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Sums of Polynomial Residues

SAMUEL S. GROSS, JOSHUA HARRINGTON AND LAUREL MINOTT

Abstract. In an article in the Monthly from 1904, Orlando Stet-
son studied the sums of distinct residues of triangular numbers mod-
ulo a prime. Rather curiously, this sum is always the same residue
class independent of the prime chosen. We extend Stetson’s theorem
to all polygonal numbers and find similar phenomenon. Extensions
to sums of residues of general polynomials are also discussed.

1. Introduction

Recall that the nth s-gonal number is the number of points that
are needed to create a regular polygon with s sides, each of length
n− 1 (see figure 1).
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Figure 1. Heptagonal Numbers1

We denote these numbers by Ps(n). Alternatively, we can use the
algebraic description used by Stetson [5] and characterize these se-
quences with the recursions

Ps(1) = 1

Ps(n+ 1)− Ps(n) = n(s− 2) + 1.
(1)

For example, in the triangular numbers, or 3-gonal numbers, the
difference of consecutive terms follow the pattern 2, 3, 4, . . ., while
the difference of consecutive squares (4-gonal) follows the sequence
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of odd numbers 3, 5, 7, . . .. Residues of squares, known as quadratic
residues, have been well understood beginning as far back as the
arithmeticae of Gauss [2].

Theorem 1.1 (Gauss, 1801). For an odd prime p, there are (p−1)/2
distinct quadratic residues modulo p. The sum of these residues is
divisible by p.

A similar property was discovered by Stetson [5] for the triangular
numbers.

Theorem 1.2 (Stetson, 1904). For a prime p ≥ 5, there are (p −
1)/2 distinct triangular residues. The sum of these residues is con-
gruent to −1/16 modulo p.2

It is widely known that the sequence (1) of s-gonal numbers is
generated by the function

Ps(n) =
n2(s− 2)− n(s− 4)

2
. (2)

We therefore observe that 2P2s+1(x) and P2s(x) are quadratic poly-
nomials in Z[x]. It is natural to then ask about the residues of other
quadratics, or about the residues of even more general polynomials.
In Section 2 we revisit Stetson’s work and in Section 3 we pick up
where he left off in 1904 by investigating the more general sets of
polygonal numbers and quadratics modulo a prime.

The question of sums of residues of more general polynomials is
much more difficult. Although the results of the present work are
mostly focused on sums of distinct residues of polygonal numbers, in
Section 4 we provide conjectural result for a certain class of cubics,
as well as a brief historical account of the complexity that arises in
studying the residues of an arbitrary polynomial.

2. Stetson’s Theorem

Being that Stetson’s original work is over a century old, in this
section we introduce our general notation, and reproduce the proof
of Theorem 1.2 for completeness.

2We have adopted the convention of using fractions modulo p where it is under-
stood that a number in the denominator represents the modular inverse of that
number. For example, in Stetson’s theorem above we mean the inverse of −16
modulo p.
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Definition 2.1. Let p be a prime and s ≥ 3 be an integer. The
integer k is called an s-gonal residue modulo p if k 6≡ 0 (mod p)
and k ≡ Ps(n) (mod p) for some positive integer n < p. If no
such n exists, we say that k is an s-gonal non-residue modulo p.
Additionally, we define Ss(p) as the sum of the distinct s-gonal
residues modulo p.

The following formulas can be found in most calculus texts, or
obtained by induction.

Lemma 2.2. Let n be a positive integer. Then
n∑

k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑
k=1

k(k + 1)

2
=
n(n+ 1)(n+ 2)

6
.

Proof of Theorem 1.2. Let p ≥ 5 be a prime. Notice that P3(p−1) ≡
0 (mod p). For the remaining integers n satisfying 0 < n < p − 1
we have

P3(n) ≡ P3(p− n− 1) (mod p).

Since 0 ≤ p− n− 1 ≤ p− 1, we deduce that the triangular residues
in the interval [1, p − 1) come in pairs, except for the case when
n = (p− 1)/2. It follows that the set

{P3(1), P3(2), . . . , P3 ((p− 1)/2)}
is the complete set of (p− 1)/2 distinct triangular residues modulo
p. Using the formulas given in (2) and Lemma 2.2 we may calculate
S3(p) and obtain S3(p) ≡ − 1

16 (mod p). �

3. Generalizing Stetson’s Theorem

Notice that the generating function for the s-gonal numbers given
in (2) is a quadratic polynomial in n. With this observation, we
prove an analogous result for all quadratic polynomials, and then
apply this generalization to the polygonal numbers.

Definition 3.1. Let p be a prime and let f(x) be a polynomial with
integer coefficients. The integer k is called an f -polynomial residue
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modulo p if k 6≡ 0 (mod p) and k ≡ f(n) (mod p) for some integer
n. Additionally, we define Sf(p) to be the sum of the distinct f -
polynomial residues modulo p.

Theorem 3.2. Let f(x) = ax2 + bx + c be a quadratic polynomial
with integer coefficients. For a prime p ≥ 5 not dividing a we have

Sf(p) ≡ −b
2 − 4ac

8a
(mod p).

Proof. Let f(x) = ax2+bx+c be a quadratic polynomial with integer
coefficients and let p ≥ 5 be a prime not dividing a. For integers m
and n we have that f(n) ≡ f(m) (mod p) if and only if

0 ≡ an2 + bn− am2 − bm

≡ (n−m)

(
n+m+

b

a

)
,

if and only if n ≡ m (mod p) or n ≡ −m − b
a (mod p), with both

conditions occurring whenever n ≡ − b
2a (mod p). Therefore outside

of this last case the f -polynomial residues come in pairs. Using the
equations from Lemma 2.2 we deduce that

Sf(p) ≡

(∑p−1
i=0 f(i)

)
− f

(
− b

2a

)
2

+ f

(
− b

2a

)
(mod p)

≡ 1

2

(
− b

2

4a
+ c+

p−1∑
i=0

ai2 + bi+ c

)
(mod p)

≡ 1

2

(
− b

2

4a
+ c+ a · p(p− 1)(2p− 1)

6
+ b · p(p− 1)

2
+ cp

)
≡ −b

2 − 4ac

8a
(mod p).

�

In the case of polygonal numbers, one may observe that the s-gonal
residues still come in pairs. However, we no longer have the sym-
metry in the distribution of residues as in the 3-gonal case, where
the residues occurred in pairs - one below (p− 1)/2 and one above.
For example, with the pentagonal numbers, P5(2) ≡ P5(4) (mod 17)
with (p − 1)/2 = 8. It is not even the case that the residues will
come in pairs below and pairs above (p− 1)/2, e.g. P5(7) ≡ P5(15)
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(mod 17). Nonetheless, Theorem 3.2 provides an immediate corol-
lary for polygonal numbers whenever s is even. In the case that s is
odd and Ps(n) has rational coefficients, it is enough to notice that
the argument in Theorem 3.2 only requires that 2−1 (mod p) exists,
which it does, and that s 6≡ 2 (mod p) in order to avoid division by
0.

Corollary 3.3. Let p ≥ 5 be a prime and s ≥ 3 be an integer. If
s 6≡ 2 (mod p), then there are (p − 1)/2 distinct s-gonal residues
modulo p, and

Ss(p) ≡ −
1

16

(s− 4)2

(s− 2)
(mod p).

Remark 3.4. The special cases of s = 2 or p dividing a can be
handled trivially. In the former, the 2-gonal numbers are simply
1, 2, 3, . . .. As such, the sum of distinct resudes modulo a prime p
is 0. If p divides a, then f(x) ≡ bx + c (mod p). If p also divides
b, then Sf(p) ≡ c (mod p) as c is the only residue. On the other
hand, if gcd(b, p) = 1 then 0, b, 2b, . . . , (p− 1)b is a complete system
of distinct residues, with sum 0 modulo p.

The case for higher degree polynomials is much more complicated,
for reasons discussed in the next section. We have, however, at-
tempted to investigate several classes of cubics, and we close this
section with our most promising heuristic.

Conjecture 3.5. Let a, b be integers and let f(x) = ax3 + bx2. For
a prime p ≥ 5 not dividing a,

Sf(p) =


2b3

81a2
if p ≡ 1 (mod 6)

− 2b3

81a2
if p ≡ 5 (mod 6).

In the context of this Conjecture, it is easy to see that without loss
of generality gcd(a, b) = 1 with 0 < a ≤ p − 1 and 0 ≤ b ≤ p − 1.
Moreover, if x, y are distinct integers in [0, p− 1], then f(x) ≡ f(y)
(mod p) if and only if (x, y) is a root modulo p of a(x2 + xy+ y2) +
b(x + y). We have not yet found a closed form solution for these
roots, however we have computationally verified [4] Conjecture 3.5
for all primes ≤ 1500.
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4. General Polynomials

The difficulty in extending to more general polynomials lies in the
complexity of listing, or even just counting the number of distinct
f polynomial residues. This latter problem has a rich history in the
literature in a variety of forms, and effectively remains unsolved to
this day. We conclude with a summary of the work in this area to
date.

Let Vn(f) denote the number of distinct residues of f(x) modulo n.
In 1915 Kantor [3] computed Vp(f) for all primes p and deg f = 3.
Precise values for Vp(f) for degrees ≥ 4 are unknown at present,
although partial solutions have been given for a specific class of
quartics. In particular, Sun [6] determines the value of Vp(x

4 +
ax2 + bx). The counting method of Kantor does not appear to lend
itself to results on the sums of residues of cubics, and neither does
the technique of Sun extend to sums of residues of x4 + ax2 + bx.

In the most general case, a complex generating function [7] for
Vn(f) is given by

Vn(f) = n

n−1∑
u=0

(
n−1∑
t=0

n−1∑
v=0

exp

{
2πi

t

n
(f(u)− f(v))

})−1
, (3)

which naturally lends itself to asymptotic estimates of Vn(f). In
1954, Uchiyama [7] extended Weil’s famous 1948 proof [11] of the
Riemann Hypothesis for function fields and proved that if q = pk

and f ∗(u, v) = (f(u) − f(v))/(u − v) is absolutely irreducible then
Vq(f) > q/2. The example f(x) = x4 − x2 + 1 shows that the
hypothesis on f ∗(u, v) cannot be dropped. However, a year later
Carlitz proved [1] that on average Vq(f) is indeed > q/2. A series of
results followed [8, 9, 10] concerning the asymptotics for Vq(f) over
unitary polynomials and over polynomials of a fixed degree. We note
that the main result of [10] depends on the Riemann Hypothesis.
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