
EDITORIAL

The Society celebrated its fortieth anniversary this year with a
special ‘September’ (i.e. annual scientific, as opposed to business)
meeting held in TCD. The anniversary was further marked at the
AGM in December. Professor Pavel Exner, EMS President wrote as
follows on 27 November:

it has not escaped the EMS attention that in about three
weeks you are going to celebrate a rounded anniversary
of your society’s first meeting, and I want to congrat-
ulate you to this birthday gathering on behalf of your
larger mathematical family. Forty is a good age, you are
older than the EMS itself but much younger than some
of its constituents, in short, a golden age when one is
typically full of strength. Ireland has its firm place on
the mathematical map of Europe to mention just one ex-
ample, everybody remembers the plaque on the Broom
Bridge and I have no doubts that inspiration will keep
coming from your country also in the future.

The 2017 Annual Scientific Meeting will be held at Sligo Institute
of Technology, and the 2018 meeting will be held at UCD.

A very large conference on Mathematics Education will take place
shortly, at Croke Park from 1–5 February. It is the Tenth Congress
of the European Society for Research in Mathematics Education
(CERME), hosted by the Institute of Education, Dublin City Uni-
versity, and organised by Maurice O’Reilly and and Therese Dooley,
See http://cerme10.org/.

Members may be interested in a recent statement issued by the
American Statistical Association that attempts to fight back against
the widespread abuse of p-values in applied work involving statis-
tics. See http://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

and
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108.

About 10% of the membership have given notice that they no
longer require the hard-copy version of the Bulletin, and this has
resulted in some cost-saving on printing and postage. If you are
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content with online-only access to the Bulletin, please notify the
Treasurer at mailto:\subscriptions.ims@gmail.com. Note that
the online version includes all graphics and images in full colour,
whereas these are printed in grayscale in the hard copy.

A couple of our exchange partners have terminated the exchange
of hard-copy periodicals and continue on an electronic-only basis.
These include the University of Bari, the Mediterranean Journal
of Mathematics, and the Austrian Mathematical Society. Members
who wish to access electronic exchange resources should contact An-
thony Waldron at admin@maths.nuim.ie. Mr Waldron kindly man-
ages exchange correspondence for us.

The Annals of Irish Mathematics continue at full steam. Colm
Mulcahy has produced a second calendar, and blogs monthly. See
http://www.mathsireland.ie/ for these and other matters related
to the enormously-successful annual Maths Week.

Links for Postgraduate Study

The following are the links provided by Irish Schools for prospec-
tive research students in Mathematics:

DCU: (Olaf Menkens)

http://www.dcu.ie/info/staff_member.php?id_no=2659

DIT: mailto://chris.hills@dit.ie

NUIG: mailto://james.cruickshank@nuigalway.ie

NUIM: http://www.maths.nuim.ie/pghowtoapply

QUB: http://www.qub.ac.uk/puremaths/Funded_PG_2016.html

TCD: http://www.maths.tcd.ie/postgraduate/

UCD: mailto://nuria.garcia@ucd.ie

UU: http://www.compeng.ulster.ac.uk/rgs/

The remaining schools with Ph.D. programmes in Mathematics are
invited to send their preferred link to the editor, a url that works.
All links are live, and hence may be accessed by a click, in the
electronic edition of this Bulletin1.

AOF. Department of Mathematics and Statistics, Maynooth Uni-
versity, Co. Kildare

E-mail address : ims.bulletin@gmail.com

1http://www.irishmathsoc.org/bulletin/
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NOTICES FROM THE SOCIETY

Officers and Committee Members 2016

President Dr M. Mackey University College
Dublin

Vice-President Prof S. Buckley Maynooth University
Secretary Dr D. Malone Maynooth University
Treasurer Prof G. Pfeiffer NUI Galway

Dr P. Barry, Prof J. Gleeson, Dr B. Kreussler, Dr R. Levene, Dr
M. Mac an Airchinnigh, Dr M. Mathieu, Dr A. Mustata, Dr J. O’Shea
.

Officers and Committee Members 2017

President Prof S. Buckley Maynooth University
Vice-President Dr Pauline Mellon University College

Dublin
Secretary Dr D. Malone Maynooth University
Treasurer Prof G. Pfeiffer NUI Galway

Dr P. Barry, Prof J. Gleeson, Dr B. Kreussler, Dr R. Levene, Dr
M. Mac an Airchinnigh, Dr D. Mackey, Dr A. Mustata, Dr J. O’Shea
.

Local Representatives

Belfast QUB Dr M. Mathieu
Carlow IT Dr D. Ó Sé
Cork IT Dr D. Flannery

UCC Dr S. Wills
Dublin DIAS Prof T. Dorlas

DIT Dr D. Mackey
DCU Dr M. Clancy
SPD Dr S. Breen
TCD Prof R. Timoney
UCD Dr R. Higgs

Dundalk IT Mr Seamus Bellew
Galway UCG Dr J. Cruickshank
Limerick MIC Dr B. Kreussler

UL Mr G. Lessells
1



2

Maynooth NUI Prof S. Buckley
Tallaght IT Dr C. Stack
Tralee IT Dr B. Guilfoyle
Waterford IT Dr P. Kirwan

Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements
with the American Mathematical Society, the Deutsche Math-
ematiker Vereinigung, the Irish Mathematics Teachers Asso-
ciation, the Moscow Mathematical Society, the New Zealand
Mathematical Society and the Real Sociedad Matemática
Española.

(2) The current subscription fees are given below:

Institutional member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e160
Ordinary member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e25
Student member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e12.50
DMV, I.M.T.A., NZMS or RSME reciprocity member e12.50
AMS reciprocity member . . . . . . . . . . . . . . . . . . . . . . . . . . . . $15

The subscription fees listed above should be paid in euro by
means of a cheque drawn on a bank in the Irish Republic, a
Eurocheque, or an international money-order.

(3) The subscription fee for ordinary membership can also be
paid in a currency other than euro using a cheque drawn on
a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 30.00.
If paid in sterling then the subscription is £20.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 30.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

(4) Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using
the form supplied by the Society.
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(5) Any ordinary member who has reached the age of 65 years
and has been a fully paid up member for the previous five
years may pay at the student membership rate of subscrip-
tion.

(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

(8) Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

(9) Please send the completed application form with one year’s
subscription to:

The Treasurer, IMS
School of Mathematics, Statistics and Applied Mathematics

National University of Ireland
Galway
Ireland

Deceased Members

It is with regret that we report the deaths of members:

Msgr Joseph A. Spelman formerly Professor of Mathematical Physics
at St Patrick’s College, Maynooth, and parish priest of Collooney,
Co. Sligo. died 23 June 2016. He was an Honorary Member of the
Society.

Michael A. Hayes, MRIA, Emeritus Professor of Mathematical Physics
at UCD, died 2 January 2017

E-mail address : subscriptions.ims@gmail.com



Eoin Coleman (Oren Kolman) 1959 - 2015

Eoin Coleman, who died on December 4th 2015, was well known
to many members of the IMS, either personally or via the inter-
esting articles he published in this Bulletin over a number of years,
[1,2,3,4,5,7,8]. Eoin had converted to Judaism some 35 years ago and
later was widely known in mathematical circles as Oren Kolman. I
will refer to him as Eoin/Oren throughout.

Eoin/Oren attended St. Gerards School in Bray and then Glenstal
Abbey before commencing his university career in UCD. He was a
gifted child, excelling at whatever he turned his hand to. Academi-
cally he was interested in mathematics and languages but was also
an accomplished pianist, particularly liking Rachmaninov. His sis-
ter Orla recounts that he learned to type at the age of 3! In 1980 he
graduated with a first-class honours BA in Mathematics and Phi-
losophy and subsequently completed in 1986 a first-class honours
MA in Mathematics under the supervision of Seán Dineen on the
topic “Ultraproducts of Banach Spaces”; he had spent some of the
intervening years travelling and working in a Kibbutz in Israel.

In 1987 Eoin/Oren held a teaching assistantship at the Hebrew
University of Jerusalem working with the renowned logician Saharon
Shelah with whom he went on to complete several research papers
[6,9,10,12]. Although he learned a lot about set theory and model
theory, Eoin/Oren was not totally happy with his experience there
and decided not to submit a doctoral thesis even though encouraged
to do so. For this and other personal reasons he decided to return to
Dublin in 1991 and taught at both UCD and DIT. He was an active
participant in my seminar on Abelian Groups during that time.

Eoin/Oren’s other great passion was music and in the late 1990s
he decided to take a “break”from mathematics and study music.
He moved to Kings College, London where he completed the de-
grees M.Mus(Historical Musicology) in 1997 and Ph.D(Musicology)
in 2003. I deliberately put the word “break” in quotes since some-
how he continued to publish interesting mathematical research while
studying music - see [8,9,10,11,12]. He also produced at least one
paper relating to his work in music, [13].
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After this musical excursion, Eoin/Oren spent some time working
in Banking and Economics in France; he entertained many of us with
his stories of his discussions with Nobel Prize Winners in Economics
during this time!

Eoin/Oren then decided to return full time to mathematics and,
despite having a larger publication list than many post-doctoral
colleagues, he started afresh doing research with Pierre Matet at
the University of Caen. His thesis “Logical Aspects of Slender
Groups” was a masterly and deep analysis of the model-theoretic,
set-theoretic and logical properties of slender groups. (A brief in-
troduction to this class of groups may be found in his paper in this
Bulletin,[8].) He received his doctorate in 2009 and I have been
informed that the doctoral committee thought it worthy of a habil-
itation thesis, but it was not technically possible to make such an
award. (I believe there was a possibility that his thesis would appear
as a book but I have been unable to find out what happened in this
regard.)

Although I had known Eoin/Oren since his time in DIT (1991-94),
it was during the period from 2005 onwards that I got to know him
well. We collaborated on two research papers, [14,16] and it was a
joy to work with him. He was precise and demanded full rigorous
arguments for all details. During this period he had a number of
teaching positions: University of East Anglia, University of Bedford-
shire and a part-time position in Cambridge. His interaction with
students in these teaching posts was tremendous. Let me quote from
a colleague of his at East Anglia:

The students are raving about him, he is inventive, interesting and
enthusiastic. He gets things done that others cannot. He is brilliant,
both as a teacher of say first year geometry and as a presenter at
a research seminar. At admissions days he gives talks to prospec-
tive students about interesting mathematics and these talks are really
excellently prepared and received.

My last interaction with him was a few weeks before his sudden
death when he asked me to act as a referee for him in his application
for senior membership of Hughes College, Cambridge; following in-
terview, his application was successful and he was delighted to have
a firmer connection to Cambridge. His Part III lectures on Topics
in Set Theory had been very well received there the previous year.
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On a personal level, Eoin/Oren was wonderful company: a first-
rate intellect, well informed about so many issues, a fluent speaker
of many languages and an interested, and interesting, hill walker.
He was intensely private and chose a somewhat solitary life, close
to nature planting trees and honouring Jewish traditions. He had
an enduring love affair with France, having had for many years a
home in Calvedos and more recently in the Auvergne; he travelled
to France every few weeks. His wry sense of humour was always a
pleasure to encounter. In many ways he was a real renaissance man
and will be sadly missed by so many in the mathematical community
world-wide.

Ar dheis Dé go raibh a anam d́ılis.

Acknowledgements. The author wishes to acknowledge the help
and input of Orla Coleman and Pauline Mellon.
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[16] (with R. Göbel and B. Goldsmith) On modules which are
self-slender. Houston J. Math. 35 (2009), no. 3, 725736.

[17] A note on omitting types in propositional logic. Armen. J.
Math. 7 (2015), no. 1, 15.

[18] (with B. Wald) M -slenderness, to appear in Israel J. Math.

Brendan Goldsmith (DIT).
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President’s Report 2016

The IMS committee had one change for 2016, with D. Malone
(MU) being elected as secretary following R. Quinlan’s greatly val-
ued term in that office.

The year marks the 40th anniversary of the society and there
are two 1976 meetings that we celebrate which might loosely be
described as conception and birth. On April 19th, 1976, in room
WR20 at Trinity College, a gathering of mathematicians proposed
the formation of the Irish Mathematical Society, and began the work
required to ensure this idea came to fruition. On December 20th of
that year, the first meeting proper of the society took place where the
constitution was adopted, the membership list recorded and officers
and committee were elected.

In recognition, our annual “September” meeting was held in April
and, like the spawning salmon, returned to Trinity College for the
event. We thank Trinity, and in particular local organisers R. Ti-
money and V. Dotsenko, for the invitation and a most enjoyable
meeting. While we took advantage of the gathering to have an or-
dinary business meeting of the society, the Annual General Meeting
must occur post-July and so was held on the second of the anniver-
saries, December 20th, at UCD, at which this report was presented.

In April, I attended the European Mathematical Society presi-
dents’ meeting which was held this year in Budapest during the
first weekend of April. It is a useful forum, in the first instance,
to hear and comment on reports from the president of the EMS
and, in the second, to have the opportunity to discuss with counter-
parts in the many national societies. The theme for open discussion
on the Sunday was mathematical education where attendants had
an opportunity to discuss and compare experiences of mathemati-
cal teaching at second and third level. A report of the meeting is
available.

Moving beyond Europe, the national adhering body to the In-
ternational Mathematical Union (IMU) is the Royal Irish Academy
where mathematical affairs are dealt with by the Physical, Chemical
and Mathematical Sciences committee. While there is often overlap
between the Academy and IMS committee membership, this was

8
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not a formal state of affairs. It is sensible that the two committees
do not work in isolation and entirely appropriate that the society
membership should have a line of repesentation to the PCMS com-
mittee. Following a letter from the society inviting closer working
relations, it was agreed that the IMS president, or nominee thereof,
will in future be an invited member of the PCMS committee.

The society funded five meetings in 2016:

(1) Numeracy: A Critical Skill in Adult Education. The 23rd
Annual International Conference of the ALM., Jul 3-6, Maynooth
University.

(2) Young Functional Analysts Workshop, Apr 6-8, Queens Uni-
versity Belfast.

(3) Groups in Galway 2016, May 20-21, NUIG.
(4) Irish Geometry Conference 2016, May 6-7, TCD.
(5) 10th Annual Irish Workshop on Mathematics Learning and

Support Centres, May 29, NUIG.

I thank our treasurer, Goetz Pfeiffer, for most efficient handling
of the application process. We receive more applications than we
can provide funding for and choosing which meetings to benefit is a
difficult and onerous task for the committee.

I can report that the IMS now engages in an activity known as
“tweeting” under the pseudonym @irishmathsoc. The good stuff
is still to be found in the Bulletin, as I trust it will be for the next
forty years.

M. Mackey
December, 2016
E-mail address : mackey@maths.ucd.ie



Minutes of the Irish Mathematical Society
Annual General Meeting

University College Dublin, 20 December 2016

Present : P. Barry, C. Boyd, S. Buckley, L. Creedon, S. Dineen,
E. Gill, J. Gleeson, J.M. Golden, B. Goldsmith, M. Golitsyna, R. Higgs,
T. Hurley, K. Hutchinson, T. Laffey, G. Lessells, R. Levene, P. Lynch,
M. Mac an Airchinnigh, D. Malone, P. Mellon, B. Murphy,
M. Newell, G. Ó Calháın, A.G. O’Farrell, J. O’Shea, M. OReilly,
G. Pfeiffer, R. Ryan, H. Smigoc, N. Snigireva, C. Stack,
R.M. Timoney.
Apologies : C. Hills, B. Kreussler, O. Mason, M. Mathieu, C. Mulc-
ahy, E. Oldham, R. Quinlan.

The meeting began at 15:40.

(1) Minutes
Minutes of the last meeting were accepted.

(2) Matters Arising
• The next meeting has been confirmed for the 31st August

and 1st September, thanks to Leo.
• The location for the 2018 scientific meeting will proba-

bly follow the tradition of being hosted by the outgoing
president, so it will most likely be held in UCD.

(3) Correspondence
A letter from the EMS with birthday wishes for the society
was read. Other correspondence concerned elections, and will
be dealt with under that agenda item.

(4) 40 Year Members
The society provided a small token to those who had been
original members of the society and were still members today.

T. Hurley presented his records of early society meetings
to the society. M. Newell noted that he had once been draft-
ed as treasurer and accidently discovered that some members
were happy to pay multiple times per year!

(5) Membership Applications
Membership applications had been approved for A. Cronin
(UCD), C. Larkin (Clonmel), R. Osburn (UCD), N. Pante-
lidis (WIT), A. O’Brien (NUIG), D. Degrijse (NUIG) and
H. Render (UCD).
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(6) President’s report
The president gave a brief summary of his report, full details
of which can be found in the Bulletin. The big item was the
40th Anniversary of the society. Another important item was
the positive correspondence with the Royal Irish Academy’s
Physical, Chemical and Mathematical Sciences Committee.

R.M. Timoney and V. Dotsenko were thanked for hosting
the September meeting of the society. The president had also
attended the EMS meeting and found it useful for keeping in
contact with other European Societies. Other conferences
supported by the society were also listed.

The society now also tweets!
C. Stack thanked the president for his work in recognising

the long-term members of the society.
(7) Treasurer’s report

The treasurer’s reports were accepted, with thanks to the
Treasurer.

(8) Bulletin
A. O’Farrell thanked the various groups that helped with
production, including the Editorial board, G. Lessells (print-
ing) and R.M. Timoney (website). The Bulletin particularly
welcomes articles from members and those with an Irish con-
nection. He encouraged the submission of Thesis Reports and
articles of all types.

(9) Educational Subcommittee
• This subcommittee was established approximately two

years ago, thanks to efforts by C. Stack and M. Mac an
Airchinnigh.
• The committee is discussing ‘Item 4(a)’, which concerns

what can be done at third level to smooth the transition
for those coming from second level. There is a proposal
to draw the attention of those at third level to encour-
age the provision of a smooth transition, and provide
a short web page with links to material that documents
current practice at second level. After a discussion about
who should be targeted and what information should be
linked to, this proposal was accepted.
• The European Mathematics Education Conference is be-

ing held in Dublin in February, organised by a group in
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DCU. This is the largest event on third level mathemat-
ics education.

(10) Elections
• The society rotates its secretary and treasurer in even

years, and its president and vice-president in odd years,
so there is an election for president and vice-president at
this meeting.
• Nominations had been received for S. Buckley and

C. Stack for president. A nomination had also been re-
ceived for P. Mellon for vice-president and for D. Mackey
for a general committee position, if one arose. No further
nominations were received from the floor.
• Brendan Murphy, of UCD statistics, was nominated to

act as returning officer for the election.
• S. Buckley and C. Stack both addressed the floor for

3 + ε minutes. After a ballot, S. Buckley was elected as
president.
• The uncontested positions were made unanimously.
• Thanks were extended to the committee for running the

election and to all candidates for putting themselves for-
ward.
• Old Committee: M. Mackey (President), S. Buckley (Vice-

President), D. Malone (Secretary), G. Pfeiffer (Treasurer),
P. Barry, J. Gleeson, B. Kreussler, R. Levene, M. Mac
an Airchinnigh, M. Mathieu, A. Mustata, J. O’Shea.
• New Committee: S. Buckley (President), P. Mellon (Vice-

President), D. Malone (Secretary), G. Pfeiffer (Treasurer),
P. Barry, J. Gleeson, B. Kreussler, R. Levene, M. Mac
an Airchinnigh, D. Mackey, A. Mustata, J. O’Shea.

(11) AOB
• The Fergus Gaines Cup will be presented at P. Lynch’s

talk this evening.
• E. Gill noted that C. Mulcahy has made a 2017 Irish

Mathematics calendar. Copies are being distributed.
• C. Stack expressed concern about low levels of engage-

ment at meetings and asked how it could be addressed
by the society.
• M. Mackey extended thanks to E. Gill and C. Mulcahy

for all the work they do to promote mathematics.
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• R. Higgs extended a vote of thanks to the outgoing pres-
ident.

Report by David Malone, Secretary.
david.malone@nuim.ie



IMS Annual Meeting
Trinity College Dublin

April 15–16, 2016

To mark the 40th anniversary of the foundation of the Society on
April 14th 1976 (in TCD), the annual meeting for 2016 was held in
April in Trinity again, with the support of the School of Mathematics
of TCD. The meeting lasted all day Friday April 15th and finished
in time for a late lunch Saturday 15th.

The meeting was opened by the Head of School, Professor Sinéad
Ryan, in the Maxwell Theatre of the Hamilton building and was
attended by about 45 members and guests. In order to clear the
building by 5pm for the Trinity Ball, a sandwich lunch was pro-
vided on Friday to allow for a more compressed lunch break. There
were also the usual coffee breaks and a conference dinner at a local
restaurant Friday evening.

A General Meeting of the Society was held at 13:00 Saturday and
a committee meeting at 9am.

These are the nine speakers and the titles of their talks, together
with the abstracts they supplied.

David Conlon (Oxford). Inequalities in graphs [10am Friday]
Suppose that a graph G contains a certain number of copies of

a graph H. What, if anything, does this tell us about the number
of copies of another graph K in G? In this talk, we will explore a
number of questions of this variety, touching upon extremal graph
theory, semidefinite programming and Hilbert’s 10th problem along
the way.

Graham Ellis (NUIG). Computing with 2 × 2 matrices [14:55
Friday]

For certain groups G of 2 × 2 matrices, we consider the problem
of constructing, on a computer, a contractible space X with a G-
action that has finite (or even trivial) point stabilizers. Homological
properties of G can be extracted from such a space and, at least in
principle, can be used to compute certain automorphic forms.

14
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Stephen Gardiner (UCD). Universal approximation in analysis
[12:10 Friday]

Many different avenues of research in mathematical analysis have
led to the discovery of objects which possess universal approxima-
tion properties. I will describe a range of such results, old and new,
and then focus on recent insights about the Taylor series of a holo-
morphic function.

Derek Kitson (Lancaster). Combinatorial characterisations for
rigid symmetric frameworks [11:15 Saturday]

In the last few years considerable progress has been made in find-
ing combinatorial characterisations of generically rigid frameworks
in various geometric contexts. Motivation comes in part from the
associated pebble-game algorithms which can test these combinato-
rial conditions. The presence of symmetry in a framework imposes
additional combinatorial constraints but also allows for greater ef-
ficiency due to the smaller size of the associated gain graphs. In
this talk I will illustrate some of the linear algebraic and graph the-
oretic methods involved, focusing mainly on 2-dimensional frame-
works with reflectional symmetry and norms with a quadrilateral
unit ball. This is based on recent joint work with Bernd Schulze
(Lancaster).

Anca Mustata (UCC). Combinatorial data encoding the inter-
section theory and the Gromov-Witten invariants of a variety with
C× action [10am Saturday]

In algebraic geometry, some of the most user-friendly examples
are toric varieties, which are often used in testing new conjectures or
computational techniques. They are relatively simple spaces which
come together with the action of a large torus (C×)n. As a con-
sequence, their cohomology, Gromov-Witten and other geometric
invariants are determined by combinatorial data generated by the
action. A considerably larger set of examples are varieties equipped
with actions by a 1-dimensional torus C×. In joint work with Andrei
Mustata we identify a set of combinatorial data which determine the
intersection theory and the Gromov-Witten invariants of these types
of varieties . This is work in progress.
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Andreea Nicoara (TCD). Connections between several complex
variables and real algebraic geometry [11:15 Friday]

While fundamental questions in complex analysis in several vari-
ables such as the Levi problem drove much of the development of
complex algebraic geometry in the 20th century, it turns out real
algebraic geometry is considerably more relevant to complex anal-
ysis these days. I will explore these connections between complex
analysis and real algebraic geometry arising from the study of the
most famous PDE in complex analysis, the ∂̄-equation on a domain
in Cn.

Ann O’Shea (NUIM). Understanding Understanding [16:10 Fri-
day]

The main aim of most mathematics courses at third level is to
develop students’ conceptual understanding. However, it is not easy
to define this type of understanding. In this talk, I will consider
attempts at coming up with such a definition and how these at-
tempts can help us to study how learning takes place. I will use
data from joint research projects with researchers in Ireland, the
UK and Sweden.

Rachel Quinlan (NUIG). I almost wish I hadn’t gone down that
rabbit-hole. . . [12:10 Saturday]

Our story starts in 1773, with an observation by Lagrange on
3 by 3 determinants. In 1833 the corresponding statement was
proved by Jacobi for all square matrices, and it is now known as
the Desnanot-Jacobi identity. It is the basis for Dodgson’s Conden-
sation Algorithm of 1866, which is a scheme for computing deter-
minants by repeatedly replacing contiguous 2 × 2 submatrices by
the corresponding minors. More than 100 years later, the insertion
of an experimental tweak to the definition of a 2 × 2 determinant
in the condensation formula led to the notion of a λ-determinant.
This is an adaptation of the determinant in which distinct prod-
ucts of matrix entries are indexed not by permutations but by more
general objects known as alternating sign matrices (ASMs). This
talk will present some of the surprising but compelling connections
between ASMs and permutations, and mention some some apparent
connections to other structures from enumerative combinatorics.
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Stuart White (Glasgow). Quasidiagonality and Amenability [14:00
Friday]

Quasidiagonality of a family of bounded operator was introduced
by Halmos in terms of simultaneous blockdiagonal approximations.
Despite it’s simple definition, it’s somewhat mysterious, with a kind
of topological flavour, and unexpected connections to other con-
cepts. For example, in the late 80’s Rosenberg observed a connection
to amenability of groups; showing that if the left regular represen-
tation of a discrete group is quasidiagonal, then the group must be
amenable, and conjectured the converse. I’ll survey quasidiagonality
and Rosenberg’s conjecture without assuming a background in oper-
ator algebras, and if time allows discuss it’s role in the classification
of simple nuclear C*-algebras.

Report by Vladimir Dotsenko (vdots@maths.tcd.ie) and Richard M.
Timoney (richardt@maths.tcd.ie), Trinity College Dublin.



Reports of Sponsored Meetings

Irish Maths Learning Support Network 10th Annual
Workshop

27 May 2016, NUI Galway

The theme of the 10th Annual Workshop of the Irish Mathematics
Learning Support Network (IMLSN) Workshop was ‘The key role of
tutors of mathematics and statistics in Post-Secondary Education’.
The aim of the event was to discuss

• a variety of aspects including professional development for
tutors,
• the diverse teaching roles of tutors and the challenges they

face,
• mathematics learning support centres as rich learning experi-

ences for tutors, and
• tutoring as opportunity for postgraduate and undergraduate

students to be part of the mathematics community.

47 delegates attended this workshop including tutors and lecturers
involved in support of mathematics and statistics at third level, or
in teaching and learning at third level education in general.

Keynote speakers on the day included Michael Grove (University
of Birmingham) and Ciarán O’Sullivan (Institute of Technology Tal-
laght, Dublin). Michael Grove spoke in his talk (The Strongest Link?
Supporting the Teaching Assistant, Demonstrator, Marker, Advisor,
Tutor, . . .) about the development of tutor training in mathematics
support in the U.K. Ciarán O’Sullivan (Staff development in Math-
ematics Learning Support in Ireland: where are we now and where
to next? ) described approaches to tutor training made by the Irish
community of mathematics and statistics support practitioners and
made suggestions of how tutors’ professional teaching development
can be supported.

Six other talks were contributed at this one day conference, includ-
ing the perspectives of tutors engaged in mathematics and statistics
support, suggestions for teaching from experienced lecturers and an
overview of the current situation of mathematics learning support in
Ireland: Niall McInerney and Kevin Brosnan, Challenges for tertiary
level mathematics tutors with no formal education training: The

18
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experience of two practitioners, Ted Hurley, ‘Make it (Mathematics)
stick!’, Richard Walsh, An analysis of pedagogy of mathematics
support tutors, Cesar Scrotchi, Tutoring in a Maths Support Centre
as an enrichment experience for tutoring large groups, Maura Clancy,
Audit of mathematics learning support in Ireland in 2015 the key
findings, and Julie Crowley, Online e-assessment tool Numbas as a
tutorial tool.

The workshop provided delegates with an opportunity to share
ideas and experiences in supporting tutors engaged in higher educa-
tion mathematics and statistics support, and to further consolidate
links between academics and support staff.

Abstract of the talks and presentation are available at the IMLSN
website: http://imlsn.own.ie/imlsn10nuigalway/

The organizers are grateful for financial support from the School
of Mathematics, Statistics and Applied Mathematics and the Irish
Mathematical Society.

Report by Kirsten Pfeiffer, NUI Galway
kirsten.pfeiffer@nuigalway.ie

Adult Learning Mathematics 23rd Annual
International Conference

3-6 July, 2016, Maynooth University

The three day conference focused on the following themes:

• Numeracy: A Critical Skill in Adult Education.
• The Language of Mathematics, and Language and Mathemat-

ics.
• Adults Learning Mathematics: Research, Practice and Policy.

Numeracy is acknowledged as a critical skill needed to succeed in
our 21st century society. For example the Irish National Strategy for
Literacy and Numeracy states (p.10): Numeracy encompasses the
ability to use mathematical understanding and skills to solve problems
and meet the demands of day-to-day living in complex social settings.
To have this ability, a person needs to be able to think and communi-
cate quantitatively, to make sense of data, to have a spatial awareness,
to understand patterns and sequences, and to recognise situations
where mathematical reasoning can be applied to solve problems.



20

The conference endeavoured to explore the importance of numeracy
in Adult Education and ways of developing numeracy in adult learn-
ers.

Language: We considered the challenges of teaching mathemat-
ics when the language of instruction is not the first language of the
student (or the teacher). In addition, we focussed on the language
of mathematics and how it affects teaching and or learning.

Research, Practice and Policy: We discussed aspects of research,
practice and policy in relation to Adults Learning Mathematics. We
were especially interested in the range of difference practices and
policies employed at different levels and in different countries and in
research on the effectiveness of these practices and policies.

The Keynote Speakers were

• Inez Bailey, Director of NALA, the National Adult Literacy
Agency.
• Professor Raymond Flood, Gresham College.
• Professor Núria Planas, Universitat Autònoma de Barcelona
• Professor John O’Donoghue, Professor Emeritus University

of Limerick.
• Professor Katherine Safford-Ramus, Saint Peters University,

the Jesuit College of New Jersey

There were 19 further short talks, 12 workshops and several posters.
Over 90 delegates from 12 different countries also enjoyed the Na-
tional Science Museum at Maynooth University and the collection of
old Mathematical and Scientific texts at the Russell Library.

Further details on both the ALM, and on the conference, including
abstracts for all presentations, and some of the presentation slides
are available from the conference website
http://www.alm-online.net/alm-23-maynooth/

The conference was supported by the 3U Partnership, the Depart-
ment of Mathematics and Statistics at Maynooth University, Fáilte
Ireland, Maynooth University, the National Adult Literacy Agency
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(NALA), the National Forum for the Enhancement of Teaching and
Learning in Higher Education and the IMS.

Report by Ciarán Mac an Bháird and Ann O’Shea, Maynooth Uni-
versity
alm23@maths.nuim.ie

Young Functional Analysts’ Workshop
4-8 April, 2016, Queen’s University, Belfast

The Young Functional Analysts’ Workshop (YFAW) is an annual
meeting, organised by PhD students, for early-stage researchers
(mainly PhD students and postdocs) in all areas of Functional Analy-
sis. YFAW aims to bring together young people working in Functional
Analysis to interact, share ideas and experiences, present their work
to a sympathetic audience, and learn about new areas of Functional
Analysis from participant talks and invited talks from experienced
researchers. See https://sites.google.com/site/yfawuk/.

The invited talks were:

• Dr Yemon Choi (Lancaster University): Derivations on Fourier
algebras of connected groups;
• Prof Cho-Ho Chu (Queen Mary University of London): Jordan

algebras in analysis and geometry;
• Dr Tatiana Shulman (IM PAN Warsaw): Completely positive

maps and zero-error in quantum information theory;
• Dr Aaron Tikuisis (University of Aberdeen): C∗-algebras:

structure and classification;
• Prof Ivan Todorov (Queen’s University Belfast): Schur multi-

pliers.

The conference also featured 17 short participant talks covering
many areas of Functional Analysis. There were a total of 24 partici-
pants from 10 institutions. The organisers are very grateful to the
Irish Mathematical Society, the London Mathematical Society and
several local companies for supporting the event. We would also like
to express our thanks to the participants and invited speakers for
their enthusiastic participation.
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Report by Andrew McKee and Linda Mawhinney, Queen’s University,
Belfast
yfaw2016@gmail.com

Groups in Galway 2016
20–21 May 2016, NUI Galway

Groups in Galway, an annual conference on group theory and
related topics which has been running since 1978, was held at NUI
Galway on 20–21 May. The conference had 41 participants and
featured ten talks of speakers from Ireland, UK, continental Europe
and Brazil. The following wide range of topics were covered: Lie
groups, geometric group theory, fusion systems, semigroup theory,
pro-p-groups, representation theory and other structural problems
for infinite groups. The speakers and titles were:

• Collin Bleak (University of St Andrews):
On detecting solubility for finitely generated subgroups of

the group PLo(I)
• John Burns (NUIG):

Discrete Tori in Weyl groups and their applications
• Francesco de Giovanni (University of Naples):

The murdered cardinal: a countably recognizable crime
• Ellen Henke (University of Aberdeen):

Normal subsystems of fusion systems and partial normal
subgroups of localities
• Mark Lawson (Heriot-Watt University):

Boolean full groups
• Nadia Mazza (Lancaster University):

On a pro-p group of upper triangular matrices
• Bob Oliver (Université Paris 13):

Automorphisms and extensions of fusion systems
• Shane O’Rourke (Cork Institute of Technology):

A combination theorem for affine tree-free groups
• Said Sidki (Universidade de Brasilia):

From the Alternating Groups to Orthogonal Groups over
Laurent Polynomial Rings
• Peter Symonds (University of Manchester):

Endotrivial modules for infinite groups



23

Besides talks, there was also a poster competition for students
and young researchers, and research expenses prizes were awarded
according to conference participants’s vote. Further details of the
program, as well as some photographs from the event, can be found
at
http://www.maths.nuigalway.ie/conferences/gig16/

The organizers, Ted Hurley and Sejong Park, are grateful to NUI
Galway (Registrar’s Office), SFI and the Irish Mathematical Society
for financial support of the conference.

Report by Sejong Park, NUI Galway
sejong.park@nuigalway.ie
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A Mean Value Inequality for Euler’s Beta Function

HORST ALZER AND RICHARD B. PARIS

Abstract. Let B(x, y) be Euler’s beta function. We prove that
the inequalities

0 <
B
(√

xy,
x+ y

2

)

B(x, y)
< 1

hold for all x, y > 0 with x 6= y. The given constant bounds are best
possible. This result is extended to the case when the beta function
in the numerator has arguments given by the weighted geometric
and arithmetic means.

1. Introduction

The beta function, also known as the Eulerian integral of the first
kind, is defined for positive real numbers x and y by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
, (1)

where Γ denotes the classical gamma function. From the product
representation of 1/Γ(x) [6, Eq. (1.1.9)], it follows that

B(x, y) =
x+ y

xy

∞∏

n=1

(
1 +

xy

n(x+ y + n)

)−1
. (2)

The beta function plays an important role in the theory of special
functions and it also has remarkable applications in physics, stochas-
tic processes and other fields. A collection of the main properties
of B(x, y) as well as interesting historical comments on this subject
can be found, for instance, in [6].

In the recent past, several research papers have appeared providing
various inequalities for the beta function and its relatives. We refer
to [1-5], [7, 9, 10, 11] and the references cited therein. For example,

2010 Mathematics Subject Classification. 33B15, 26D07, 26E60.
Key words and phrases. Beta function, mean values, inequalities.
Received on 30-5-2016; revised 31-7-2016.
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for all x, y > 0 we have that B(x, y) separates the geometric and
arithmetic means of B(x, x) and B(y, y), that is,

√
B(x, x)B(y, y) ≤ B(x, y) ≤ B(x, x) +B(y, y)

2
.

The first inequality is given in [9], whereas a proof for the second
one can be found in [3]. In this note we present a new mean value
inequality for the ratio of two beta functions.

Theorem. For all positive real numbers x and y with x 6= y we have

0 <
B
(√

xy,
x+ y

2

)

B(x, y)
< 1. (3)

Both constant bounds are sharp.

2. A Lemma

In order to prove the right-hand side of (3) we apply a lemma
which offers an upper bound for the ratio given in (3) in terms of
geometric and arithmetic means.

Let x, y > 0 and w ∈ (0, 1). The weighted geometric and arith-
metic means are defined by

Gw(x, y) = xwy1−w and Aw(x, y) = wx+ (1− w)y.

Moreover, we set

G = G1/2(x, y) =
√
xy and A = A1/2(x, y) =

x+ y

2
.

Lemma. Let v, w ∈ (0, 1). The inequality

B
(
Gv(x, y), Aw(x, y)

)

B(x, y)
≤ 1

2

[(Gv(x, y)

Aw(x, y)

)2
+
Gv(x, y)

Aw(x, y)

]
(4)

holds for all x, y > 0 if and only if v = w = 1/2.

Proof. First, we assume that (4) is valid for all x, y > 0. Let

Fv,w(x, y) = 2
B
(
Gv(x, y), Aw(x, y)

)

B(x, y)

[(Gv(x, y)

Aw(x, y)

)2
+
Gv(x, y)

Aw(x, y)

]−1
.

Then, we have for x, y > 0:

Fv,w(x, y) ≤ 1 = Fv,w(y, y).

Use of
∂

∂x
B(x, y) = B(x, y)

[
ψ(x)− ψ(x+ y)

]
,
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where ψ = Γ′/Γ is the logarithmic derivative of the gamma function,
yields

0 = 2y
∂

∂x
Fv,w(x, y)

∣∣∣x=y = 3(w−v)+2(v+w−1)y
(
ψ(y)−ψ(2y)

)
. (5)

We denote the expression on the right-hand side of (5) by Hv,w(y).
Since

lim
t→0+

tψ(t) = −1 and ψ(1)− ψ(2) = −1,

we obtain

lim
y→0+

Hv,w(y) = 1− 4v + 2w = 0

and

Hv,w(1) = 2− 5v + w = 0.

This leads to v = w = 1/2.
Next, we prove (4) with v = w = 1/2. Application of (2) leads to

B(x, y) =
2A

G2

∞∏

n=1

(
1 +

G2

n(2A+ n)

)−1

and
B(G,A)

B(x, y)
=
G(G+ A)

2A2

∞∏

n=1

fn (6)

with

fn =
(

1 +
G2

n(2A+ n)

)(
1 +

GA

n(G+ A+ n)

)−1
. (7)

Since A−G ≥ 0, we obtain

fn = 1− G(A−G)(G+ 2A+ n)

(G+ n)(A+ n)(2A+ n)
≤ 1 for n ≥ 1. (8)

Therefore,

B(G,A)

B(x, y)
≤ G(G+ A)

2A2
=

1

2

[(G
A

)2
+
G

A

]
. (9)

This establishes (4) with v = w = 1/2. �
Remark 2.1. If x 6= y, then A−G > 0, so that (8) gives fn < 1 for
n ≥ 1. This implies that (9) holds with “<” instead of “≤”. Thus,
if v = w = 1/2, then the sign of equality is valid in (4) if and only
if x = y.

We are now in a position to establish our main result.
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3. Proof of Theorem

An application of (4) with v = w = 1/2 yields for x, y > 0 with
x 6= y:

B(G,A)

B(x, y)
< 1− (A−G)(A+G/2)

A2
< 1.

It remains to show that the bounds 0 and 1 are best possible. We
denote the ratio in (3) by R(x, y). Then,

R(x, x) = 1. (10)

Use of the recurrence formula Γ(x+ 1) = xΓ(x) and (1) gives

R(x, 1) =
√
x

Γ(
√
x+ 1)Γ

(
(x+ 1)/2

)

Γ
(√

x+ (x+ 1)/2
) .

It follows that
lim
x→0+

R(x, 1) = 0. (11)

From (10) and (11) we conclude that the constant upper and lower
bounds given in (3) cannot be improved. �
Remark 3.1. Inequality (4) with v = w = 1/2 reveals that

A

G
≤ B(x, y)

B(G,A)

is valid for all x, y > 0. This is a converse of the well-known arith-
metic mean - geometric mean inequality A/G ≥ 1. Many additional
inequalities for arithmetic and geometric means as well as for nu-
merous other mean values are given in the monograph [8].

It is natural to ask whether the right-hand side of (3) is valid
for geometric and arithmetic means with a weight different from
1/2. The following remark reveals that if both means have the same
weight, then the answer is “no”.

Remark 3.2. Let w ∈ (0, 1). The inequality

B
(
Gw(x, y), Aw(x, y)

)
≤ B(x, y) (12)

holds for all x, y > 0 if and only if w = 1/2. We define

Iw(x) = B(x, 1)−B
(
Gw(x, 1), Aw(x, 1)

)
.

If (12) is valid for all x, y > 0, then we obtain

Iw(x) ≥ 0 = Iw(1) and I ′w(1) = 2w − 1 = 0.

Thus, w = 1/2.
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Remark 3.3. If w ∈ (0, 1), then (12) holds for x, y > 0 satisfying
G2 ≤ Gw(x, y)Aw(x, y) or, equivalently, Gw(y, x) ≤ Aw(x, y). To see
this we observe that an extension of (6) and (7) (we omit to display
the x, y dependence of Gw and Aw) shows that

B(Gw, Aw)

B(x, y)
= Qw

∞∏

n=1

gn(w), Qw =
G2(Gw + Aw)

2AGwAw

where

gn(w) =
(

1 +
G2

n(2A+ n)

)(
1 +

GwAw

n(Gw + Aw + n)

)−1

= 1− n(GwAw −G2) + 2AGwAw(1−Qw)

(2A+ n)(Gw + n)(Aw + n)
.

Since

G2(Gw + Aw)

Gw
= G2 +G1−wAw ≤ Aw(Gw +G1−w)

≤ Aw(Aw + A1−w) = 2AAw,

where we have employed the arithmetic mean - geometric mean in-
equality Gw ≤ Aw, we see that Qw ≤ 1 and gn(w) ≤ 1 for n ≥ 1,
whence the result follows.

Acknowledgement. We thank the referee for some helpful com-
ments and for pointing out the extension given in Remark 3.3.
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[11] P. Ivády: On a beta function inequality II, J. Math. Sci. Adv. Appl. 22 (2013),

27-37.

Horst Alzer received his Ph.D. from the University of Bonn and completed

his Habilitation at the University of Würzburg. He is mainly interested in special

functions and inequalities.

Richard B. Paris is an Emeritus Reader in mathematics at the University of

Abertay Dundee. He previously worked for Euratom at the French Atomic Energy

Commission in the thermonuclear fusion department. His main area of interest is

in asymptotic analysis. He is the author of two chapters in the NIST Handbook

of Mathematical Functions.

(Alzer) Morsbacher Str. 10, 51545 Waldbröl, Germany

(Paris) Division of Computing and Mathematics, University of Aber-
tay Dundee, Dundee DD1 1HG, UK

E-mail address, H. Alzer: h.alzer@gmx.de
E-mail address, R.B. Paris: R.Paris@abertay.ac.uk



Irish Math. Soc. Bulletin
Number 78, Winter 2016, 31–45
ISSN 0791-5578

Finite Differences and Terminating
Hypergeometric Series

WENCHANG CHU

Abstract. By means of finite difference method, new proofs are
presented for the binomial convolution formulae of Abel, Chu–
Vandermonde and Hagen–Rothe. The same approach is illustrated
also for the summation theorems of classical hypergeometric series
due to Dixon, Pfaff–Saalschütz, Stanton and Minton (1970).

Finite differences are very useful in numerical mathematics. In this
paper, we shall illustrate how to employ them to evaluate binomial
sums and terminating hypergeometric series. The approach consists
of the following three steps:

• First for a given a binomial identity, identifying a parameter x
as a variable and expressing the binomial sum in terms of finite
differences.
• Then evaluating the binomial sum for particular values of x

with the help of properties of finite differences.
• Finally confirming the binomial identity via the fundamental

theorem of algebra, i.e., two polynomials of degrees ≤ n are
identical if they have the same values at n+ 1 distinct points.

New proofs will be presented for the binomial convolution formulae
of Abel, Chu–Vandermonde and Hagen–Rothe. As further examples
of classical hypergeometric series, we examine also Pfaff–Saalschütz
summation theorem, Dixon’s formula, Stanton’s extension [23] of

2010 Mathematics Subject Classification. Primary 05A19, Secondary 33C20.
Key words and phrases. Finite differences; Abel’s convolution formulae; Hagen–
Rothe convolution formulae; Chu–Vandermonde convolution identity; Dixon’s
summation theorem; Pfaff–Saalschütz summation theorem; Stanton’s extension
of Andrews’ 5F4–sum; Minton’s summation theorem.
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Andrews’ 5F4–sum [1] and Minton’s seminal theorem [18] on the
series with integer parameter differences.

Following Bailey [2, §2.1], we shall use, the notation below for the
classical hypergeometric series

1+pFp

[
a0, a1, a2, · · · , ap

b1, b2, · · · , bp
∣∣∣ z
]

=
∞∑

k=0

(a0)k(a1)k(a2)k · · · (ap)k
k!(b1)k(b2)k · · · (bp)k

zk

where the shifted factorial is defined by

(λ)0 = 1 and (λ)n = λ(λ+ 1) · · · (λ+ n− 1) for n = 1, 2, · · ·
with its multi–parameter form being abbreviated as[

α, β, · · · , γ
A,B, · · · , C

]

n

=
(α)n(β)n · · · (γ)n
(A)n(B)n · · · (C)n

.

Throughout the paper, our attention will focus only on the termi-
nating series, i.e., one of the numerator parameters {ai}pi=0 results
in a nonpositive integer.

1. Finite Differences

The finite difference operator ∆ with unit increment is defined by

∆0f(x) := f(x) and ∆f(x) := f(1 + x)− f(x).

For a natural number n, the differences of order n is given by

∆nf(x) := ∆
{

∆n−1f(x)
}

which is expressed by the following Newton–Gregory formula (cf. [21,
Chapter 1])

∆nf(x) =
n∑

k=0

(−1)n+k

(
n

k

)
f(x+ k). (1)

In particular, when pm(x) is a polynomial of degree m ≤ n with the
leading coefficient cm, the following properties are quite useful:

∆npm(x) = n!cnχ(m = n) and ∆npm(x)

x− λ = (−1)n
n!pm(λ)

(x− λ)n+1

where χ stands for the usual logical function with χ(true) = 1 and
χ(false) = 0.
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The former equality is well–known. The latter can be justified eas-
ily as follows. First when pm(x) ≡ 1, it is trivial to check it by

the induction principle. Observing that pm(x)−pm(λ)
x−λ is a polynomial

of degree m − 1 with the nth differences equal to zero, we have
immediately

∆npm(x)

x− λ = ∆npm(λ)

x− λ = (−1)n
n!pm(λ)

(x− λ)n+1
.

In addition, we shall use ∆n
c f(x) = ∆nf(x)|x=c for the differences

starting at x = c.

2. Chu–Vandermonde Convolution

As a warm-up, we illustrate the method first by showing the Chu–
Vandermonde convolution formula (cf. Bailey [2, §1.3]

2F1

[
−n, x

y

∣∣∣ 1

]
=

(y − x)n
(y)n

(2)

which is often stated equivalently as the following binomial identity:
n∑

k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
.

Rewrite (2) equivalently as
n∑

k=0

(−1)k
(
n
k

)(x)k
(y)k

=
(y − x)n

(y)n
. (3)

Denote by P (x) the above binomial sum, which is a polynomial of
degree n in x. Keeping in mind of the relation

(y +m)k
(y)k

=
(y + k)m

(y)m

we can reformulate P (x) at x = y +m as

P (y +m) =
n∑

k=0

(−1)k
(
n
k

)(y +m)k
(y)k

=
n∑

k=0

(−1)k
(
n
k

)(y + k)m
(y)m

.
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Observing that the binomial sum just displayed results in the nth

differences of the polynomial (x+y)m
(y)m

with degree m, we deduce that

P (y +m) = (−1)n
n!

(y)n
χ(m = n) for 0 ≤ m ≤ n.

Therefore the polynomial P (x) has the same values at the n + 1
distinct points {y+m}nm=0 as (y−x)n/(y)n with the same degree n.
According to the fundamental theorem of algebra, they are identical.
This proves (3) and so the Chu–Vandermonde identity (2).

3. Pfaff–Saalschütz Summation Theorem

In classical hypergeometric series, the Pfaff–Saalschütz summation
theorem is fundamental (cf. Bailey [2, §2.2] and Chu [4])

3F2

[
−n, x, y

1 + z, x+ y − z − n
∣∣∣ 1

]
=

(1 + z − x)n(1 + z − y)n
(1 + z)n(1 + z − x− y)n

(4)

which can be reproduced, as the following binomial sum (cf. Gould [14,
Entry 17.3; P.71]):

n∑

k=0

(
n

k

) (
x
k

)(
y
k

)
(
x+y+z+n

k

)(
z+k
k

) =

(
x+z+n

n

)(
y+z+n
n

)
(
x+y+z+n

n

)(
z+n
n

) .

Firstly, rewrite the equality (4) equivalently as

n∑

k=0

(−1)k
(
n

k

)
(x)k(y)k

(1+z)k(x+y−z−n)k
=

(1+z−x)n(1+z−y)n
(1+z)n(1+z−x−y)n

. (5)

For the polynomial given by (1+z−x−y)n = (−1)n(x+y−z−n)n, if
multiplying by this across the last equation, we would get an identity
between two polynomials of degree n in x. In order to prove it, it
suffices to check the equality (5) for n+ 1 distinct values of x.

Let R(x) be the sum displayed in (5). In view of the relation

(z +m)k(y)k
(1 + z)k(y +m− n)k

=
(1 + z + k)m−1(1− y − k)n−m

(1 + z)m−1(1− y)n−m
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we have the following expression

R(z +m) =
n∑

k=0

(−1)k
(
n

k

)
(z +m)k(y)k

(1 + z)k(y +m− n)k

=
n∑

k=0

(−1)k
(
n

k

)
(1 + z + k)m−1(1− y − k)n−m

(1 + z)m−1(1− y)n−m

which vanishes for m = 1, 2, · · · , n because it results in the nth
differences of the following polynomial (1 +x+ z)m−1(1−x− y)n−m
of degree n− 1.

Taking into account of R(0) = 1 besides, we conclude that equality
(5) is valid for the n+ 1 distinct values {0}∪{z+m}n−1

m=0 of x. This
confirms (5) and so the Pfaff–Saalschütz summation formula (4).

It should be pointed out that the proof presented here resembles
much the one found recently by Gessel [13], but with the differ-
ence that our proof is based on the polynomial R(x) of degree n
while Gessel’s on another polynomial of degree 2n together with its
symmetric property.

4. Convolution Formulae of Hagen–Rothe

More general convolutions of binomial coefficients are evaluated by
Hagen and Rothe (cf. Comtet [11, §3.1] and Mohanty [19, §4.2])

n∑

k=0

x

x+ ky

(
x+ ky
k

)(
z − ky
n− k

)
=
(
x+ z
n

)
, (6a)

n∑

k=0

x

x+ ky

(
x+ ky
k

)z − ny
z − ky

(
z − ky
n− k

)
=
x+ z − ny
x+ z

(
x+ z
n

)
. (6b)

There are many different proofs. Some of them can be found in
[8, 10, 15, 24]. Denote by P(x) the binomial sum in (6a), which is
obviously a polynomial of degree n. Its value at x = m − z can be
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manipulated as

P(m− z) =
n∑

k=0

m− z
m− z + ky

(
m− z + ky

k

)(
z − ky
n− k

)

=
m− z
n!

n∑

k=0

(−1)n−k
(
n

k

)
(1 +m− k + ky − z)k−1(ky − z)n−k

=
m− z
n!

n∑

k=0

(−1)n−k
(
n

k

)
(ky − z)m(1 +m− k + ky − z)n−m−1.

For 0 ≤ m < n, we assert that P(m− z) vanishes because it results
in the nth differences of the following polynomial

(xy − z)m(1 +m− x− z + xy)n−m−1 of degree n− 1.

When m = n, we can evaluate

P(n− z) =
n− z
n!

n∑

k=0

(−1)n−k
(
n

k

)
(ky − z)n

n− k − z + ky

=
n− z
n!

∆n
0

(xy − z)n
n− x− z + xy

=
n− z

n!(y − 1)
∆n

0

(z−nyy−1 )n

x− z−n
y−1

= (−1)n
n− z
y − 1

(z−nyy−1 )n

(−z−n
y−1)n+1

= 1.

Therefore, P(x) is a polynomial with the same values at the n + 1
distinct points {m−z}nm=0 as another polynomial

(
x+z
n

)
of degree n.

This shows that both polynomials are identical which proves (6a).
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Analogously, let Q(x) be the binomial sum in (6b), which is again
a polynomial of degree n. Its value at x = m− z reads as

Q(m− z) =
n∑

k=0

m− z
m− z + ky

(
m− z + ky

k

)z − ny
z − ky

(
z − ky
n− k

)

=
(z−m)(z−ny)

n!

n∑

k=0

(−1)n−k
(
n

k

)
(1+m−k+ky−z)k−1(1+ky−z)n−k−1

=
(z−m)(z−ny)

n!

n∑

k=0

(−1)n−k
(
n

k

)
(1+ky−z)m−1(1+m−k+ky−z)n−m−1.

For 1 ≤ m < n, it is clear that Q(m− z) vanishes because it results
in the nth differences of the following polynomial

(1− z + xy)m−1(1 +m− x− z + xy)n−m−1 of degree n− 2.

In addition, we can evaluate

Q(0− z) =
z(z − ny)

n!

n∑

k=0

(−1)n−k
(
n

k

)
(1− k − z + ky)n−1

ky − z .

=
z(z − ny)

n!
∆n

0

(1− x+ xy − z)n−1

xy − z

=
z(z − ny)

n!y
∆n (1− z/y)n−1

x− z/y
∣∣∣
x=0

= (−1)n
z(z − ny)

y

(1− z/y)n−1

(−z/y)n+1
= (−1)ny

and

Q(n− z) =
(z − n)(z − ny)

n!

n∑

k=0

(−1)n−k
(
n

k

)
(1 + ky − z)n−1

n− k + ky − z

=
(z − n)(z − ny)

n!
∆n

0

(1 + xy − z)n−1

n− x+ xy − z

=
(z − n)(z − ny)

n!(y − 1)
∆n

(1 + z−ny
y−1 )n−1

x− z−n
y−1

∣∣∣
x=0

= (−1)n
(z − n)(z − ny)

y − 1

(1 + z−ny
y−1 )n−1

(−z−n
y−1)n+1

= 1− y.
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Therefore, Q(x) is a polynomial with the same values at the n + 1
distinct points {m − z}nm=0 as another polynomial x+z−ny

x+z

(
x+z
n

)
of

degree n. This implies that both polynomials are identical which
proves (6b).

5. Dixon’s Terminating Summation Formula

One of the terminating forms of Dixon’s summation theorem is
(cf. Bailey [3])

3F2

[
−n, x, y

1− x− n, 1− y − n
∣∣∣ 1

]
=

(1 + `)`(x+ y + `)`
(x+ `)`(y + `)`

χ(n = 2`). (7)

A well–known particular case of it is the following alternating sum
of cubic binomial coefficients (cf. Gould [14, Entry 6.6; P.51]):

n∑

k=0

(−1)k
(
n

k

)3

= (−1)`
(3`)!

(`!)3
χ(n = 2`).

For a real number x, denote by bxc its integer part. Rewrite (7)
equivalently as

n∑

k=0

(−1)k
(
n

k

)
(x)k(y)k

(1− x− n)k(1− y − n)k

=
(1 + `)`(x+ y + `)`

(x+ `)`(y + `)`
χ(n = 2`).

(8)

Multiplying this equation by (x+ n− bn2c)bn2 c, we would get a poly-
nomial identity of degree ≤ bn2c. This can be justified by combining
the relation

(x)k(x+ n− bn2c)bn2 c
(1− x− n)k

= (−1)k
(x)k(x+ n− bn2c)bn2 c

(x+ n− k)k

with

(x)k(x+ n− bn2c)bn2 c
(x+ n− k)k

=

{
(x)k(x+ n− k)bn2−kc, k ≤ bn2c;
(x)k/(x+ n− k)k−bn2 c, k > bn2c.

In order to prove (8), we need only to validate it for 1 + bn2c distinct
values of x. Let S(x) be the finite sum displayed in (8). In view of
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the equation

(y)k(1− y +m− n)k
(y −m)k(1− y − n)k

=
(y −m+ k)m(1− y − n+ k)m

(y −m)m(1− y − n)m

we have the following expression

S(1− y +m− n) =
n∑

k=0

(−1)k
(
n

k

)
(y)k(1− y +m− n)k
(y −m)k(1− y − n)k

=
n∑

k=0

(−1)k
(
n

k

)
(y −m+ k)m(1− y − n+ k)m

(y −m)m(1− y − n)m

which vanishes for 0 ≤ m < n/2 because it results in the nth dif-
ferences of the polynomial (x + y −m)m(1 + x− y − n)m of degree
2m < n. When n is odd, we are done because (8) is valid for the

1 + bn2c distinct values {1− y +m− n}b
n
2 c
m=0 of x.

When n = 2` is even, we have found that the polynomial S(x) has
` zeros {1 − y + m − 2`}`−1

m=0. In addition, we have to compute, for
m = `, the following extreme value

S(1− y − `) =
2∑̀

k=0

(−1)k
(

2`

k

)
(y + k − `)`(1− y − 2`+ k)`

(y − `)`(1− y − 2`)`

=
(2`)!

(y − `)`(1− y − 2`)`
=

(2`)!

(1− y)`(y + `)`

which coincides with the right member of equation (8) specified with
x = 1− y − `. Therefore, we have validated the equality (8) for the

1 + n/2 distinct values {1 − y + m − n/2}n/2m=0 of x, also when n is
even.

This completes the proof of (8) and also the terminating summation
formula (7).

6. Stanton’s Extension of Andrews’ 5F4-sum

Recently, Gessel [13] found an ingenious proof for the following sum-
mation formula

5F4

[
−1− 2n, 1 + x+ n, x, z, 1

2 + x− z
x−n

2 , 1+x−n
2 , 2z, 1 + 2x− 2z

∣∣∣ 1

]
≡ 0. (9)
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It was discovered by Andrews [1, Eq 1.6] in determinant evaluation
connected to plane partitions. For different proofs of (9), refer to [9,
12, 23, 25].

Following Gessel’s approach, we present a similar proof for the ex-
tended formula below which is due to Stanton [23, Eq.A.2] (cf. Chu [9,
Eq.2.22] also):

6F5

[
−1− 2n, 1 + λ, x+ n, x, z, 1

2 + x− z
λ, x−n

2 , 1+x−n
2 , 2z, 1 + 2x− 2z

∣∣∣ 1

]

=
λ− x− n

λ(1 + x+ 3n)

[
3
2 , 1 + x− 2z, 2z − x
1− x, 1

2 + z, 1 + x− z

]

n

. (10)

Rewrite the last formula as a binomial equality

2n+1∑

k=0

(−1)k
(

2n+ 1

k

)
λ+ k

λ

(x)k(x+ n)k

(x−n2 )k(
1+x−n

2 )k

(z)k(
1
2 + x− z)k

(2z)k(1 + 2x− 2z)k

=
λ− x− n

λ(1 + x+ 3n)

[
3
2 , 1 + x− 2z, 2z − x
1− x, 1

2 + z, 1 + x− z

]

n

. (11)

Multiplying across the last equation by (1
2 +z)n(1+x−z)n, we would

get a polynomial identity of degree 2n in z, if we can show that the
following expression results in a polynomial of degree 2n in z:

(z)k(
1
2 + z)n

(2z)k
× (1

2 + x− z)k(1 + x− z)n

(1 + 2x− 2z)k
.

Because the second fraction becomes the first one under the substi-
tution z → 1

2 + x− z, it is sufficient to prove that the first fraction
is a polynomial of degree n in z. This is indeed the case in view of
the following expression:

(z)k(
1
2 + z)n

(2z)k
=





(z)k( 1
2+z)k( 1

2+z+k)n−k

(2z)k
=

(2z)2k( 1
2+z+k)n−k

4k(2z)k
, k ≤ n;

(z)n(z+n)k−n( 1
2+z)n

(2z)k
= (2z)2n(z+n)k−n

4n(2z)k
, k > n.

In order to prove the identity (11), it is enough to validate it
for 2n + 1 distinct values of z. Denote by T (z) the binomial sum
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displayed on the left of (11). We are going to evaluate

T (x−m2 ) =
2n+1∑

k=0

(−1)k
(

2n+ 1

k

)
λ+ k

λ
P (k)Q(k)

where

P (k) :=
(x−m2 )k(

1+x+m
2 )k

(x−n2 )k(
1+x−n

2 )k
and Q(k) :=:

(x)k(x+ n)k
(x−m)k(1 + x+m)k

.

According to the expressions

P (k) =





(x−n2 + k)n−m
2

(1+x−n
2 + k)m+n

2

(x−n2 )n−m
2

(1+x−n
2 )m+n

2

, m = n (mod 2);

(x−n2 + k)m+n+1
2

(1+x−n
2 + k)n−m−1

2

(x−n2 )m+n+1
2

(1+x−n
2 )n−m−1

2

, m 6= n (mod 2);

and

Q(k) =





(x−m+ k)m(1 + x+m+ k)n−m−1

(x−m)m(1 + x+m)n−m−1
, m ≥ 0;

(x−m+ k)m+n(1 + x+m+ k)−m−1

(x−m)m+n(1 + x+m)−m−1
, m < 0;

we can see that for −n ≤ m < n, both P (k) and Q(k) are polyno-
mials of k with degrees n and n− 1, respectively. Therefore T (x−m2 )
vanishes for −n ≤ m < n because it is essentially the (2n + 1)th
differences of a polynomial of degree 2n. Furthermore, we can also
compute the following extreme value:

T (x−n2 ) =
2n+1∑

k=0

(−1)k
(

2n+ 1

k

)
λ+ k

λ

(x)k(x+ n)k
(x− n)k(1 + x+ n)k

(1+x+n
2 )k

(1+x−n
2 )k

=
2n+1∑

k=0

(−1)k
(

2n+ 1

k

)
(x+ n)(λ+ k)

λ(x− n)n

(x− n+ k)n(
1+x−n

2 + k)n

(k + x+ n)(1+x−n
2 )n

=
(x+ n)(λ− x− n)(2n+ 1)!(−2n)n(

1−x−3n
2 )n

λ(x− n)n(x+ n)2n+2(
1+x−n

2 )n

=
λ− x− n

λ(1 + x+ 3n)

[
3
2 , 1 + n, −n

1− x, 1+x−n
2 , 2 + x+ n

]

n
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which coincides with the right member (11) at z = x−n
2 . In conclu-

sion, we have checked the equality (11) for the 2n+1 distinct values
z = x−m

2 with −n ≤ m ≤ n. This completes the proof of (11) and
so Stanton’s summation formula (10).

7. Convolution Identities of Abel

Instead of the fundamental theorem of algebra on polynomials, the
Lagrange interpolation can also be utilized to justify the final pas-
sage in the proving process of binomial identities for the examples
hitherto illustrated.

In this section, we prove, by means of Taylor polynomials, the fol-
lowing deep generalization for the binomial theorem discovered by
Abel (cf. Graham et al [16, §5.4], Riordan [20, §1.5] and [6, 10, 22]
for example):

x
n∑

k=0

(
n
k

)
(x+ ky)k−1(z − ky)n−k = (x+ z)n, (12a)

x
n∑

k=0

(
n
k

)
(x+ ky)k−1z−ny

z−ky (z − ky)n−k =
x+z−ny
x+ z

(x+ z)n.(12b)

Denote by P(z) the binomial sum in (12a). Its mth derivative at
z = −x gives

P(m)(−x) = m!x
(
n
m

) n−m∑

k=0

(−1)n−m−k
(
n−m
k

)
(x+ ky)n−m−1.

For 0 ≤ m < n, the last sum results in the (n−m)th differences of

a polynomial of degree n −m − 1. Therefore P(m)(−x) is equal to

zero for 0 ≤ m < n and P(n)(−x) = n!.

Observing further that P(z) is a polynomial of degree n with its
derivatives of orders {m}nm=0 at z = −x equal to those of another
polynomial (x + z)n. Hence both polynomials are identical, which
gives Abel’s first identity (12a).
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Analogously, let Q(z) be the binomial sum in (12b). Then it is not
hard to compute its mth derivative at z = −x by

Q(m)(−x) = m!x(x−my + ny)
(
n
m

)

×
n−m∑

k=0

(−1)n−m−k
(
n−m
k

)
(x+ ky)n−m−2

which vanishes for 0 ≤ m ≤ n − 2 because the last sum results in
the (n−m)th differences of a polynomial of degree n−m− 2.

Taking into account of Q(n)(−x) = n! and Q(n−1)(−x) = n!(−y),
we conclude that the polynomial Q(z) have the same derivatives of
orders {m}nm=0 at z = −x as those of another polynomial (x + z −
ny)(x+z)n−1. Hence both polynomials are identical, which confirms
Abel’s second identity (12b).

8. Minton’s Summation Theorem

Finally, we examine a seminal result of Minton [18] in classical hy-
pergeometric series. It reads as the following summation theorem

`+2F`+1

[
−n, λ, {ai +mi}`i=1

1 + λ, {ai}`i=1

∣∣∣ 1

]
=

n!

(1 + λ)n

∏̀

i=1

(ai − λ)mi

(ai)mi

(13)

provided that mi and n are nonnegative integers with n ≥∑`
i=1mi.

Different proofs and extensions of this formula can be found in Karls-
son [17] and Chu [5, 7]. However, we believe that the proof given
here is the simplest.

According to the relation

(ai +mi)k
(ai)k

=
(ai + k)mi

(ai)mi

we may express (13) equivalently as the following equality

n∑

k=0

(−1)k
(
n

k

)∏`
i=1(ai + k)mi

λ+ k
=

n!

(λ)n+1

∏̀

i=1

(ai − λ)mi
. (14)
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Writing the last binomial sum in terms of finite differences, we can
evaluate it immediately as

(−1)n∆n

∏`
i=1(ai + x)mi

λ+ x

∣∣∣
x=0

=
n!

(λ)n+1

∏̀

i=1

(ai − λ)mi

which confirms (14) and so Minton’s summation formula (13).
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IRELAND’S PARTICIPATION IN THE 57TH
INTERNATIONAL MATHEMATICAL OLYMPIAD

BERND KREUSSLER

From 6th until 16th July 2016, the 57th International Mathematical
Olympiad took place in Hong Kong. This was the second time
that an IMO was hosted in Hong Kong. A total of 602 students
(71 of whom were girls) participated from 109 countries. In four
categories (number of countries, number of contestants, number of
participating girls, percentage of girls) previous IMO records were
broken. The following countries sent a team for the first time to
the IMO: Iraq, Jamaica, Kenya, Laos, Madagascar, Myanmar and
Egypt.

The Irish delegation consisted of six students (see Table 1), the
Team Leader, Bernd Kreussler (MIC Limerick) and the Deputy
Leader, Anca Mustaţă (UCC).

Name School Year
Antonia Huang Mount Anville Secondary School, Dublin 14 4th

Robert Sparkes Wesley College, Ballinteer, Dublin 16 6th

Cillian Doherty Coláiste Eoin, Booterstown, Co. Dublin 5th

Ioana Grigoras Mount Mercy College, Model Farm Road, Cork 6th

Liam Toebes Carrigaline Community School, Co. Cork 6th

Anna Mustaţă Bishopstown Community School, Cork 4th

Table 1. The Irish contestants at the 57th IMO

1. Team selection and preparation

Each year in November, the Irish Mathematical Olympiad starts
with Round 1, a contest that is held in schools during a regular
class period. In 2015 almost 14, 000 students, mostly in their senior
cycle, from about 290 second level schools participated in Round 1.
Teachers were encouraged to hand out invitations to mathematics
enrichment classes to their best performing students.
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At five different locations all over Ireland (UCC, UCD, NUIG,
UL and MU), mathematical enrichment programmes are offered to
mathematically talented students, usually in their senior cycle of sec-
ondary school. These classes run each year from December/January
until April and are offered by volunteer academic mathematicians
from these universities or nearby third-level institutions.

Rarely, students who participate for the first time in the math-
ematics enrichment programme qualify for the Irish IMO team –
Cillian Doherty is one of these rare exceptions. Usually, those who
make it to the team come back after their first enrichment year to
get more advanced training.

In order to activate the full potential of these returning students –
like in previous years – an Irish Maths Olympiad Squad was formed.
It consisted of the 13 best performing students at IrMO 2015, who
were eligible to participate in IMO 2016. Between IrMO and the
restart of the enrichment classes, for this group of students the fol-
lowing extra training activities were offered: two training camps
(one in June and one at the end of August), participation in the
Iranian Geometry Olympiad (September), a remote training which
runs from September to December and participation in Round 1 of
the British Mathematical Olympiad (November).

The centrally organised remote training, which was offered for
the first time in 2013, is now an established pillar of the prepa-
ration of the Irish IMO team. At the beginning of each of the
four months from September to December, two sets of three prob-
lems were emailed to the participating students. They emailed back
their solutions before the end of the month to the sender of the prob-
lems, who gave feedback on their attempts as soon as possible. The
eight trainers involved in 2015 were: Mark Flanagan, Eugene Gath,
Bernd Kreussler, Gordon Lessells, John Murray, Anca Mustaţă, An-
drei Mustaţă and Rachel Quinlan.

An important component of the training for maths olympiads is
to expose the students to olympiad-type exams. It is now an estab-
lished tradition in all five enrichment centres to hold a local contest
in February or March. In addition, this year a number of students
from Ireland was invited to participate in the British Mathematical
Olympiad Round 1 (27 November 2015) and Round 2 (28 January
2016). I would like to thank UKMT, in particular Geoff Smith, for
giving our students this opportunity.
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For the first time in 2015, some members of the Irish Maths
Olympiad Squad participated in the Iranian Geometry Olympiad,
which took place on 3 September 2015. Participants of about 20
countries sat the olympiad exam in their home counties. Each par-
ticipating country received solutions with marking schemes from the
organisers and was responsible to grade the exam papers of their
own students. The results together with scans of the solutions of
the four best students could then be sent by email to the organisers.
The exam problems were fairly tough; there was no especially ’easy’
problem on the paper. The maximally possible score was 40 points,
the Bronze medal cut-off at IGO was 14 points and the best score
of an Irish participant was 8 points. More information can be found
on www.igo-official.ir.

The selection contest for the Irish IMO team is the Irish Math-
ematical Olympiad (IrMO), which was held for the 29th time on
Saturday, 23rd April 2016. The IrMO contest consists of two 3-hour
papers on one day with five problems on each paper. The partici-
pants of the IrMO, who normally also attend the enrichment classes,
sat the exam simultaneously in one of the five centres. This year,
a total of 88 students took part in the final Round of IrMO. The
top performer is awarded the Fergus Gaines cup; this year this was
Antonia Huang. The best six students (listed in order in Table 1)
were invited to represent Ireland at the IMO in Hong Kong.

In addition to the training camps mentioned above and an IMO-
team camp at UCC before departure, immediately before the IMO
a four-day joint training camp with the team from Trinidad and
Tobago was held in Hong Kong. The sessions were conducted by
the two Deputy Leaders Anca Mustaţă and Jagdesh Ramnanan.

2. The days in Hong Kong

The team (including Leader and Deputy Leader) arrived around
10pm on Monday, the 4th of July in Hong Kong. A bus ride of
more than 90 minutes took us to the Holiday Inn Express Hotel in
Kowloon East, where the team would carry out their intensive pre-
IMO training camp in collaboration with the team from Trinidad
and Tobago.

During the camp the students enjoyed the excellent free facilities
of some of the local public libraries. On three of the days they took
separate mock exams that were similar to IMO exams in duration
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and difficulty. On each day, different members of the team had par-
ticular success in solving the mock exam problems, which indicated
that each team member was capable of a good performance at the
IMO on their best day.

On Tuesday at noon I was transferred to the Harbour Grand Hotel
Kowloon where the Jury resided until the day of the second exam.

The Jury of the IMO, which is composed of the Team Leaders of
the participating countries and a Chairperson who is appointed by
the organisers, is the prime decision making body for all IMO mat-
ters. Its most important task is choosing the six contest problems
out of a shortlist of 32 problems provided by a problem selection
committee, also appointed by the host country. This year’s official
Chairperson of the Jury was Prof. Kar-Ping Shum. He was already
Chair of the Jury at the IMO in Hong Kong in 1994. He received the
Paul Erdös Award 2016 of the World Federation of National Mathe-
matics Competitions for devoting himself for more than 30 years to
the promotion of mathematics, mathematics education and mathe-
matics competitions in Hong Kong and all over Southeast Asia.

The Jury sessions this year were conducted by Andy Loo on behalf
of the Chairman. With his excellent communication skills, the Silver
Medallist at the IMO in Argentina 2012 made the Jury sessions a
pleasant experience. A novelty introduced by the organisers was
the use of electronic voting devices during the Jury meetings. This
sped up the usually very lengthy process of selecting the six contest
problems, but also made all votes secret. In situations where a clear
majority was expected to vote in favour of a certain motion, Andy
Loo used voice votes (“Those in favour of the motion say ‘Aye’, . . . ,
those against say ‘No’, . . . . I think the Ayes have it, the Ayes have
it.”). This procedure was even faster than the use of the electronic
voting devices. If the voice vote didn’t end with an obvious majority
for one option, an electronic vote would be conducted.

Before the process of problem selection was begun, the Jury de-
cided if they want to continue the practice of recent years to have
one problem from each of the four areas (algebra, combinatorics,
geometry and number theory) included in problems 1, 2, 4 and 5. A
majority of almost two thirds voted in favour of continuing this prac-
tice. Two problems, one from algebra and one from combinatorics,
had to be removed from the short list because similar problems with
similar solutions were used in recent competitions in Bulgaria and
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Russia. From the remaining 30 shortlist problems, the six contest
problems were selected in an efficient way during a number of Jury
meetings on Friday, 8 July. During the remaining Jury meetings,
translations and marking schemes were approved. The creativity of
the leaders when translating the exam problems into their native
languages becomes evident in Problem 6: about 36 different names
were used for the person who claps his or her hands.

During a couple of joint meetings of the Jury with the IMO Ad-
visory Board, important changes to the general regulations were
discussed and approved. The most important change concerns eligi-
bility rules for contestants. So far, it was required that Contestants
are not formally enrolled at a university. The newly adopted reg-
ulations require instead that Contestants must have been normally
enrolled in full-time primary or secondary education. Also, the ref-
erence date for the age limit is no longer the day of the second
Contest paper, but now is the first of July. The new regulations will
be phased in within the next two years.

On Saturday, the 9th of July, the Irish team moved from the
Holiday Inn Express to student accommodation on the campus of
HKUST and the IMO got under way. The opening ceremony took
place at Queen Elizabeth Stadium on Sunday afternoon. During
the traditional parade, the teams appeared in order of the first par-
ticipation of their countries at the IMO. In addition to the usual
speeches, there were performances of several pieces of music written
especially for this event, such as the IMO 2016 Theme Song “In
Love We Are One”.

The two exams took place on the 11th and 12th of July, starting at 9
o’clock each morning. During the first 30 minutes, the students were
allowed to ask questions if they had difficulties in understanding the
formulation of a contest problem. The Q&A session on the first
day of the contest, where 85 questions were asked by students from
44 countries, was completed at 10.51 am. On the second day, 95
questions from students of 50 countries were answered by 10.45 am.
Initial discussions took place about possibilities to streamline the
Q&A sessions at future IMOs, for example by dealing with routine
questions in a standardised way and by having designated people,
involving coordinators, for each of the three questions who follow
the process closely.
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The student’s scripts were available on the evening of the first
exam day. Skimming through their work it seemed that Ioana could
probably get full marks for Problem 1. Because all our team mem-
bers were aware of spiral similarity, they could secure at least one
mark for the only geometry problem on this year’s paper. The work
of our students for Problems 2 and 3 didn’t look that promising.
After joining the contestants at HKUST, Anca and I went into the
detailed study of our student’s scripts. Anca’s excellent knowledge
in geometry proved to be crucial for securing all the 23 marks our
students deserved for Problem 1.

During the coordination days, the students were entertained with
excursions to a variety of interesting places in Hong Kong. On
the first day they took advantage of Antonia’s familiarity with the
place to visit the second tallest building in Hong Kong, the Two
International Finance Centre, from where they could view the city
from the top. On the second day they went on a bus excursion
to The Peak, a unique high point on Hong Kong Island offering
spectacular views of the city. The shape of the Peak Tower blended
with the letter π forms a major component of the logo of this year’s
IMO. The students also visited a traditional market and a school.

The final Jury meeting, at which the medal cut-offs were decided,
took place on the evening of Thursday, 14th July. The closing cere-
mony followed by the IMO Dinner was held on Friday evening at the
Hong Kong Convention and Exhibition Centre. The journey back
home started for our team on Saturday very early in the morning.

3. The problems

The two exams took place on the 11th and 12th of July, starting
at 9 o’clock each morning. On each day, 41

2 hours were available to
solve three problems.

Problem 1. Triangle BCF has a right angle at B. Let A be the
point on line CF such that FA = FB and F lies between A and
C. Point D is chosen such that DA = DC and AC is the bisector
of ∠DAB. Point E is chosen such that EA = ED and AD is the
bisector of ∠EAC. Let M be the midpoint of CF . Let X be the
point such that AMXE is a parallelogram (where AM ‖ EX and
AE ‖ MX). Prove that lines BD, FX, and ME are concurrent.
(Belgium)
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Problem 2. Find all positive integers n for which each cell of an
n× n table can be filled with one of the letters I, M and O in such
a way that:

• in each row and each column, one third of the entries are I,
one third are M and one third are O; and
• in any diagonal, if the number of entries on the diagonal is

a multiple of three, then one third of the entries are I, one
third are M and one third are O.

Note: The rows and columns of an n × n table are each labelled
1 to n in a natural order. Thus each cell corresponds to a pair of
positive integers (i, j) with 1 6 i, j 6 n. For n > 1, the table has
4n− 2 diagonals of two types. A diagonal of the first type consists
of all cells (i, j) for which i+ j is a constant, and a diagonal of the
second type consists of all cells (i, j) for which i − j is a constant.
(Australia)

Problem 3. Let P = A1A2 . . . Ak be a convex polygon in the plane.
The vertices A1, A2, . . . , Ak have integral coordinates and lie on a
circle. Let S be the area of P . An odd positive integer n is given
such that the squares of the side lengths of P are integers divisible
by n. Prove that 2S is an integer divisible by n. (Russia)

Problem 4. A set of positive integers is called fragrant if it contains
at least two elements and each of its elements has a prime factor
in common with at least one of the other elements. Let P (n) =
n2 + n + 1. What is the least possible value of the positive integer
b such that there exists a non-negative integer a for which the set

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}
is fragrant? (Luxembourg)

Problem 5. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board, with 2016 linear factors on each side. What
is the least possible value of k for which it is possible to erase exactly
k of these 4032 linear factors so that at least one factor remains on
each side and the resulting equation has no real solutions? (Russia)
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Problem 6. There are n > 2 line segments in the plane such that
every two segments cross, and no three segments meet at a point.
Geoff has to choose an endpoint of each segment and place a frog
on it, facing the other endpoint. Then he will clap his hands n− 1
times. Every time he claps, each frog will immediately jump forward
to the next intersection point on its segment. Frogs never change
the direction of their jumps. Geoff wishes to place the frogs in such
a way that no two of them will ever occupy the same intersection
point at the same time.

(a) Prove that Geoff can always fulfil his wish if n is odd.
(b) Prove that Geoff can never fulfil his wish if n is even.

(Czech Republic)

4. The results

The Jury tries to choose the problems in such a way that Problems
1 and 4 are easier than Problems 2 and 5. Problems 3 and 6 are
usually designed to be the hardest problems. That this goal was
met this year is reflected in the scores achieved by the contestants
on the problems (see Table 2).

The medal cut-offs were as follows: 29 points needed for a Gold
medal (44 students), 22 for Silver (101 students) and 16 for Bronze
(135 students). A further 162 students received Honourable Men-
tions – a record number. Overall, 35.2 % of the possible points were
scored by the contestants, which is in line with the IMOs 2008–2012,

P1 P2 P3 P4 P5 P6
0 52 277 548 132 353 474
1 63 65 25 22 36 31
2 32 99 14 26 55 9
3 9 30 0 10 21 39
4 6 7 0 26 50 4
5 35 8 2 15 2 4
6 14 9 3 24 4 4
7 391 107 10 347 81 27

average 5.272 2.033 0.251 4.744 1.678 0.806
Table 2. The number of contestants achieving each
possible number of points on Problems 1–6
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Name P1 P2 P3 P4 P5 P6 total ranking
Robert Sparkes 5 0 0 7 3 0 15 281
Anna Mustata 4 0 0 7 3 0 14 312
Ioana Grigoras 7 0 0 2 0 0 9 409
Cillian Doherty 3 2 0 1 0 0 6 469
Liam Toebes 2 0 0 3 0 0 5 481
Antonia Huang 2 0 0 0 0 0 2 515

Table 3. The results of the Irish contestants

but lower than the average scores in 2013 and 2014, and 4.3 points
higher than the historically low average of last year.

Table 3 shows the results of the Irish contestants. Writing a com-
plete solution to a problem during the exam is a difficult task at a
competition of this level, and is rewarded by the award of an Hon-
ourable Mention. The three Honourable Mentions awarded to the
Irish contestants this year consolidate a recent trend: 2016 repre-
sents the fifth year in a row with at least two Honourable Mentions
for the Irish team.

The figures in Table 4 have the following meaning. The first fig-
ure after the problem number indicates the percentage of all points
scored out of the maximum possible. The second number is the same
for the Irish team and the last column indicates the Irish average
score as a percentage of the overall average. The last column of this
table shows that the Irish Team is approaching a competitive level
at Problems 1 (geometry) and 4 (number theory). Improvements in
this direction have been seen in recent years; now this seems to be
a sustained trend.

Problem topic all countries Ireland relative
1 geometry 75.3 54.8 72.7
2 combinatorics 29.0 4.8 16.4
3 number theory 3.6 0.0 0.0
4 number theory 67.8 47.6 70.3
5 algebra 24.0 14.3 59.6
6 combinatorics 11.5 0.0 0.0
all 35.2 20.2 57.5

Table 4. Relative results of the Irish team for each problem
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Although the IMO is a competition for individuals only, it is in-
teresting to compare the total scores of the participating countries.
This year’s top teams were from USA (214 points), Republic of Ko-
rea (207 points) and China (204 points). Ireland, with 51 points in
total achieved the 75th place. This is the fifth highest team score
and the fifth best relative ranking of an Irish team at the IMO.

This year, six student achieved the perfect score of 42 points. The
detailed results can be found on the official IMO website
http://www.imo-official.org.

5. Outlook

The next countries to host the IMO will be

2017 Brazil 12–24 July
2018 Romania
2019 United Kingdom
2020 Russia
2021 USA

6. Conclusions

This year’s results of the Irish IMO team are in line with perfor-
mance in recent years. When comparing Ireland with other coun-
tries, it is more meaningful to consider relative ranks than looking
at absolute ranks, because the number of participating countries
has increased over the years. This year, 31.48% of the participating
teams scored less than the Irish team. After 2005 (the year in which
Fiachra Knox achieved a Silver Medal) the Irish team achieved a
higher relative rank only twice: in 2007, when Stephen Dolan got
a Bronze Medal and in 2014, when all six students received Hon-
ourable Mentions.

Since Ireland’s first participation in 1988, the Irish teams won
eight medals and 37 Honourable Mentions, 18 of these since 2012.
This underscores the increased ability level of recent students which
is supported by increased training activities. This year, Robert
Sparkes only narrowly missed a Bronze Medal.

It should be mentioned that Ireland’s involvement in the European
Girls’ Mathematical Olympiad (EGMO) certainly had a positive im-
pact on the training and performance of the IMO team members.
This year, for the first time ever, there were three girls among the
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top six performers at the Irish Mathematical Olympiad. They came
with a lot of international experience: Anna has four EGMO par-
ticipations under her belt and returned home with a Silver Medal
from EGMO 2015 and 2016; Ioana, who participated three times at
the EGMO, achieved a Bronze Medal at EGMO 2016; and Antonia,
who currently holds the Fergus Gaines cup, has participated twice
at EGMO. Two of these three, Anna and Antonia, will be eligible
to participate at the IMO for two more years.

To sustain the positive development in the performance of the Irish
Team at the IMO we have seen in recent years, more needs to be
done to increase the ability and confidence of our students to solve
an easy IMO problem in each of the four subject areas (algebra,
combinatorics, geometry and number theory).

From successful past Irish IMO contestants we know that a crucial
prerequisite for achieving an award at an IMO is the ability to work
independently through new training materials and the desire to work
intensely on difficult problems in their own time. One of the aims of
the remote training, which runs from September until December, is
to support students in developing the ability to work on their own.
The score boards of the remote training in recent years indicate
that only those who qualified for the Irish IMO team had responded
regularly to the monthly problems. A challenge for the near future
will be to increase the number of those students who engage fully
with the remote training.

Experience from a large number of international and national
mathematical problem-solving competitions suggest that students
who get involved in such activities at an earlier age have a much
higher probability to succeed at a high level. The earlier students
start to engage independently in mathematical problem-solving ac-
tivities, the more profoundly their problem solving skills can be
developed.

With this in mind, it becomes clear how valuable any initiative is
that aims at getting students in their Junior Cycle or students in
Primary School involved in mathematical problem solving activities.
A notable example is the Maths Circles initiative which was set up
for Junior Cycle students in second level schools in the Cork area
in 2013. As a follow-up, the maths enrichment centre at UCC now
runs Junior Maths Enrichment Classes for students in second and
third year.
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Currently there is a bid for an SFI grant which aims at extend-
ing the Maths Circles initiative nationwide. One could hope that
this initiative helps to motivate teachers to support problem-solving
activities at a local level so that early-stage mathematical problem
solving activities would become more widespread. Such activities for
younger students would greatly enhance the general mathematical
education of school-level students. Only with a broad base of young
students with mathematical problem-solving skills, it will be possi-
ble in the long term to lead the best students to an internationally
competitive level.

Also worth mentioning in this context is the PRISM (Problem
Solving for Post-Primary Schools) competition, which is a multiple-
choice contest designed to involve the majority of pupils in math-
ematical problem solving; it has a paper for Junior Cycle students
and one for Senior Cycle students. This contest is organised since
2006 by mathematicians from NUI Galway.

While our students are well equipped to solve problems at the level
of the Irish Maths Olympiad, they have less experience in attempting
problems at IMO level. This can be disheartening for students who,
at the IMO contest, find themselves unable to comfortably deal with
the difficulty level as well as aspects of time management within the
exam. Students from other countries have more experience in sitting
exams of the difficulty and format of the IMO. We have started to
build such experience into our training programmes, mainly at some
of the training camps for the Irish Maths Olympiad Squad and at
the joint camp with the team from Trinidad and Tobago. Ways
should be explored in which IMO style exams could be made part
of the team selection process.

A number of IMO teams regularly organise joint training camps
that take place immediately before the start of the IMO. Joint ses-
sions with other teams strengthen international relationships among
mathematically gifted students and enrich the training of all partic-
ipating teams. The joint training in Hong Kong with the team from
Trinidad and Tobago was very successful and everybody agreed that
similar camps should be held in future years, provided that sufficient
funding is available. Prior to the IMO in Brazil 2017, such a camp
could help the Irish contestants to adjust to the different time zone
and the tropical climate.
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To be able to fund such camps, to continue with all the other
training activities mentioned in this report, to send a full team of
six students and to restart the practice to send an Official Observer
to any of the next IMOs, efforts have to be increased to secure
funding.
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Bends in the Plane with Variable Curvature

ROBERT N. SHEEHAN AND FRANK H. PETERS

Abstract. Explicit formulae for planar variable curvature bends
are constructed using Euler’s method of natural equations. The
bend paths are expressed in terms of special functions. It is shown
that the length of the different bend types varies linearly with in-
creasing radius and that the curvature of variable curvature bends
can be expressed as a multiple of the curvature of a circle.

1. Introduction

Two points in the plane can be connected via the construction
of a circle of radius R subtending an angle θ at the circle’s origin.
The curvature κ of this curve is a constant value over its length and
is given by the inverse of its radius κ = 1/R. However, there are
applications for which variable curvature paths between two points
in the plane are necessary. One such example can be found in the
field of photonic integrated circuit design where the use of variable
curvature optical waveguide bends has led to a significant reduction
in optical propagation losses [1]. Use of variable curvature paths
has also led to more compact designs for photonic devices [2, 3]
and they are also finding applications in the realm of autonomous
vehicles, e.g. in designing paths for obstacle avoidance [4].

This paper will present explicit formulae for the parameterisation
of three alternative bend paths in the plane: a linear curvature
bend, a trapezoidal curvature bend and a quadratic curvature bend.
The bend paths are constructed using Euler’s method of natural
equations [5]. The resulting formulae can be expressed in terms of
the Fresnel sine and cosine integrals in the case of the linear and
trapezoidal bends, and in terms of Gauss’ hypergeometric function
in the case of quadratic curvature bends [6].
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Figure 1. Photonic Integrated Circuit (PIC) contain-
ing curved optical waveguides [8].

The reason such formulae are necessary is that they can be used
to simplify numerical simulations in photonic integrated circuits
(PICs). To estimate the loss in optical waveguides one simulates
the propagation of a wave in that structure. If the waveguide has
no curvature along its pathlength propagation can be achieved using
standard beam propagation techniques [7]. However, if the waveg-
uide path is curved, which is often the case in compact PICs, see
Figure 1 for an example [8], then it may be necessary to develop a
numerical propagation scheme in an alternative coordinate system,
this can be quite difficult to implement. A more straightforward
approach is to include the curvature variation along the pathlength
by adapting the standard beam propagation algorithm using con-
formal mapping techniques [9]. The curvature variation along the
waveguide pathlength can be updated during simulations using the
analytical formulae in this paper, for full details see [1]. Another rea-
son explicit formulae for variable curvature bends are needed is that
they can be deployed in lithographic mask layout software [10, 11]
to define the geometry of photonic devices prior to fabrication.

Euler’s method of natural equations is described in section 2, fol-
lowed by the construction of constant, linear, trapezoidal and qua-
dratic curvature bend paths in sections 3, 4, 5 and 6 respectively. To
ensure that the variable curvature bends can be used in a practical
setting, i.e. the variable curvature path should be able to replace
a constant curvature path without changing the path endpoint lo-
cations, an algorithm for scaling variable curvature bends to the
correct endpoint locations is provided in section 7. A bend of radius
R = 500 and θ = π/3 is constructed according to the different cur-
vature schemes, the resulting bend profile is discussed in section 8.
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Figure 2. Illustration of the bending angle associated
with a curve in the plane

2. Euler’s Method of Natural Equations

The curvature κ versus path-length s profile of a curve in the
plane describes the curvature at each point along that curve. A
parametric representation of that curve can be constructed from its
curvature using Euler’s method of natural equations [5]. Euler’s
method requires the evaluation of three integrals; the first integral
yields the bending angle as a function of path-length, the second
pair of integrals yield a parametric representation of a curve that
has the prescribed curvature along its path-length.

If κ(s) is integrated along the length of the curve the result is the
bending angle for that curve. The bending angle is the angle that a
tangent drawn to any point on a curve makes with the tangent to
the curve at the point s0

1, see Figure 2. It is denoted by φ(s) and
defined by

φ(s) =

∫ s

s0

κ(u) du (1)

To determine the parametric representation of the bend consider a
short length ds along the bend. ds can be determined from horizon-
tal and vertical progressions along the bend via ds2 = dx2 + dy2,

1In this work s0 is assumed to be the origin.
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where dx and dy are given by

dx = cosφ ds (2)

dy = sinφ ds (3)

Summation over all of the dx and dy along the bend provides the
parametric representation of the bend. The horizontal coordinates
are given by

x(s) =

∫ s

s0

cosφ(u) du (4)

the vertical coordinates are given by

y(s) =

∫ s

s0

sinφ(u) du (5)

Equations (1), (4) and (5) are used to construct parametric repre-
sentations of curves having curvature κ(s) assuming the curve starts
at the origin.

3. Constant Curvature

Two points in the plane can be connected by a circle of radius R,
with angle θ at its centre. We call this curve the equivalent circle.
The equivalent circle has constant curvature (CC) κCC = 1/R, see
Figure 3 for illustration of the CC curvature profile

κcc(s) =
1

R
, 0 ≤ s ≤ Lcc (6)

The bending angle for this curve is found by integrating (6) accord-
ing to (1). The result, upon integration, shows that for a CC bend
the bending angle varies linearly along its length.

φcc(s) =
s

R
, 0 ≤ s ≤ Lcc (7)

The parameterisation of CC curve is obtained with the application
of (4) and (5) to equation (7) to yield (xcc(s), ycc(s)) valid on [0, Lcc].

xcc(s) = R sin
( s
R

)
(8)

ycc(s) = R
(

1− cos
( s
R

))
(9)
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Figure 3. Curvature profile associated with a constant
curvature bend

4. Linear Curvature

The next case to be considered is a curve with a linear curvature
(LC) profile. The curvature varies as

κlc(s) =





αl s, 0 ≤ s ≤ Llc
2

αl (Llc − s),
Llc
2
< s ≤ Llc

(10)

This “tent”-like profile ensures that the curve is symmetric about
its midpoint, see Figure 4.

The slope αl is chosen to ensure that the LC bend will turn through
the same angle as an equivalent CC bend, this is called the equal
angle condition. If a CC bend must turn through some angle θ, then
αl is determined by solving

∫ Llc/2

0

αl u du =
θ

2
⇒ 1

8
αl L

2
lc =

θ

2
(11)

Assuming Llc = Lcc = Rθ, then αl = 4/RLlc
2. With this def-

inition for αl the peak curvature of the linear curvature bend is
roughly twice that of an equivalent circle, κlc(Llc/2) ≈ 2/R, where
it is required that κlc(s) be a continuous function of path-length.

2It will be seen in Section 7 how the lengths for bends having different curvature
profiles are determined
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Figure 4. Curvature profile associated with a linear
curvature bend

The bending angle for the LC bend is determined by evaluating (1)
with κ(s) defined by equation (11).

φlc(s) =





∫ s

0

αl u du, 0 ≤ s ≤ Llc
2∫ s

Llc/2

αl (Llc − u) du,
Llc
2
< s ≤ Llc

(12)

To ensure continuity of φlc(s) at the midpoint of the bend the value
φlc(−)(Llc/2), i.e. φlc(Llc/2) evaluated on 0 ≤ s ≤ Llc/2, is added
to the second branch of the bend. The bending angle for a linear
curvature bend is then given by

φlc(s) =





2s2

RLlc
, 0 ≤ s ≤ Llc

2

2s2

RLlc
− 4s

R
+
Llc
R
,

Llc
2
< s ≤ Llc

(13)

φlc(s) is zero at the start of the waveguide, continuous at the mid-
point and equals θ at the end.
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The parameterisation of the LC bend can be computed from the
integrals

xlc(s) =





∫ s

0

cos

(
2u2

RLlc

)
du, 0 ≤ s ≤ Llc

2
∫ s

Llc/2

cos

(
2u2

RLlc
− 4u

R
+
Llc
R

)
du,

Llc
2
< s ≤ Llc

(14)

ylc(s) =





∫ s

0

sin

(
2u2

RLlc

)
du, 0 ≤ s ≤ Llc

2
∫ s

Llc/2

sin

(
2u2

RLlc
− 4u

R
+
Llc
R

)
du,

Llc
2
< s ≤ Llc

(15)

The integrals (14) and (15) can be computed in terms of the Fresnel
cosine and sine integrals, specifically using formulae (7.3.1), (7.3.2),
(7.4.38) and (7.4.39) of [6]. Upon evaluation of (14) it is seen that
the horizontal coordinates of a LC bend are determined by

xlc(s) = c1





C

(
s

c1

)
, 0 ≤ s ≤ Llc

2

P
(x)
lc (s),

Llc
2
< s ≤ Llc

(16)

where

P
(x)
lc (s) = cos

(
Llc
R

)(
C

(
s − Llc
c1

)
+ C(c2)

)

+ sin

(
Llc
R

)(
S

(
s − Llc
c1

)
+ S(c2)

)
+ C(c2)

(17)

Similarly, the parameterisation of the vertical coordinates is given
by

ylc(s) = c1





S

(
s

c1

)
, 0 ≤ s ≤ Llc

2

P
(y)
lc (s),

Llc
2
< s ≤ Llc

(18)
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where

P
(y)
lc (s) = sin

(
Llc
R

)(
C

(
s − Llc
c1

)
+ C(c2)

)

− cos

(
Llc
R

)(
S

(
s − Llc
c1

)
+ S(c2)

)
+ S(c2)

(19)

In (16) - (19) C(·), S(·) represent the Fresnel cosine and sine inte-
grals respectively and the following constants are used

c1 =
1

2

√
π RLlc, c2 =

√
Llc
π R

C(·), S(·) are numerically evaluated for real arguments using the C
routine frenel provided in [12]. The functions for xlc(s) and ylc(s) are
discontinuous at s = Llc

2 when the integrals are initially evaluated.

To ensure continuity of xlc(s) and ylc(s) at s = L
2 the value of the

limit of the function to the left of s = Llc

2 must be added to the

function on the right of s = Llc

2 for each of xlc(s) and ylc(s), this
ensures that the linear curvature bend is a continuous function of
path-length. Equations (16) and (18) have already been adjusted to
ensure continuity at s = Llc/2.

5. Trapezoidal Curvature

The trapezoidal curvature (TC) bend has a three-part curvature
profile defined by equation (20) see Figure 5.

κtc(s) =





αt s, 0 ≤ s ≤ σ

κt, σ < s ≤ ν

αt (Ltc − s), ν < s ≤ Ltc

(20)

where σ defines the length of the linear portion of the bend and ν
is defined by σ. The parameters αt, κt, σ and ν must be chosen so
that the curvature profile is continuous and that the area under the
curve equals the bend angle for an equivalent circle.

The locations of the points σ and ν define the length of the linear
curvature portion of the curve. To start with, choose 0 < σ < Ltc

2 .
If σ = 0 the CC profile is recovered, if σ = Ltc/2 the LC profile
is recovered. The curvature must satisfy κtc(0) = κtc(Ltc) = 0 and
κtc(σ) = κtc(ν) = κt. To ensure continuity at s = σ the limits
from the left and the right must be calculated. By defining σ = κt

αt

the curvature profile (20) is continuous at s = σ. This defines the
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Figure 5. Curvature profile associated with a trape-
zoidal curvature bend

parameter ν to be ν = Ltc−σ. With σ defined the curvature profile
is also continuous at s = ν. The curvature of the equivalent circle is
given by κcc = 1

R . As was seen in section 4 the maximum curvature

of a linear curvature waveguide is κlcmax = 2
R , here the maximum

value of the trapezoidal curvature bend must lie above that of the
equivalent circle and below that of the linear waveguide, therefore
κt = γ

R , by choosing γ ∈ (1, 2) the curvature profile will maintain
its trapezoidal shape3.

The slope of the linear curvature region αt needs to be deter-
mined. This is done by invoking the equal bend-angle condition.
By symmetry, only the first half of the bend need be considered.
The trapezoidal curvature bend will turn through the correct angle
if the condition ∫ Ltc/2

0

κtc(s) ds =
θ

2
(21)

is valid. Substitution of (20) in (21) results in

θ

2
=

∫ σ

0

αt s ds+

∫ Ltc/2

σ

κt ds

=
1

2
αtσ

2 +
1

2
κt Ltc − κt σ

Working through the algebra results in the following expression for
the slope of the linear curvature region

αt =
κ2t

κt Ltc − θ
(22)

3If γ = 1 then κtc(s) ≡ κcc(s), γ = 2 then κtc(s) ≡ κlc(s)
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At this point only the curvature scaling parameter γ remains un-
known4. To determine γ the fraction of the total bend length to be
given over to linear curvature must be decided. Assume that the
linear portion is some fraction f of the total length of the bend,
σ = fLtc, where 0 < f < 1

2 . Taking αt as it’s defined by (22), σ
can be written in terms of Ltc and γ.

σ =
κt
αt

= Ltc

(
1− 1

γ

)
(23)

Since this must equal σ = fLtc the curvature scaling parameter can
be defined in terms of the fraction of the bend whose curvature is
linear.

γ =
1

1− f (24)

Choosing f between 0 and 1/2 will ensure the profile maintains its
trapezoidal shape. For the moment a value of f = 1/4 is chosen,
this means that 50% of each TC bend has linear curvature, and 50%
has constant curvature and also that for TC bends γ = 4/3.

Now that the curvature profile parameters are defined, the bending
angle, and hence the parameterisation of the trapezoidal curvature
bend can be computed. Computation of the bending angle requires
the evaluation of three integrals, and confirmation of continuity at
the points σ and ν. The integrals that define the bending angle are

φtc(s) =





∫ s

0

αt u du, 0 ≤ s ≤ σ

∫ s

σ

κt du, σ < s ≤ ν

∫ s

ν

αt (Ltc − u) du, ν < s ≤ Ltc

(25)

The result upon integration is a discontinuous function of path-
length, but it can be made continuous at s = σ by adding φlc(−)(σ) =
κ2t
2αt

to the portion defined on σ ≤ s ≤ ν. Similarly, at s = ν add

φlc(−)(ν) = κt Ltc − 3κ2t
2αt

to the portion defined on ν ≤ s ≤ Ltc.

The resulting function satisfies φtc(0) = 0, φtc(Ltc) = θ and is

4Leaving aside the fact that Ltc 6= Lcc, which we will come to in Section 7
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continuous at s = σ and s = ν.

φtc(s) =





1

2
αt s

2, 0 ≤ s ≤ σ

κt

(
s− κt

αt

)
+

κ2t
2αt

, σ < s ≤ ν

Ftc(s), ν < s ≤ Ltc

(26)

where

Ftc(s) =
1

2αt
(κ2t − α2

t (Ltc − s)2) + κt Ltc −
3κ2t
2αt

(27)

The parameterisation of the trapezoidal curvature bend can be
computed by substituting (26) into equations (4) and (5). The in-
tegrals on [0, σ] can be evaluated in terms of the Fresnel cosine and
sine integrals, see (7.3.1), (7.3.2) in [6]. The integrals on (σ, ν] can
be evaluated exactly because the argument of the cosine and sine
function in each case is a linear function of u. The integrals (ν, Ltc]
are evaluated using (7.4.38), (7.4.39) in [6]. After ensuring that the
parameterisation is continuous at positions s = σ and s = ν the
horizontal coordinates of the TC bend are provided by

xtc(s) =





d1C

(
s

d1

)
, 0 ≤ s ≤ σ

P
(x)
tc (s), σ < s ≤ ν

Q
(x)
tc (s), ν < s ≤ Ltc

(28)

where

P
(x)
tc (s) =

2

κt
sin

(
1

2

(
κt s−

κ2t
αt

))
cos

(
1

2
κt s

)
+ d1C (d2) (29)

Q
(x)
tc (s) = d1

{
cos (d3)

[
C

(
s− Ltc
d1

)
+ C (d2)

]

+ sin (d3)

[
S

(
s− Ltc
d1

)
+ S (d2)

]}
(30)

+
1

κt
sin (d4)−

1

κt
sin

(
κ2t

2αt

)
+ d1C (d2)
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and the vertical coordinates are given by

ytc(s) =





d1 S

(
s

d1

)
, 0 ≤ s ≤ σ

P
(y)
tc (s), σ < s ≤ ν

Q
(y)
tc (s), ν < s ≤ Ltc

(31)

where

P
(y)
tc (s) =

2

κt
sin

(
1

2

(
κt s−

κ2t
αt

))
sin

(
1

2
κt s

)
+ d1S (d2) (32)

Q
(y)
tc (s) = d1

{
sin (d3)

[
C

(
s− Ltc
d1

)
+ C (d2)

]

− cos (d3)

[
S

(
s− Ltc
d1

)
+ S (d2)

]}
(33)

− 1

κt
cos (d4) +

1

κt
cos

(
κ2t

2αt

)
+ d1 S (d2)

In equations (28) - (33) the following constants are used

d1 =

√
π

αt
, d2 =

κt√
π αt

, d3 = κt Ltc−
κ2t
αt
, d4 = κt Ltc−

3κ2t
2αt

6. Quadratic Curvature

The quadratic curvature (QC) bend has the following curvature
profile, see Figure 6.

κqc(s) = αq (Lqc s − s2) (34)

κqc(s) satisfies the equal bending angle constraint, i.e. the total area
under κ(s) equals θ, when the parameter αq is defined by

αq =
6 θ

L3
qc

(35)

Lqc is the length of the bend with quadratic curvature profile. The
bending angle formula is found to be

φqc(s) =

∫ s

0

κqc(u) du = αq

(
Lqc s

2

2
− s3

3

)
(36)

Equation (36) satisfies the constraint that φqc(Lqc) = θ, αq is de-
fined in (35).
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Figure 6. Curvature profile associated with a qua-
dratic curvature bend

The parameterisations of the horizontal and vertical coordinates
of the quadratic curvature bend can be determined by substitution
of (36) into equations (4) and (5). The integrals that result from
the application of equations (4) and (5) with (36) cannot be com-
puted in terms of elementary functions. Hence, it is necessary to
make an approximation. By replacing the cosine and sine functions
by their Taylor series approximations it becomes possible to con-
struct power series approximations to the necessary integrals. The
resulting formulae are

xqc(s) =
∞∑

k=0

(−1)k

(2 k)!
α2k
q

∫ s

0

(
Lqc u

2

2
− u3

3

)2k

du (37)

yqc(s) =
∞∑

k=0

(−1)k

(2 k + 1)!
α2k+1
q

∫ s

0

(
Lqc u

2

2
− u3

3

)2k+1

du (38)

To evaluate the integrals in (37) and (38) proceed by defining the
integral

Im =

∫ s

0

u2m
(
Lqc
2
− u

3

)m
du (39)

To evaluate (39) make the substitution u = t/µ ⇒ du = (1/µ) dt,
this changes the limits of integration in (39) from [0, s] to [0, µ s],
where µ is defined by

µ =
2

3Lqc
(40)
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The integral Im can be written as

Im =
32m+1 L3m+1

qc

23m+1

∫ µ s

0

t2m (1 − t)m dt (41)

The integral in (41) is the incomplete beta function Bµs(2m+1, m+
1) defined by formula (6.6.1) in [6]. It is possible to express the
incomplete beta function in terms of Gauss’ hypergeometric function
using the transformation (6.6.8) in [6]

Bx(a, b) =
xa

a
2F1(a, 1− b; a+ 1;x) (42)

where 2F1(·, ·; ·; ·) is defined by formula (15.1.1) in [6]. Integral (39)
with m = 2k, after application of the transformation (42), is given
by

I2k =

(
Lqc
2

)2k (
s4k+1

4k + 1

)
2F1(4k + 1,−2k; 4k + 2;µ s) (43)

Similarly, integral (39) with m = 2k + 1, after application of the
transformation (42), is given by

I2k+1 =

(
Lqc
2

)2k+1(
s4k+3

4k + 3

)
2F1(4k+3,−2k−1; 4k+4;µ s) (44)

Using (43) and (44) the coordinates for the QC bend can be com-
puted. The result is a sum over a set of hypergeometric functions.
The necessary formulae are

xqc(s) =
N∑

k=0

(−1)k

(2 k)!
α2k
q I2k (45)

yqc(s) =
N∑

k=0

(−1)k

(2 k + 1)!
α2k+1
q I2k+1 (46)

The series (45) and (46) give accurate results when the sums are
truncated after N = 10 terms. Gauss’ hypergeometric function

2F1(·, ·; ·; ·) is numerically evaluated for complex arguments using
the C routine hypser provided in [12].

7. Bend Construction Algorithm

Given an input bend radius R, bend angle θ and a curvature pro-
file, equations (1) - (5) can be evaluated to return N positions,
(xi, yi), 1 ≤ i ≤ N , that represent the central path of a curve of
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assumed length L = Rθ. The first point on the curve is the origin,
(x1, y1) = (0, 0), the last point (xN , yN) is generally unknown. If a
variable curvature curve is to replace the CC bend then the first and
last points of each bend must be the same, otherwise different bends
will end at different positions. All bends can be constructed from
the same starting point, so the final position of the equivalent bend
is used as a control point, this will ensure that all bends start and
finish at the same position. The location of the control point, la-
belled (xc, yc), will cause the length of each bend to be determined,
since the coordinates along the bend will all be scaled to ensure that
(xN , yN) = (xc, yc) for each of the different curvature schemes.

The algorithm for computing the coordinates of a variable curva-
ture bend that must replace a CC bend described by an equivalent
circle is described by Algorithm 1. The algorithm proceeds by com-
puting the path followed by an equivalent circle, using the routine
define eqc coords(). This provides the location of the control point
(xc, yc). The routine define bend coords() computes the positions of
the centre of a bend with a specified curvature profile using (1) -
(5) initially assuming a length Lbend = Rθ. Once the coordinates
of the new bend are known the endpoint control test is applied by
the routine re scale coords(). The routine compares (xN , yN) from
the computed bend positions with the known endpoint from the
equivalent circle (xc, yc). Scaling parameters for the horizontal and
vertical coordinates are defined in re scale coords(). For the hor-
izontal coordinates the scaling parameter is xs = xc/xN , for the
vertical coordinates use ys = yc/yN . If xs = ys = 1, the algorithm
is complete because the initial and final positions of the variable
curvature bend and the equivalent circle match. If xs and ys are not
both equal to one, the horizontal coordinates are scaled by xs, and
the vertical coordinates are scaled by ys. The length of the bend is
then computed using

Lbend =

∫
ds =

∫ √
dx2 + dy2 (47)

Since xs 6= ys 6= 1 the loop starts again by computing the bend
coordinates assuming the newly computed bend length Lbend. The
scaling is also repeated, and another bend length is computed from
the new set of coordinates. This process is repeated until the bend
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Figure 7. Curvature profiles for the constructed CC,
LC, TC and QC curves. κcc = 0.002, κmaxlc =
0.004, κmaxtc = 0.0027, κmaxqc = 0.0029.

length has converged to within a specified tolerance, ε. Upon con-
vergence of the bend length the horizontal and vertical scaling pa-
rameters will be very close to unity and the result will be a set of
coordinates that describe a curve that has a specified curvature pro-
file. A C++ implementation of the code required to generate the
various curves is provided and can be found at [13].

Once the bend-length is known, curvature and bend-angle profiles
can be computed from the analytical formulae for a particular bend
type, or numerically from the bend coordinate data.

8. Results

A bend of radius R = 500 turning through an angle of θ = π/3
was computed. The resulting curvature profile is shown in Figure 7.
The profiles for the quadratic and trapezoidal bends are very similar.
The maximum curvature in the quadratic case, κmaxqc = 0.0029, is
less than the maximum in the linear curvature case, κmaxlc = 0.004,
but greater than that in the trapezoidal curvature case, κmaxtc =
0.0027. The bend angle profile for the constructed bend, shown in
Figure 8, shows similarities between the quadratic and trapezoidal
bends. The actual path of the constructed bend in the plane is
shown in Figure 9, where the similarities between the trapezoidal
and quadratic curvature bend paths can be observed.
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Algorithm 1 Algorithm for computing the coordinates of a variable
curvature bend that replaces an equivalent constant curvature bend

1: {Input bend radius, bend angle, bend type}
Require: R← Rbend, T ← θbend, BT ← type

2:

3: {Define the coordinates that make up the equivalent circle}
4: {This step corresponds to evaluating (8) and (9) for a circle of

radius R, and bend angle θ}
5: define eqc coords()
6:

7: {Proceed with variable curvature bend calculation}
8: Lbend ← RT , Lbendold ← 0.0
9: niter ← 1, maxiter ← 30

10: while niter < maxiter do
11: {Initialise the convergence condition}
12: Lbendold ← Lbend
13:

14: {Evaluate the appropriate integrals depending on the value
of BT}

15: define bend coords()
16:

17: {Rescale the coordinate positions if necessary}
18: re scale coords()
19:

20: {Compute the bend length from (47)}
21: Lbend ← 0.0
22: for i = 2 to N do
23: Lbend ← Lbend + ((X[i]−X[i− 1])2 + (Y [i]− Y [i− 1])2)1/2

24: end for
25:

26: {Apply convergence test}
27: if |Lbend − Lbendold| < ε then
28: print Algorithm has converged
29: else
30: niter ← niter + 1
31: end if
32:

33: end while
34:

35: {Output the positions of the centre of the bend}
36: return X[], Y []
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Figure 8. Bend angle profiles for the constructed CC,
LC, TC and QC curves. All bends start at θ = 0 and
end at θ = π/3.

If bends of different radii are plotted it is seen that the lengths of
the different bend types increase linearly. For θ = π/3 it is observed
that Llc = 1.02777Lcc, Ltc = 1.02106Lcc and Lqc = 1.02182Lcc,
where Llc = Rθ. This tells us that as the bend radius increases the
LC bend will be longer than the other bend types and that TC and
QC bends will have similar lengths. Bends at different radii have
a maximum curvature that is proportional to the inverse radius,
see Figure 10. In fact the data shows that for different bend radii
κmaxlc = 2κcc, κ

max
tc = 4

3 κcc and κmaxqc = 527
359 κcc, where κcc = 1/R.

The reader will observe that for the TC bend κmaxtc = γ κcc, where γ
is given by (24) on page 70, hence it should be possible to construct
a TC bend whose maximum curvature approaches that of a CC bend
if we let γ → 1, this is done by decreasing the fraction of the TC
bend whose curvature is linear, i.e. let f take a value closer to zero
to get a TC bend with lower curvature.

9. Conclusion

Explicit formulae for variable curvature curves in the plane were
constructed using Euler’s method of natural equations. Curves
whose curvature varies linearly were found to be represented by
the Fresnel sine and cosine integrals, curves whose curvature varies
quadratically were found to be expressible in terms of Gauss’ hy-
pergeometric function. The constructed curves are continuous, and
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Figure 9. Bend paths for the constructed CC, LC, TC
and QC curves. All bends start and finish at the same
position. The variable curvature bends have slightly
longer path-lengths Lcc = 523.6, Llc = 538.1, Ltc =
534.6, Lqc = 535.0.

Figure 10. Variation of κmax with R for θ = π/3.

when the coordinates of the variable curvature curves are scaled
appropriately their endpoints match those of a circle of radius R
with θ at the origin. The shape of the trapezoidal curvature bend
is very similar to that of a quadratic curvature bend. A linear rela-
tionship between bend path length has been observed for each bend
type. The maximum curvature of the different bend types can be
expressed as a multiple of the curvature of the CC bend.



80 SHEEHAN AND PETERS

References

[1] Robert Noel Sheehan: The Design of Curved Optical Waveguides: Analytical
and Numerical Analysis, https://cora.ucc.ie/handle/10468/1377, PhD
Thesis, University College Cork, 2013.

[2] D. Marcuse, “Length optimization of an S-Shaped Transition Between Offset
Optical Waveguides”, Appl. Opt., 17 (5), 1978.

[3] D. Portch, R. R. A. Syms and W. Huang, “Folded-Spiral EDWAs With Con-
tinuously Varying Curvature”, IEEE Photon. Technol. Lett., 16(7), 2004.

[4] T. Fraichard and A. Scheuer, “From Reeds and Shepp’s to Continuous Cur-
vature Paths”, IEEE Trans. Robot. Auto., 20 (6), 2004.

[5] Dirk J. Struik: Lectures on Classical Differential Geometry, Dover Press, 1988.
[6] Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,

Dover Press, 10th Ed., 1972.
[7] Y. Tsuji and M. Koshiba, “Finite element beam propagation method with per-

fectly matched layer boundary conditions for three-dimensional optical waveg-
uides”, Int. J. Numer. Modelling: Electronic Networks, Devices and Fields,
13, 2000.

[8] H. Yang, P. Morrissey, W. Cotter, C. L. M. Daunt, J. O’Callaghan, B. Roy-
croft, N. Ye, N. Kelly, B. Corbett and F. H. Peters, “Monolithic Integration of
Single Facet Slotted Laser, SOA, and MMI Coupler”, IEEE Photon. Technol.
Lett., 25 (3), 2013.

[9] M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by
Conformal Transformation”, IEEE J. Quant. Elecron., 11 (2), 1975.

[10] http://www.phoenixbv.com/product.php

[11] http://www.layouteditor.net/

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery: Numerical
Recipes in C, Cambridge University Press, 2nd Ed., 1992.

[13] https://github.com/rnsheehan/var_curve_path

Robert Sheehan is a post-doctoral researcher with the Integrated Photon-

ics Group at Tyndall National Institute. Research interests include numerical

simulation of partial differential equations via the finite element method, with

applications including the design of high-speed photonic devices.

Frank H. Peters is a Professor of Physics at University College Cork. He is

head of Integrated Photonics Group and SFI Principal Investigator at Tyndall

National Institute. His research interests include the design and implementation

of photonic integrated circuits.

(Robert N. Sheehan) Integrated Photonics Group, Tyndall National
Institute, Lee Maltings, Prospect Row, T12R5CP, Cork

E-mail address : robertnsheehan@gmail.com

(Frank H. Peters) Department of Physics, University College Cork,
College Road, T12YN60, Cork

E-mail address : F.Peters@ucc.ie



Irish Math. Soc. Bulletin
Number 78, Winter 2016, 81–88
ISSN 0791-5578

TORSION AND GROUND STATE MAXIMA:
CLOSE BUT NOT THE SAME

BRIAN A. BENSON, RICHARD S. LAUGESEN, MICHAEL MINION,
AND BART LOMIEJ A. SIUDEJA

Abstract. Could the location of the maximum point for a positive
solution of a semilinear Poisson equation on a convex domain be
independent of the form of the nonlinearity? Cima and Derrick
found certain evidence for this surprising conjecture.

We construct counterexamples on the half-disk, by working with
the torsion function and first Dirichlet eigenfunction. On an isosce-
les right triangle the conjecture fails again. Yet the conjecture has
merit, since the maxima of the torsion function and eigenfunction
are unexpectedly close together. It is an open problem to quantify
this closeness in terms of the domain and the nonlinearity.

1. Introduction

Suppose the Poisson equation
{
−∆u = f(u) in Ω,

u = 0 on ∂Ω,

has a positive solution on the bounded convex plane domain Ω. Here
the nonlinearity f is assumed to be Lipschitz and restoring, which
means f(z) > 0 when z > 0. Cima and Derrick [2, 3] have conjec-
tured that the location of the maximum point of u is independent
of the form of the nonlinearlity f .

This conjecture sounds impossible, since the graph of the solution
must vary with the nonlinearity. Numerical computations by Cima
and co-authors give surprising support for the conjecture, though,
and Figure 1 provides further food for thought by considering a tri-
angular domain and plotting the level curves and maximum point
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35P99.

Key words and phrases. Semilinear, Poisson, maximum point, torsion, land-
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Figure 1. Level curves and the maximum point on a
triangular domain, for solutions of two different Poisson
type equations: the torsion function (left) and the first
eigenfunction (right).

for the choices f(z) = 1 and f(z) = λz. The corresponding lin-
ear Poisson equations describe the torsion function and the ground
state of the Laplacian (see below). Our solutions were computed
numerically by the finite element method on a mesh with approx-
imately 106 triangles. The maximum points for the two solutions
in Figure 1 appear to coincide, even though the level curves differ
markedly near the boundary.

We disprove the conjecture on a half-disk in section 2, and again on
the right isosceles triangle in section 3. Interestingly, the conjecture
is remarkably close to being true in these counterexamples, with
the maximum points occurring in almost but not quite the same
location. We cannot explain this unexpected closeness.

A fascinating open problem is to bound the difference in location
of the maximum points of two semilinear Poisson equations in terms
of the difference between their nonlinearity functions and geometric
information on the shape of the domain. Also, note that for both
the half-disk and right isosceles triangle, our results show that the
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maximum point of the torsion function lies to the left of the max-
imum for the ground state (when oriented as in Figure 1), which
perhaps hints at a general principle for a class of convex domains.

Notation. The torsion or landscape function is the unique solution
of the Poisson equation{

−∆u = 1 in Ω,

u = 0 on ∂Ω.

Here we have chosen f(z) = 1. Clearly u is positive inside the
domain, by the maximum principle.

The Dirichlet ground state or first Dirichlet eigenfunction of the
Laplacian is the unique positive solution of{

−∆v = λv in Ω,

v = 0 on ∂Ω,

where λ > 0 is the first eigenvalue of the Laplacian on the domain
under Dirichlet boundary conditions. Here we have chosen f(z) =
λz.

2. The half-disk

The maximum points for the torsion function and ground state
can lie so close together that one cannot distinguish them by the
naked eye, as the following Proposition reveals. Yet the two points
are not the same.

Proposition 2.1. Take Ω = {(x, y) : x > 0, x2 + y2 < 1} to be
the right half-disk. On this domain the torsion function u attains
its maximum at approximately (0.48022, 0) while the ground state
v attains its maximum at approximately (0.48051, 0). Here the x-
coordinates have been rounded to 5 decimal places.

Proof. (i) The ground state is given in polar coordinates by

v(r, θ) = J1(j1,1r) cos θ

where J1 is the first Bessel function and j1,1 ≈ 3.831706 is its first
positive zero. Clearly the maximum is attained on the x-axis, where
θ = 0, and the function is plotted along this line in Figure 2. By
setting J ′1(j1,1r) = 0 and solving, we find r = j′1,1/j1,1 ≈ 0.48051,
rounded to five decimal places, where j′1,1 ≈ 1.841184 is the first
zero of J ′1.
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Figure 2. The radial part of the ground state on the
right half-disk: v(r, 0) = J1(j1,1r).

(ii) The torsion function is more complicated [5, Section 4.6.2],
and is given by

u(x, y) = 1
4π

[
− 2πx2 − 2x

(
(x2 + y2)−1 − 1

)

+
(

2 + (x2 − y2)
(
(x2 + y2)−2 + 1

))
arctan 2x

1−(x2+y2)

+ xy
(

(x2 + y2)−2 − 1
)

log x2+(1+y)2

x2+(1−y)2
]
.

One verifies the Dirichlet boundary condition on the right half-disk
by examining four cases: (i) u = 0 if x = 0 and 0 < |y| < 1, (ii)
u → 0 as (x, y) → (0, 0), (iii) u → 0 as (x, y) → (0,±1), and (iv)
u→ 0 as (x, y)→ (x1, y1) with x1 > 0 and x21 + y21 = 1.

To check u satisfies the Poisson equation −∆u = 1, a lengthy
direct calculation suffices.

We claim u attains its maximum at a point on the horizontal axis.
For this, first notice u is even about the x-axis by definition, meaning
u(x, y) = u(x,−y). Hence the harmonic function uy equals zero on
the x-axis for 0 < x < 1. Further, uy ≤ 0 at points on the unit circle
lying in the open first quadrant, since u > 0 in the right half-disk
and u = 0 on the boundary. Also, one can compute that uy(x, y)
approaches 0 as (x, y) → (0, 0) or (x, y) → (1, 0) or (x, y) → (0, 1)
from within the first quadrant of the unit disk. Lastly uy vanishes
on the y-axis for 0 < y < 1 (since u = 0 there). Hence we conclude
from the maximum principle that uy ≤ 0 in the first quadrant of the
unit disk, and so u attains its maximum somewhere on the x-axis.

On the x-axis we have

u(x, 0) = 1
4π

[
− 2πx2 − 2x−1 + 2x+ (2 + x−2 + x2) arctan 2x

1−x2
]
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for 0 < x < 1. Clearly u(0, 0) = u(1, 0) = 0, and

ux(x, 0) = 1
πx3

[
x+ x3 − πx4 + 1

2(x4 − 1) arctan 2x
1−x2

]
.

One can show by taking another derivative and applying elemen-
tary estimates that u(x, 0) is concave. Calculations show ux(x, 0) is
positive at x = 0.480219 and negative at x = 0.480220, and so the
maximum of u lies between these two points, that is, at x ≈ 0.48022
to 5 decimal places. �

3. The right isosceles triangle

Proposition 3.1. Take Ω = {(x, y) : 0 < x < 1, |y| < 1−x}, which
is an isosceles right triangle. On this domain the torsion function u
attains its maximum at approximately (0.39168, 0) while the ground
state v attains its maximum at approximately (0.39183, 0). Here the
x-coordinates have been rounded to 5 decimal places.

Proof. (i) Rotate the triangle by 45 degrees clockwise about the
origin and scale up by a factor of π/

√
2, then translate by π/2 to

the right and upwards, so that the triangle becomes

T = {(x, y) : 0 < y < x < π}.
This new triangle has ground state

v(x, y) = sin x sin 2y − sin 2x sin y = 2 sin x sin y(cos y − cosx) > 0

with eigenvalue 12 + 22 = 5. One checks easily that v = 0 on
the boundary of T , where y = 0 or x = π or y = x. To find
the maximum point, set vx = 0 and vy = 0 and deduce cos 2x =
cosx cos y = cos 2y. Therefore the maximum lies on the line of
symmetry y = π − x of the triangle T . A little calculus shows that
v(x, π − x) attains its maximum when x = arcsin(1/

√
3) + π/2.

Hence the ground state of the original triangle attains its maximum
at
(
(2/π) arcsin(1/

√
3), 0

)
≈ (0.39183, 0) to 5 decimal places.

(ii) The torsion function on the triangle T is

u(x, y) =− 1

4
(x− y)2

+
∞∑

n=1

n2π2−2
(
1−(−1)n

)

2πn3 sinhnπ

[
sinhnx sinny − sinnx sinhny

+ sinn(π − x) sinhn(π − y)

− sinhn(π − x) sinn(π − y)
]
,
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as we now explain. Observe that −∆u = 1 because the infinite series
is a harmonic function, and u = 0 on the boundary of T by simple
calculations with Fourier series when 0 < x < π, y = 0, and when
x = π, 0 < y < π; also u = 0 on the hypotenuse where y = x.

The torsion function is known to attain its maximum somewhere
on the line of symmetry y = π − x, either by general symmetry
results [2, 3] or else by arguing as in the proof of Proposition 2.1
part (ii). On that line of symmetry we evaluate

u(x,π − x) = −(x− π/2)2

−
∞∑

n=1

n2π2−2
(
1−(−1)n

)

πn3 sinhnπ

[
(−1)n sinhnx+ sinhn(π−x)

]
sinnx.

The series converges exponentially on each closed subinterval of
(0, π), and so we may differentiate term-by-term to find

d
dxu(x, π−x) = −2(x−π/2) (1)

−
∞∑

n=1

n2π2−2
(
1−(−1)n

)

πn2 sinhnπ

{[
(−1)ncoshnx−coshn(π−x)

]
sinnx

+
[
(−1)nsinhnx+sinhn(π−x)

]
cosnx

}
,

where once again the series converges exponentially on closed subin-
tervals of (0, π).

The absolute value of the n-th term in series (1) is bounded by

π(enx + en(π−x))

sinh(nπ)
< 3π(e−n(π−x) + e−nx),

as we see by bounding the sin and cos terms with 1, adding the
sinh and cosh terms having the same arguments, and using that
sinh(nπ) > enπ/3 for n ≥ 1. Hence the infinite series (1) is bounded
term-by-term by 3π times the sum of two geometric series having
ratios e−(π−x) and e−x.

The derivative of u along the line of symmetry is positive at
x = 2.1860525 and negative at x = 2.1860530, as one finds by eval-
uating the first 20 terms of the series in (1) and then estimating the
remainder with the geometric series as above. Hence u has a local
maximum at x ≈ 2.186053 to 6 decimal places. This local maxi-
mum is a global maximum because

√
u is concave (see [1, Example

1.1] or [4]). Translating to the left and downwards by π/2 and then
scaling down by a factor of

√
2/π and rotating counterclockwise by
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45 degrees, we find the torsion function on the original triangle has
a maximum at

x ≈ 2

π
(2.186053− π/2) = 0.39168

to 5 decimal places. �

4. Concluding remarks

The counterexamples in this paper concern Poisson’s equation for
f(z) = 1 and f(z) = λz. One can find a whole family of counterex-
amples using f(z) = a + bz, where a > 0 and 0 < b ≤ λ. Note the
maximum point depends on b but not a, as one checks by rescaling
the solution u to u/a. To study this maximum point as b varies, one
starts with the eigenfunctions of −∆ − b on the half-disk or right
isosceles triangle and notes that the eigenfunctions are the same as
for −∆, just with eigenvalues shifted by b. The corresponding tor-
sion function can be computed in terms of an eigenfunction expan-
sion, and then the position of the maximum point can be carefully
numerically located. We leave such investigations to the interested
reader.

Finally, while our counterexamples involve linear Poisson equa-
tions, our choices of f could presumably be perturbed to obtain
genuinely nonlinear counterexamples.
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REVIEWED BY BERND KREUSSLER

Alexandre Grothendieck, born on 28 March 1928 in Berlin, died
on 13 November 2014 in the French Pyrenees. He was one of the
greatest scientists of the twentieth century who has influenced sig-
nificantly the development of a number of fields in pure mathe-
matics: functional analysis, algebraic geometry, arithmetic geome-
try, category theory, logic, homological algebra and related areas.
Grothendieck’s contribution to the problem of space is considered
to be of the same depth as Einstein’s; his originality was to deepen
the idea of a geometric point, see [4].

He was the greatest master of extracting the most essential fea-
tures of a particular topic in a very general and abstract way so that
solving an old problem often became a simple exercise. His method
to solve problems was described by himself with the following alle-
gory: instead of cracking a big nut by brute force one could immerse
the nut in a softening fluid until the nut opens just by itself.

His personal life was as exceptional as his mathematical achieve-
ments. In 1966 he was awarded the Fields Medal for his fundamental
contributions to algebraic geometry. In 1970, at the age of 42, he
suddenly resigned from his prestigious position at the IHES, with-
drawing himself from the mathematical community and later, in the
1990s, from social life completely.

The cubist portrait by Pablo Picasso, that was chosen as the front
cover image of this book, reflects the style of this mathematical
portrait of Grothendieck: his life and work is described on differ-
ent levels and from many different angles by people who knew him
personally, some of them very well, and who have included per-
sonal memories, anecdotes and explanations about Grothendieck’s
personality, his ideas and visions.

Received on 1-9-2016.

c©2016 Irish Mathematical Society

89



90 BERND KREUSSLER

The plan for this book took shape in August 2008 at a conference
in the French Alps where former friends, colleagues, students, and
collaborators of Alexandre Grothendieck met and discussed how one
could explain to future generations the extraordinary and special
nature of the contributions of this mathematical genius.

This book contains thirteen articles, each devoted to a particular
aspect of Grothendieck’s work. The authors did not concentrate on
specific mathematical content of his monumental work but instead
on the style how he did mathematics and on the impact he had on
mathematics. To facilitate a better appreciation of Grothendieck’s
achievements, the authors also outlined the situation before the
grand master started to work on a particular subject. This way
the fundamental simplicity and the extraordinary power of his ideas
become apparent.

A more detailed outline of the contents of the thirteen articles
follows. At the end, the interested reader of this review is pointed
to further literature about Alexandre Grothendieck.

Joe Diestel: Grothendieck and Banach space theory
The subject of this article is Grothendieck’s work between 1953

and 1956 in Functional Analysis, especially on topological tensor
products, nuclear spaces and the local theory of Banach spaces. It
becomes obvious that he was a theory builder par excellence already
at this early stage in his mathematical career just after receiving his
Ph.D. in Nancy in 1953. The article concludes with a short account
of the status of the problems posed by Grothendieck in this area.

Max Karoubi: L’influence d’Alexandre Grothendieck en K-
théorie

This note deals with one of Grothendieck’s revolutionary ideas:
the introduction of the K-group of algebraic vector bundles, orig-
inally introduced for the proof of the Riemann-Roch Theorem. In
Grothendieck’s formulation, the Riemann-Roch formula for a mor-
phism expresses the deviation from commutativity of a certain nat-
ural diagram that involves the Chern character map which links
the K-group to ordinary (purely topological) cohomology. His ideas
initiated the development of higher K-theory and of topological K-
theory which has connections to Functional Analysis. From the
personal memories the author has included in this article one learns
how generous Grothendieck was with his ideas and advice.
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Michel Raynaud: Grothendieck et la théorie des schémas
The notion of an algebraic scheme is at the core of Grothendieck’s

revolutionary re-foundation of algebraic geometry. An essential and
influential novelty is the functorial point of view, which allows the
description of a scheme by its ‘functor of points’. As a consequence,
commutative rings instead of fields are now in a unifying manner
at the heart of algebraic geometry. It also suggests the shift of fo-
cus from objects to morphisms which played an essential role in
Grothendieck’s proof of the Riemann-Roch Theorem, his first out-
standing masterpiece in algebraic geometry. This note is a kind of
condensed survey of the essentials of EGA and (part of) SGA.

Steven L. Kleiman: The Picard scheme
Grothendieck’s theory of the relative Picard scheme was an early

impressive success of his new approach to algebraic geometry: the
functorial point of view, focus on morphisms instead on objects
(known as the relative point of view), the importance of considering
nilpotent elements etc. In this article, the author describes the sub-
stance and spirit of Grothendieck’s theory in an informal way. After
an illuminating exposition of the historical context, he highlights
the simplicity, natural generality and originality of Grothendieck’s
approach.

David Mumford: My introduction to schemes and functors
In this short note, Fields medallist David Mumford gives a very

personal description of how Grothendieck influenced his own view
of algebraic geometry in 1958 at Harvard University. Essential for
Mumford, who was interested at that time in moduli spaces of curves
and vector bundles, was that the moduli space idea of Riemann and
Picard could be made precise using functors. For him the most
convincing aspect of Grothendieck’s theory of schemes was that it
allows to consider infinitesimal deformations, used in an intuitive
way by Enriques, as actual families of schemes over one-point bases
that are spectra of Artin rings. At the end, the author gives a very
brief summary how Grothendieck transformed algebraic geometry.

Carlos T. Simpson: Descent
The notion of descent, putting together a global object out of local

pieces and gluing data, is ubiquitous in Grothendieck’s work. It is
crucially present in the theory of sheaves, leads to Grothendieck
topologies and is essential in the theory of stacks. In topos theory
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the idea of descent is pushed to a new level: the abstract collection
of gluing data is the only true reality, no need for the existence of
glued objects. After a very brief introduction to gluing, the author
puts his main emphasis on modern developments and possible future
directions of descent theory. This includes higher categories, higher
stacks, higher non-abelian cohomology and derived stacks. These
developments were strongly influenced by Grothendieck’s 595-page
manuscript À la Poursuite des Champs (Pursuing Stacks) which he
wrote in 1983.

Jacob P. Murre: On Grothendieck’s work on the funda-
mental group

This lecture gives the reader an impression of the power and
beauty of Grothendieck’s method. He primarily looked for natural-
ness, not generality, he aimed at simplifying situations by extracting
the key features so that eventually the solution to the problem falls
out easily. His theory of the algebraic fundamental group unified
classical Galois Theory of fields and the topological theory of the
fundamental group. It led to a deep understanding of the algebraic
fundamental group of an algebraic curve in positive characteristic,
which was out of reach before the introduction of schemes. The lec-
ture concludes with some remarks on further developments, includ-
ing Grothendieck’s famous manuscript Esquisse d’un Programme
from 1984.

Robin Hartshorne: An apprenticeship
In this essay, the author describes vividly his experience with

Grothendieck when he wrote Residues and Duality, published in
1966. The story starts in 1963, when Grothendieck was busy with
fundamental works (EGA, SGA) but nevertheless prepared a 250-
page manuscript for Hartshorne to conduct a seminar about his the-
ory of duality. After many rounds of corrections by Grothendieck
to the drafts written by Hartshorne, the now published version was
accepted by Grothendieck as the best possible at the time, but both
agreed that the theory had not yet reached a satisfactory state.

Luc Illusie: Grothendieck et la cohomologie étale
This article deals with Grothendieck’s concept of étale cohomology

and the impact it had on arithmetic geometry. What inspired these
ideas, how the Weil conjectures motivated this development and
which obstacles had to be overcome is thoroughly explained.
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Leila Schneps: The Grothendieck-Serre correspondence
The exchange of letters between Serre and Grothendieck started at

the beginning of 1955 and continued until 1969. A bilingual version
of the Grothendieck-Serre correspondence was published in [5]. The
aim of the present article is to give a short explanation of the main
results and notions discussed in these letters, whereby giving a first
impression of the nature of [5] as a ‘living maths book’. The expla-
nations are enriched with information about the personalities and
the lives of these two outstanding mathematicians. In the closing
chapter of this article, letters are discussed that were exchanged af-
ter Grothendieck started in 1986 the distribution of his monumental
autobiographical work Récoltes et Semailles (Reaping and Sowing).

Frans Oort: Did earlier thoughts inspire Grothendieck?
The author raises the question if Grothendieck’s brilliant ideas had

simply occurred to him out of the blue or whether they have their
roots in earlier works. He analyses this question in the context of
three topics: the fundamental group, Grothendieck topologies and
anabelian geometry. In each case he describes the situation before
Grothendieck entered the scene and then carves out the extraordi-
nary contribution of Grothendieck. The author of this article advo-
cates for writing a scientific biography of Alexandre Grothendieck
in a similar style. For each aspect of his work, he suggests to include
a discussion of possible roots, then describe the leap Grothendieck
made from those roots to general ideas and finally investigate the
impact his ideas had on the development of this branch of mathe-
matics.

Pierre Cartier: A country of which nothing is known but
the name: Grothendieck and ‘motives’

In this note, the interactions between Grothendieck’s outstanding
scientific work and his extraordinary personality are discussed in a
way in which it is accessible to a broad audience. The author, who
was a very close friend of Grothendieck, tries to stay as rational as
possible in his analysis of the work and biography of Grothendieck
before he lets Récoltes et Semailles illuminate the situation ‘from
within’. He included a discussion of Grothendieck’s sufferings, spir-
ituality and obsession in his later years. When Grothendieck’s story
is compared with Botzmann’s and Cantor’s, a striking difference
is that his scientific work was immediately and enthusiastically ac-
cepted by the scientific community. His work is unique in that his
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fantasies and obsessions are not erased from them; he also delivered
to us what he believed to be the meaning of his mathematical work.
Included in this note is a very readable and brief overview of the
scientific work of Grothendieck which covers, in a less detailed way,
most of the content of the other articles in this book.

Yuri I. Manin: Forgotten motives: the varieties of scientific
experience

The author of this short essay describes his experience when he
visited Grothendieck in 1967 for five or six weeks. The central topic
of this private tutoring was Grothendieck’s newly emerging project
of motives including the so-called standard conjectures. The content
of this essay spans from the early history of motives to recent de-
velopments of this active field of research – Grothendieck’s standard
conjectures are still unproven. In addition to personal anecdotes,
the author gives an intuitive description of Grothendieck’s idea of
motives and highlights the close relationship the theory of motives
has to homological algebra and to mathematical physics.

The book ends with six pages of photographs of the contributing
authors, some of them taken before 1970.

The algebraic geometer will find in each article interesting aspects
of Grothendieck’s work and life. Readers who are less familiar with
algebraic geometry may enjoy most the articles of R. Hartshorne,
L. Schneps, F. Oort, P. Cartier and Y. Manin as well as the less
technical and more anecdotal parts of the other articles. Even with-
out a detailed understanding of the mathematical ideas, through
these articles it is possible to get a feeling of the mathematical at-
mosphere around Grothendieck and to appreciate the personality of
this outstanding mathematician.

The book under review is not the only text that deals with the
work and life of A. Grothendieck, but currently the best available
mathematical portrait. Interesting other texts include the English
translation [13] of Part 1 of Winfried Scharlau’s four volume bio-
graphical project, the articles [6], [11], [10], [3] and from the Notices
of the AMS: [8], [9], [12], [7], [1], [2]. The curious reader is referred
to the Grothendieck Circle website www.grothendieckcircle.org

where one finds some of Grothendieck’s later texts, links to many
other fine articles about the work and life of Grothendieck as well
as an interesting collection of photographs.
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REVIEWED BY COLM MULCAHY

Persi Diaconis once aptly remarked, “Pick up anything Martin
Gardner wrote, you’ll smile and learn something.” Based on the
evidence found within the covers of this delightful compendium, it’s
possible that the same can be said of Peter Lynch. The book is based
on his long-running blog and Irish Times column of the same name,
and one can’t help wondering why excerpts from some of 100 gems
found here haven’t also made it onto radio. RTE’s long-running
Sunday Miscellany, if it were to broaden its horizons, would be a
good fit. That show’s avowed goal it to present radio essays that
“capture our times, passions and curiosities.” Surely, in the year mo
twogro1, that should include more maths exposition of this calibre.

The author of this tome is a UCD mathematical science graduate
with a PhD in dynamic meteorology from TCD under Ray Bates.
Peter joined the meteorological service in 1971, eventually rising to
the rank of Deputy Director, having also served as Head of the Re-
search and Training Division there. In 2004, he switched gears, and
threw in his lot with UCD’s School of Mathematical Sciences, as
Met Eireann Professor of Meteorology and Director of the Meteo-
rology & Climate Centre. A decade before the book under review
appeared, he published The Emergence of Numerical Weather Pre-
diction: Richardson’s Dream (Cambridge University Press).
That’s Maths, then, is a book by a seasoned applied mathemati-

cian. A casual reader might be surprised to learn that, however,
based on reading the diverse essays presented in these pages. Pe-
ter’s writing displays a fine appreciation for both the elegance and
beauty that can characterise the best mathematics, and the power
of abstraction in the subject. In the Preface, he writes, “The articles
are accessible to anyone who has studied mathematics at secondary
school. Mathematics can be enormously interesting and inspiring,

Received on 15-12-2016.
1i.e., 1200 in base 12, or 2016 in base 10; see Peter’s “Dozenal Digits” chapter.

c©2016 Irish Mathematical Society

96



Book Review 97

but its beauty and utility are often hidden.” The level of mathemat-
ics expected of his readers varies from the purposely equation-free
musings of the Irish Times articles, to the more sophisticated pieces
published only in his blog. A hint of whose writings Peter’s can be
compared to can be found in a recent interview at mathsireland.ie
[1], where he cites E. T. Bell, Martin Gardner, Dave Richeson, Glen
van Brummelen and Bill Dunham as writers he has admired or learnt
from. Unlike, say Gardner—who was generally less interested in
mere application—Peter seems to be equally intrigued by utility,
surprise, elegance and beauty.

The self-contained chapters are generally two to three pages long,
occasionally four or five. This makes them ideal for quick dips: flip
to a random page, and within a few minutes one has learnt some-
thing interesting. He crams a lot of information into each page,
very effectively and with great style, and often leaves one wanting
more. The 2-pager pieces always induced disappointment for this
reader when the second page was turned and a new piece began un-
expectedly. One rarely sees the end coming, which, upon reflection,
is related to the fact that Peter sometimes dispenses with summary
concluding paragraphs.

Since he writes for the general public, he covers many classics from
down through the ages, ranging from Pythagorean triples and Pla-
tonic solids, to Bayes’ rule and Cantor’s breakthroughs on infinity,
right up to RSA cryptography and fractals. Even when gather-
ing and displaying these chestnuts—as so many have done before
him—Peter manages to do so in a fresh, engaging way. The same
applies to his vignettes on remarkable personalities from the history
of mathematics, such as Kovalevskaya and Ramanujan. Since his in-
terests and passions are broad, he throws in mathematical delights
such as Bézout’s Theorem, Bézier curves, and the Bailey-Borwein-
Plouffe formula, as well as applied material like population growth,
epidemic spread, CAT scans, musical instrument tuning and the
Black-Scholes equation.

As a meteorologist with intimate knowledge of the geometry and
physics associated with spheres, Peter has several related articles
and insights concerning weather, astronomy, engineering, transat-
lantic cable laying and GPS. He rescues spherical geometry from
the obscurity to which history has unfairly banished it, though
oddly, both on pages 14 & 66, the spherical triangles depicted are
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“traditional Napier-style but anatomically incorrect” ones. They
are shown with one bulging and two pinched corners, whereas ac-
tual spherical triangles have three bulging corners. (Their hyper-
bolic counterparts have three pinched ones. Perhaps it was Peter’s
spherical propensity that prevented him from pointing out that the
Pythagorean theorem cos c = cos a cos b — which he rightly touts
for spheres — has a predictable hyperbolic parallel.)

There are numerous local heros found within these pages too, from
Wicklow’s Robert Halpin, Sligo’s George Stokes, Clare’s Matthew
O’Brien, Dublin’s John Graves, TCD’s Galbraith & Haughton, and
Guinness’s William Gosset, to the atmospheric railway that once
shuttled back and forth between Dun Laoghaire and Dalkey. By
including them, and tying them to their geographical origins, Peter
is also continuing some of the good work done by the late Mary
Mulvihill in books such as her landmark Ingenious Ireland [2].

In “A Hole Through the Earth” (pages 104-106) we learn that un-
der ideal conditions, paying attention only to gravity while ignoring
air resistance and molten magma, an object dropped into a straight
tunnel, burrowed though the earth, would emerge at the far end of
the tunnel after a fixed period of time. That time, which amazingly
is independent of the tunnel length (and hence the angle at which
the tunnel was drilled), is about 42 minutes and 12 seconds. One is
reminded of a mindboggler made famous by Gardner, the solution
of which is that the volume remaining when a cylindrical hole six
units long is drilled straight through the centre of a solid sphere is
36π cubic units, regardless of the radius of the sphere.

Unlike Gardner, who loved brainteasers and wrote dozens of puzzle
books, Peter’s focus is on concise, original exposition. However, he
does give pride of place to this counter-intuitive watermelon puzzle:

A farmer brings a load of watermelons to the mar-
ket. Before he sets out, he measures the total weight
and the percentage water content. He finds that the
total weight is 100kg and the water content is 99%.
The weather is hot, so his load loses some moisture en
route. He checks the water content when he arrives at
the market: it has dropped to 98%.

QUESTION: What is the total weight of the load on
arrival at market?
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In “Kelvin’s Wake” (pages 75-77), we are told that if a duck swims
in the shallow pond at St Stephen’s Green, then the V in the water
which bounds the dispersive waves the bird leaves in its wake forms
an angle of about 40 degrees. The reason given is that half the
angle in question is arcsin(1/3), which is about 0.3398 radians, or
roughly 19.47 degrees. (The duck apex angle is hence a tad under
39 degrees.) Moreover, this angle is allegedly independent of the
speed at which the duck moves. We are not told if this result also
holds for ducks in Herbert Park or other metropolitan waterways,
or indeed for those beyond the Pale. Nor is there any discussion
of the converse: if it takes (to water) and wakes (at an angle of
approximately 40 degrees) like a duck, then it is a duck.

For several reasons it would be helpful if the chapters were num-
bered2. As it is, it’s often challenging to go back to find something
which caught one’s attention on an earlier perusal. For instance,
while there is an index, no wakes or ducks (dead or alive) seem to
lurk therein.

These are minor quibbles. That’s Maths is a superb collection of
thought-provoking essays—100 of them!—which every numerate or
curious teen or adult in Ireland and elsewhere should devour.
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Problems

We have a selection of inequalities to prove this issue, each of
a significantly different type. The first was contributed by Ángel
Plaza of Universidad de Las Palmas de Gran Canaria, Spain.

Problem 78.1. Given positive real numbers a, b, c, u and v, prove
that

a

bu+ cv
+

b

cu+ av
+

c

au+ bv
> 3

u+ v
.

The next problem arose in a course taught at the Open University.

Problem 78.2. Let a1, . . . , an be distinct complex numbers. Prove
that

∣∣∣1 +
n∏

i=1
i 6=j

(aj − ai)
∣∣∣ > 1

for at least one of the integers j = 1, . . . , n.

We finish with an inequality proposed by Finbarr Holland of Uni-
versity College Cork.

Problem 78.3. Suppose that the continuous function f : [0, 1]→ R
is twice differentiable on (0, 1) and the second derivative f ′′ is square
integrable on [0, 1]. Suppose also that f(0) + f(1) = 0. Prove that

120

∣∣∣∣
∫ 1

0

f(t) dt

∣∣∣∣
2

6
∫ 1

0

|f ′′(t)|2 dt,

and show that 120 is the best-possible constant in this inequality.
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Solutions

Here are solutions to the problems from Bulletin Number 76.
The three integrals in the first problem were taken from Inside

interesting integrals by Paul Nahin. All three integrals were solved
by Finbarr Holland, Henry Ricardo of the New York Math Circle,
USA, and the North Kildare Mathematics Problem Club. Solutions
can also be found in Nahin’s book.

Holland and Ricardo point out that integral (a) is one of the well-
known Fresnel integrals. The value of this integral was first dis-
covered by Euler, although his solution wasn’t rigorous by today’s
standards. The integral can be found using contour integration;
however, we supply a more elementary solution provided by Ri-
cardo, who cites On the evaluation of certain improper integrals by
Robert M. Young, Math. Gaz. 75 (March, 1991). This solution was
also given in Nahin’s text.

The method of solution to (b) was supplied by Ricardo and Nahin.
The solution to (c) was offered by all those who submitted solutions,
and by Nahin himself.

Problem 76.1 .

(a)

∫ ∞

0

sin(x2) dx (b)

∫ 1

0

x− 1

log x
dx (c)

∫ 1

−1

cosx

e1/x + 1
dx

Solution 76.1. (a) Define a function G : R→ R by

G(t) =

(∫ t

0

eix
2

dx

)2

+ i

∫ 1

0

eit
2(x2+1)

x2 + 1
dx.

One can check that G(0) = iπ/4 and G′(t) = 0 for all t ∈ R. Hence
G(t) = iπ/4 for all t ∈ R. By taking a limit we see that

(∫ ∞

0

eix
2

dx

)2

= i
π

4
,

and on expanding the left-hand side and equating real and imaginary
parts we deduce that

∫ ∞

0

sin(x2) dx =

√
π

8
.
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(b) Observe that, for x > 0,
∫ 1

0

xy dy =

∫ 1

0

ey log x dy =
x− 1

log x
.

Hence ∫ 1

0

x− 1

log x
dx =

∫ 1

0

∫ 1

0

xy dy dx

=

∫ 1

0

∫ 1

0

xy dx dy

=

∫ 1

0

1

y + 1
dy

= log 2.

(c) As cosine is an even function, we have
∫ 1

−1

cosx

e1/x + 1
dx =

∫ 1

0

(
cosx

e1/x + 1
+

cosx

e−1/x + 1

)
dx

=

∫ 1

0

cosx dx

= sin 1. �
The second problem was solved by the North Kildare Mathematics

Problem Club.

Problem 76.2 . For each point z on the unit circle, let `z denote the
closed line segment from z to z2. Consider the collection of those
points in the closed unit disc that each lie at the intersection of two
distinct line segments `z and `w. What shape is the complement in
the unit disc of this collection of points?

Solution 76.2. A sketch of a selection from the family of lines is given
below.
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This suggests that the set is the perimeter and inside of a cycloid.
In fact, it is clear that the set is bounded by the envelope of the

family of lines joining eiθ to e2iθ, and these are given by the equations

y = β(θ) +m(θ)(x− α(θ)),

where

α(θ) = cos θ, β(θ) = sin θ and m(θ) =
sin 2θ − sin θ

cos 2θ − cos θ

for 0 6 θ < 2π. The envelope is parametrized in terms of θ by

x =
(αm)′ − β′

m′
and y = β +m(x− α),

where f ′ denotes the derivative of f with respect to θ. We calculate

m′ =
−3

4 cos3 θ − 3 cos θ − 1
,

(αm)′ =
4 cos4 θ − 5 cos2 θ − 3 cos θ + 1

4 cos3 θ − 3 cos θ − 1
,

so the envelope takes the form

x =
2

3
cos θ(cos θ + 1)− 1

3
,

y =
2

3
sin θ(cos θ + 1).

If we translate this to the right by 1
3 and then scale by a factor 3

2 , it
becomes the standard cycloid

x = cos θ(cos θ + 1),

y = sin θ(cos θ + 1),

which has its cusp at 0 and is symmetrical about its chord [0, 2].
Therefore our envelope has its cusp at −1

3 and is symmetrical about

its chord [−1
3 , 1]. �

The third problem was solved by Henry Ricardo, Ángel Plaza, the
North Kildare Mathematics Problem Club, and the proposer, Wen-
chang Chu of Universitá del Salento, Italy. Ricardo points out that
the result (starting with n = 1) is Problem 3.1.19 of Problems in
Mathematical Analysis I by W. J. Kaczor and M. T. Nowak (Amer-
ican Mathematical Society, 2000), and it is proved as a consequence
of a more general series result (Problem 3.1.17). It is this solution
that we supply (which is also that of the proposer).
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Problem 76.3 . Evaluate
∞∑

n=0

1

2n
tan
( x

2n

)
.

Solution 76.3. If x = 0, then the sum is 0. If x is a nonzero integral
multiple of π/2, then clearly the sum is undefined, as one of the
terms is undefined. Suppose then that x is not an integral multiple
of π/2.

From the identity tanx = cotx− 2 cot 2x, we obtain

tan
( x

2n

)
= cot

( x
2n

)
− 2 cot

( x

2n−1

)
.

Hence
N∑

n=0

1

2n
tan
( x

2n

)
= tanx+

N∑

n=1

1

2n
tan
( x

2n

)

= tanx+
N∑

n=1

1

2n

(
cot
( x

2n

)
− 2 cot

( x

2n−1

))

= tanx− cotx+
1

2N
cot
( x

2N

)
.

Now
1

2N
cot
( x

2N

)
=

cos(x/2N)

x
· x/2N

sin(x/2N)
→ 1

x
as N →∞. Therefore

∞∑

n=0

1

2n
tan
( x

2n

)
= tanx− cotx+

1

x
=

1

x
− 2 cot 2x. �

We invite readers to submit problems and solutions. Please email
submissions to imsproblems@gmail.com in any format (we prefer
Latex). Submissions for the summer Bulletin should arrive before
the end of April, and submissions for the winter Bulletin should
arrive by October. The solution to a problem is published two issues
after the issue in which the problem first appeared. Please include
solutions to any problems you submit, if you have them.

School of Mathematics and Statistics, The Open University, Mil-
ton Keynes MK7 6AA, United Kingdom


