth
vector bundle is a means of differentiating sections of this bundle
along tangent vector fields, something which is actually equivalent
to being able to perform the parallel transport of vectors mentioned
earlier. There are many choices of connection but in the case of
a Riemannian manifold there is a particularly good choice of con-
nection on the tangent bundle TM — M, which best reflects the
geometry of the underlying metric. This is the so-called Levi-Civita
connection. In our case this leads, given the choice of spin structure,
to a spinor bundle connection which allows us to sensibly differenti-
ate spinor fields. Denoting this connection V and its adjoint (with
respect to a certain global inner product on I'S arising from the Rie-
mannian metric) by V*, we obtain the connection Laplacian V*V.
The Schrodinger-Lichnerowicz formula can now be stated as follows:

D? = V*V + 1s,
4

where s is the scalar curvature function on M. Notice in this case
that the scalar curvature is the obstruction to whether or not D is
truly a “square root of the Laplacian.” Importantly, it is the role
of the aforementioned Clifford multiplication which arises in the
definition of D that allows us to untangle the curvature information
and see the right hand side of this equation.

So what does the Lichnerowicz formula tell us? If we assume
that the scalar curvature s : M — R is a strictly positive function,
a fairly straightforward argument shows that the operator D has
trivial kernel. Thus, the existence of a non-trivial element of kerD (a
so-called harmonic spinor field) implies that the Riemannian metric
in question does not have positive scalar curvature. But this is only
the beginning. It is a fact (although not a trivial one), that the
kernel and cokernel of D are both finite dimensional subspaces. In
the case when the dimension of M is a multiple of 4, the spinor
bundle splits into a certain pair of “even” and “odd” sub bundles
S, and S_ with a corresponding splitting of D into D, and D_.
Although D is self-adjoint, implying that its kernel and cokernel
have the same dimension, this is no longer the case with D, or D_.
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We now define the index of D, denoted indD as
indD = dimkerD, — dim cokerD, .

It then follows that a necessary condition for the scalar curvature
function to be positive is for the integer indD to be zero.

Notice however that we are still only dealing with a single Rie-
mannian metric, the one used in the construction of D in the first
place. It is now we employ one of the great theorems of twenti-
eth century mathematics: the Atiyah-Singer Index Theorem; see
chapter III of [57] for a comprehensive discussion. This theorem
equates the above index (which is an analytic index arising among
other things from an individual choice of Riemannian metric) with a
topological index for M. This topological index is known as fl(M ),
the “A-hat”-genus of M. It depends only on the topology of M
and so is independent of the individual choice of Riemannian met-
ric. This has a powerful consequence. If for any one Riemannian
metric, the index indD above is computed to be non-zero, then it is
non-zero for all choices of Riemannian metric. This is summarised
in the following theorem.

Theorem 3.1. (Lichnerowicz [59])
Suppose M is a closed spin manifold of dimension n = 4k which
admits a metric of positive scalar curvature. Then A(M) = 0.

The topological index A s therefore, in the case of closed, spin
manfolds of dimension 4k, an obstruction to the existence of posi-
tive scalar curvature metrics. There are a great many closed spin
manifolds for which this index is non-zero and so many examples
of manifolds which do not admit psc-metrics. Consequently, such
manifolds admit no metrics of positive Ricci or sectional curvature
either.

In the 1970s, Hitchin showed how to generalise this index obstruc-
tion to other dimensions (beyond those divisible by 4); see [43].
Before saying anything further on this, it is worth briefly digressing
to introduce a concept which plays a vital role in this story: cobor-
dism. Two closed n-dimensional manifolds, M, and M;, are said
to be cobordant if there exists an (n + 1)-dimensional manifold, W,
with boundary dW so that dW = M, u M;. Thus, the boundary
of W is a disjoint union of My and Mj; see Fig[sl An elemen-
tary example of a pair of cobordant manifolds is the 2-dimensional
sphere and torus. To see this, imagine a solid bagel with a round
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bubble trapped inside. The inner boundary is the sphere while the
outer-boundary is the torus. Cobordism is an equivalence relation
on closed n-dimensional manifolds and the set of equivalence classes
actually forms a group, denoted (2,,, under the operation of disjoint
union. In fact the collection, €2, = {£,},enoq0y, forms a graded ring
under the operation of cartesian product of manifolds. There are
more refined versions of cobordism, such as oriented cobordism, de-
noted Q°°, and spin cobordism, denoted Q°"™. In each case, two
closed oriented (spin) manifolds are said to be oriented (spin) cobor-
dant if their disjoint union forms the boundary of an oriented (spin)
manifold with a consistent orientation (spin structure).

Mo Ml
u

FI1GURE 5. Two cobordant manifolds, M, and M;

There is a graded ring homomorphism, defined by Milnor in [6§],
which takes the following form:

o prm — KO..

The target of this homomorphism is the real K-homology of a point,
something we will not define here, except to say that it satisfies the
following periodic isomorphism conditions.

Z ifn=0 mod 4,
KO, =<7y ifn=12 modS8,

0 otherwise.

This periodicity is an example of a phenomenon known as Bott pe-
riodicity, named after Raoul Bott, who first observed this behaviour
in his study of the (stable) higher homotopy groups of certain clas-
sical Lie groups; see [9]. The homomorphism itself is surjective and
moreover, when n = 4k, o and A coincide (at least up to a multiple
of 2). Hitchin showed, in [43], that if M is a closed spin manifold
admitting a psc-metric, then a([M]) = 0. Thus, a necessary condi-
tion for a closed spin manifold to admit a psc-metric is that it lies
in a spin cobordism class which is in the kernel of a. Establishing
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circumstances under which this is a sufficient condition (in general
it is not) is the subject of the next section.

One fascinating consequence of Hitchin’s work concerns exotic
spheres. An exotic sphere is a smooth manifold which is homeo-
morphic to but not diffeomorphic to a standard sphere. Thus, an
exotic sphere is topologically the same as, but smoothly different
from, a standard sphere. Such objects were first constructed by
Milnor in 1953, causing quite a stir in the mathematical commu-
nity; see [66]. Hitchin showed that, starting in dimension 9, there
are exotic spheres which admit no psc-metrics. In other words, the
smooth structure on such a sphere is sufficiently exotic as to prevent
positivity of even the weakest curvature. Given that topologically
the sphere is the manifold most suited to positive curvature, this is
an extraordinary fact.

We close this section by pointing out that the a-invariant is not
the only known obstruction to positive scalar curvature. Using cer-
tain minimal hypersurface methods of Schoen and Yau, described
in [80], Thomas Schick constructed examples of spin manifolds in
dimensions 5 through 8 with trivial a-invariant and yet admitting
no psc-metrics. These manifolds all have non-trivial fundamental
group. Hence, the fundamental group of a manifold can, when cou-
pled with other restrictions, be an obstruction. A much simpler
example of this, following from work of Schoen and Yau in [81], is
the fact that any 3-dimensional manifold whose fundamental group
contains the fundamental group of a surface with positive genus, ad-
mits no psc-metric. Thus, the 3-torus, 72 = S! x S! x S admits no
psc-metric, despite being a spin manifold and satisfying a([T?]) = 0.
Indeed, the n-torus (the n-fold product of circles), 7" = S x - --x St
admits no psc-metric; see [36]. The situation in dimension 3 is now
completely understood, since Perelman’s proof of Thurston’s Ge-
ometrisation Conjecture. The classification, which is discussed in
the introduction to [63], is as follows: a closed 3-dimensional mani-
fold admaits a metric of positive scalar curvature if and only if it takes
the form of a connected sum (see the next section for a definition)
of spherical space forms (certain quotients of the round 3-sphere by
actions of particular groups of isometries) and copies of S* x S*.
There is also a specific obstruction in the case of manifolds of di-
mension 4 arising in Seiberg-Witten theory; see [85]. Interestingly,
it follows that there are examples of 4-dimensional manifolds which
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are simply-connected, spin and with A = 0, but which admit no
psc-metric.

There is still a great deal we do not know about obstructions to
positive scalar curvature. Consider for example, the case of non-
simply connected totally non-spin manifolds of dimension at least
five. A totally non-spin manifold is one whose universal cover is
non-spin and is, therefore, itself a non-spin manifold. This is a very
large class of manifolds and it seems that there should be some
obstructions here to positive scalar curvature. There are some indi-
vidual examples of such manifolds which do not admit psc-metrics.
In particular, Schoen and Yau have shown that the totally non-spin
manifold obtained by taking a connected sum of T° with the prod-
uct CP? x S? (of 2-dimensional complex projective space with the
2-sphere), admits no such metric. However, although some experts
have made conjectures about this problem (see for example Stanley
Chang’s discussion of this matter in [20]), we have as yet nothing
remotely analogous to the a-invariant here.

3.2. The Constructive Side. The other side of the existence ques-
tion concerns the problem of constructing examples of psc-metrics
on manifolds where no known obstructions exist. The principle tool
for doing this is known as the Surgery Theorem. This theorem was
proved in the late 1970s by Gromov and Lawson [37] and, indepen-
dently, by Schoen and Yau [80], and provides an especially powerful
device for building positive scalar curvature metrics. A p-surgery
(or codimension ¢ + 1-surgery) on a manifold M of dimension n is a
process which involves removing an embedded sphere-disk product
SP x D% and replacing it with DP*! x S where p+q+1 = n. The
result of this is a new n-dimensional manifold M’ whose topology
is usually different from that of M; see Figl, For example, the 2-
dimensional torus can be obtained from the sphere via a 0-surgery.
Importantly, surgery preserves the cobordism type of the original
manifold. Thus, if M’ is obtained from M by surgery, then M and
M’ are cobordant and there is a complementary surgery which re-
turns M’ to M. The Surgery Theorem for psc-metrics can now be
stated as follows.

Theorem 3.2. (Gromov-Lawson [36], Schoen-Yau [80])
Suppose M is a smooth manifold which admits a metric of positive
scalar curvature. If M’ is a smooth manifold obtained from M by
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a surgery in codimension at least three, then M’ admits a metric of
positive scalar curvature.

Note that a well-known example of a O-surgery is the connected
sum construction. Here, we remove a product S x D" =~ D} 1 DY
(a pair of disks) from a pair of disjoint n-manifolds M; and Mo,
where DY < M; and Dy < M,. We then connect the resulting
boundaries via a tube [0, 1] x S"1 (as suggested in Figf)) to obtain
the connected manifold M;# Ms, the connected sum of My and Ms.
With this in mind it is worth stating the following easy corollary of
the Surgery Theorem.

Corollary 3.3. Suppose that My and My are n-dimensional mani-
folds, each admitting a metric of positive scalar curvature, and with
n = 3. Then the manifold My# My obtained as a connected sum of
My and My also admits a metric of positive scalar curvature.

In a moment we will discuss the implications of the Surgery The-
orem. But first we will make a few comments about its proof. The
proofs of this theorem by Gromov-Lawson and Schoen-Yau are quite
different. The latter authors make use of PDE and certain minimal
hypersurface methods to demonstrate the existence of psc-metrics on
M’'. The Gromov-Lawson method is more obviously constructive.’]
They begin with an arbitrary psc-metric, g on M, and perform an
explicit geometric construction of a new psc-metric, ¢ on M’. This
construction involves showing that, in a neighbourhood of the sphere
to be removed by surgery, the psc-metric g can be replaced by a
psc-metric on SP x D! which is standard near S? x {0}. By this
we mean the standard product of a round sphere with a “torpedo”
shaped hemisphere. The difficulty is in adjusting the metric near
the boundary of the region S? x D?*! to ensure a smooth transition
back to the original metric while maintaining positive scalar curva-
ture. This is where the codimension > 3 hypothesis comes in to
play. It means that ¢ > 2 and so the radial spheres making up the
disk factor have dimension at least 2, and therefore have some scalar
curvature. Provided we are sufficiently close to SP x {0}, these ra-
dial spheres behave like round spheres and so, for small radius, have

4 It was pointed out by Bernhard Hanke at a recent Oberwolfach workshop
that many of us working in this field do not pay enough attention to the methods
employed by Schoen and Yau here and work almost exclusively with the Gromov-
Lawson version of this theorem. This may result in some missed opportunities.



Positive Scalar Curvature 61

large positive scalar curvature. This is then used to compensate for
any negative curvature arising from the standardising adjustment.
Once this standardised psc-metric is obtained, it is trivially easy to
replace its standard torpedo shaped ends with a standard “handle”
and complete the surgery, as shown in Fig[f]

FIGURE 6. The original metric on M (left), the met-
ric after standardization on the region S? x D"t < M

(middle) and the post-surgery metric on M’ after at-
tachment of the handle DP™! x S9 (right)

The effect of this theorem was to increase enormously the number
of known examples of manifolds admitting psc-metrics. Suppose M
is a manifold which admits a psc-metric. It now follows that every
manifold obtained by an appropriate surgery from M also admits a
psc-metric. It is worth pointing out that this theorem does not hold
for positive Ricci or sectional curvature, as these curvatures do not
exhibit the same flexibility as the scalar curvature. Positive scalar
curvature however is sufficiently resilient as to be able to withstand
significant topological adjustment.

To better understand this implication, let us consider the non-spin
and spin cases separately. To avoid some other possible obstructions,
let us further restrict our search to manifolds which are simply con-
nected and of dimension at least 5. In the non-spin case, no other
obstructions were known. In [36], Gromov and Lawson went on to
show that in fact there is no obstruction here. Every simply con-
nected non-spin manifold of dimension n > 5 admits a psc-metric.
This was done by considering the ring of oriented cobordism classes,
09 and using the fact that this ring is generated by classes con-
taining representatives built from complex projective space. These
generating manifolds are non-spin and known to admit psc-metrics.
Now, simply-connected manifolds are all orientable and every simply
connected manifold is oriented cobordant to one of these known ex-
amples. Thus, given an arbitrary simply-connected manifold, there
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is a finite sequence of surgeries (though not necessarily in codimen-
sion > 3) which turn one of these known examples into our arbitrary
manifold. Provided the arbitrary manifold is of dimension at least
5 and also non-spin, a topological argument shows such surgeries
can be assumed to be in codimension at least three. The Surgery
Theorem then allows us to use the psc-metric on the known example
to construct one on the arbitrary manifold.

So what of the spin manifolds? We know from the work of Hitchin,
that in looking for spin manifolds which admit psc-metrics we should
restrict our search to spin cobordism classes of manifolds in the ker-
nel of a. But is there another obstruction here? Without added
restrictions on dimension and the fundamental group the answer is
yes. However, in analogous fashion to the non-spin case, Gromov
and Lawson show in [36] that, provided we restrict to simply con-
nected manifolds of dimension at least 5, it is possible that no such
obstruction exists. In particular, they show that (in these dimen-
sions) it is enough to construct a collection of manifolds admitting
psc-metrics which represent generating classes for the kernel of «,
since each simply connected spin manifold of dimension at least 5
which lies in such a class is obtainable from such a representative by
codimension > 3 surgeries. An important step here is the removal
from a spin manifold, by surgery, of certain topologically significant
embedded 2-dimensional spheres. The spin condition, as interpreted
in the previous section, implies that such embedded spheres have
trivial normal bundles and so surgery is possible.

The task of constructing such a collection of representative man-
ifolds, whose spin cobordism classes generate the kernel of «, was
finally completed by Stolz in [83]. Stolz showed that each generating
class could be represented by a manifold which is the total space of
a fibre bundle with quaternionic projective space fibres. The fibre
of such a bundle admits a standard psc-metric and it is possible to
construct a metric on the total space which restricts on fibres to
this standard metric. Using well known curvature formulae due to
O’Neill (see chapter 9 of [7]), it follows that the total space metric
can be made to have positive scalar curvature by appropriately scal-
ing the fibre metric. In summary we have the following theorem,
known as the classification of simply connected manifolds of positive
scalar curvature.
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Theorem 3.4. (Gromov-Lawson [36], Stolz [83]) Let M be a com-
pact simply connected manifold of dimensionn = 5. Then M admits
a metric of positive scalar curvature if and only if M 1is either not
spin or M is spin with o([M]) = 0.

In the non-simply connected case, the problem of deciding which
manifolds admit psc-metrics is ongoing. For certain types of fun-
damental group, this is the subject of a conjecture known as the
Gromov-Lawson-Rosenberg Conjecture. Various analogues of this
conjecture exist, which due to the discovery of counter-examples
(most famously by Thomas Schick in [78]), have been reformulated
a number of times. The statement of this conjecture is quite compli-
cated and so we refer the reader to the following thoughtful surveys
on these matters: [76], [79)].

3.3. The Existence Question for Manifolds with Boundary.
So far we have considered only the case of closed manifolds. It is
important to mention that there are analogous problems for man-
ifolds with boundary. Suppose W is a smooth compact (n + 1)-
dimensional manifold with boundary, 0W = M, an n-dimensional
closed manifold. Without any further restrictions, the question of
whether or not W admits any psc-metrics is actually not such an
interesting question. It turns out that, without some condition on
the boundary, W will not only always admit a metric of positive
scalar curvature, but will in fact admit a metric of positive sectional
curvature! This is a result of Gromov, see Theorem 4.5.1 of [35].
However, with appropriate boundary conditions, the question be-
comes extremely interesting. We consider only Riemannian metrics
on W which, near the boundary of W, take the form of a cylindrical
product metric (M x [0,1],g + dt?), where g is some Riemannian
metric on M and dt? is the standard metric on the interval. We
then consider the following question.

Question 3. When does a given psc-metric on M extend to a psc-
metric on W which takes a product structure near the boundary?

Such extensions are not always possible. Indeed, as we will see in the
next section, a better understanding of this problem would greatly
help in our efforts to answer the second of the motivational questions
posed in the introduction.
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(M x [0,1], g + dt?)

FIGURE 7. A metric on W which takes the form of a
cylindrical product (M x [0, 1], g + dt?) near the bound-
ary

This survey will be concluded in the next issue of the Bulletin.
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