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TORSION AND GROUND STATE MAXIMA:
CLOSE BUT NOT THE SAME

BRIAN A. BENSON, RICHARD S. LAUGESEN, MICHAEL MINION,
AND BART LOMIEJ A. SIUDEJA

Abstract. Could the location of the maximum point for a positive
solution of a semilinear Poisson equation on a convex domain be
independent of the form of the nonlinearity? Cima and Derrick
found certain evidence for this surprising conjecture.

We construct counterexamples on the half-disk, by working with
the torsion function and first Dirichlet eigenfunction. On an isosce-
les right triangle the conjecture fails again. Yet the conjecture has
merit, since the maxima of the torsion function and eigenfunction
are unexpectedly close together. It is an open problem to quantify
this closeness in terms of the domain and the nonlinearity.

1. Introduction

Suppose the Poisson equation{
−∆u = f(u) in Ω,

u = 0 on ∂Ω,

has a positive solution on the bounded convex plane domain Ω. Here
the nonlinearity f is assumed to be Lipschitz and restoring, which
means f(z) > 0 when z > 0. Cima and Derrick [2, 3] have conjec-
tured that the location of the maximum point of u is independent
of the form of the nonlinearlity f .

This conjecture sounds impossible, since the graph of the solution
must vary with the nonlinearity. Numerical computations by Cima
and co-authors give surprising support for the conjecture, though,
and Figure 1 provides further food for thought by considering a tri-
angular domain and plotting the level curves and maximum point
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Figure 1. Level curves and the maximum point on a
triangular domain, for solutions of two different Poisson
type equations: the torsion function (left) and the first
eigenfunction (right).

for the choices f(z) = 1 and f(z) = λz. The corresponding lin-
ear Poisson equations describe the torsion function and the ground
state of the Laplacian (see below). Our solutions were computed
numerically by the finite element method on a mesh with approx-
imately 106 triangles. The maximum points for the two solutions
in Figure 1 appear to coincide, even though the level curves differ
markedly near the boundary.

We disprove the conjecture on a half-disk in section 2, and again on
the right isosceles triangle in section 3. Interestingly, the conjecture
is remarkably close to being true in these counterexamples, with
the maximum points occurring in almost but not quite the same
location. We cannot explain this unexpected closeness.

A fascinating open problem is to bound the difference in location
of the maximum points of two semilinear Poisson equations in terms
of the difference between their nonlinearity functions and geometric
information on the shape of the domain. Also, note that for both
the half-disk and right isosceles triangle, our results show that the
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maximum point of the torsion function lies to the left of the max-
imum for the ground state (when oriented as in Figure 1), which
perhaps hints at a general principle for a class of convex domains.

Notation. The torsion or landscape function is the unique solution
of the Poisson equation{

−∆u = 1 in Ω,

u = 0 on ∂Ω.

Here we have chosen f(z) = 1. Clearly u is positive inside the
domain, by the maximum principle.

The Dirichlet ground state or first Dirichlet eigenfunction of the
Laplacian is the unique positive solution of{

−∆v = λv in Ω,

v = 0 on ∂Ω,

where λ > 0 is the first eigenvalue of the Laplacian on the domain
under Dirichlet boundary conditions. Here we have chosen f(z) =
λz.

2. The half-disk

The maximum points for the torsion function and ground state
can lie so close together that one cannot distinguish them by the
naked eye, as the following Proposition reveals. Yet the two points
are not the same.

Proposition 2.1. Take Ω = {(x, y) : x > 0, x2 + y2 < 1} to be
the right half-disk. On this domain the torsion function u attains
its maximum at approximately (0.48022, 0) while the ground state
v attains its maximum at approximately (0.48051, 0). Here the x-
coordinates have been rounded to 5 decimal places.

Proof. (i) The ground state is given in polar coordinates by

v(r, θ) = J1(j1,1r) cos θ

where J1 is the first Bessel function and j1,1 ≈ 3.831706 is its first
positive zero. Clearly the maximum is attained on the x-axis, where
θ = 0, and the function is plotted along this line in Figure 2. By
setting J ′1(j1,1r) = 0 and solving, we find r = j′1,1/j1,1 ≈ 0.48051,
rounded to five decimal places, where j′1,1 ≈ 1.841184 is the first
zero of J ′1.
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Figure 2. The radial part of the ground state on the
right half-disk: v(r, 0) = J1(j1,1r).

(ii) The torsion function is more complicated [5, Section 4.6.2],
and is given by

u(x, y) = 1
4π

[
− 2πx2 − 2x

(
(x2 + y2)−1 − 1

)
+
(

2 + (x2 − y2)
(
(x2 + y2)−2 + 1

))
arctan 2x

1−(x2+y2)

+ xy
(

(x2 + y2)−2 − 1
)

log x2+(1+y)2

x2+(1−y)2

]
.

One verifies the Dirichlet boundary condition on the right half-disk
by examining four cases: (i) u = 0 if x = 0 and 0 < |y| < 1, (ii)
u → 0 as (x, y) → (0, 0), (iii) u → 0 as (x, y) → (0,±1), and (iv)
u→ 0 as (x, y)→ (x1, y1) with x1 > 0 and x21 + y21 = 1.

To check u satisfies the Poisson equation −∆u = 1, a lengthy
direct calculation suffices.

We claim u attains its maximum at a point on the horizontal axis.
For this, first notice u is even about the x-axis by definition, meaning
u(x, y) = u(x,−y). Hence the harmonic function uy equals zero on
the x-axis for 0 < x < 1. Further, uy ≤ 0 at points on the unit circle
lying in the open first quadrant, since u > 0 in the right half-disk
and u = 0 on the boundary. Also, one can compute that uy(x, y)
approaches 0 as (x, y) → (0, 0) or (x, y) → (1, 0) or (x, y) → (0, 1)
from within the first quadrant of the unit disk. Lastly uy vanishes
on the y-axis for 0 < y < 1 (since u = 0 there). Hence we conclude
from the maximum principle that uy ≤ 0 in the first quadrant of the
unit disk, and so u attains its maximum somewhere on the x-axis.

On the x-axis we have

u(x, 0) = 1
4π

[
− 2πx2 − 2x−1 + 2x+ (2 + x−2 + x2) arctan 2x

1−x2

]
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for 0 < x < 1. Clearly u(0, 0) = u(1, 0) = 0, and

ux(x, 0) = 1
πx3

[
x+ x3 − πx4 + 1

2(x4 − 1) arctan 2x
1−x2

]
.

One can show by taking another derivative and applying elemen-
tary estimates that u(x, 0) is concave. Calculations show ux(x, 0) is
positive at x = 0.480219 and negative at x = 0.480220, and so the
maximum of u lies between these two points, that is, at x ≈ 0.48022
to 5 decimal places. �

3. The right isosceles triangle

Proposition 3.1. Take Ω = {(x, y) : 0 < x < 1, |y| < 1−x}, which
is an isosceles right triangle. On this domain the torsion function u
attains its maximum at approximately (0.39168, 0) while the ground
state v attains its maximum at approximately (0.39183, 0). Here the
x-coordinates have been rounded to 5 decimal places.

Proof. (i) Rotate the triangle by 45 degrees clockwise about the
origin and scale up by a factor of π/

√
2, then translate by π/2 to

the right and upwards, so that the triangle becomes

T = {(x, y) : 0 < y < x < π}.
This new triangle has ground state

v(x, y) = sin x sin 2y − sin 2x sin y = 2 sin x sin y(cos y − cosx) > 0

with eigenvalue 12 + 22 = 5. One checks easily that v = 0 on
the boundary of T , where y = 0 or x = π or y = x. To find
the maximum point, set vx = 0 and vy = 0 and deduce cos 2x =
cosx cos y = cos 2y. Therefore the maximum lies on the line of
symmetry y = π − x of the triangle T . A little calculus shows that
v(x, π − x) attains its maximum when x = arcsin(1/

√
3) + π/2.

Hence the ground state of the original triangle attains its maximum
at
(
(2/π) arcsin(1/

√
3), 0

)
≈ (0.39183, 0) to 5 decimal places.

(ii) The torsion function on the triangle T is

u(x, y) =− 1

4
(x− y)2

+
∞∑
n=1

n2π2−2
(
1−(−1)n

)
2πn3 sinhnπ

[
sinhnx sinny − sinnx sinhny

+ sinn(π − x) sinhn(π − y)

− sinhn(π − x) sinn(π − y)
]
,
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as we now explain. Observe that −∆u = 1 because the infinite series
is a harmonic function, and u = 0 on the boundary of T by simple
calculations with Fourier series when 0 < x < π, y = 0, and when
x = π, 0 < y < π; also u = 0 on the hypotenuse where y = x.

The torsion function is known to attain its maximum somewhere
on the line of symmetry y = π − x, either by general symmetry
results [2, 3] or else by arguing as in the proof of Proposition 2.1
part (ii). On that line of symmetry we evaluate

u(x,π − x) = −(x− π/2)2

−
∞∑
n=1

n2π2−2
(
1−(−1)n

)
πn3 sinhnπ

[
(−1)n sinhnx+ sinhn(π−x)

]
sinnx.

The series converges exponentially on each closed subinterval of
(0, π), and so we may differentiate term-by-term to find

d
dxu(x, π−x) = −2(x−π/2) (1)

−
∞∑
n=1

n2π2−2
(
1−(−1)n

)
πn2 sinhnπ

{[
(−1)ncoshnx−coshn(π−x)

]
sinnx

+
[
(−1)nsinhnx+sinhn(π−x)

]
cosnx

}
,

where once again the series converges exponentially on closed subin-
tervals of (0, π).

The absolute value of the n-th term in series (1) is bounded by

π(enx + en(π−x))

sinh(nπ)
< 3π(e−n(π−x) + e−nx),

as we see by bounding the sin and cos terms with 1, adding the
sinh and cosh terms having the same arguments, and using that
sinh(nπ) > enπ/3 for n ≥ 1. Hence the infinite series (1) is bounded
term-by-term by 3π times the sum of two geometric series having
ratios e−(π−x) and e−x.

The derivative of u along the line of symmetry is positive at
x = 2.1860525 and negative at x = 2.1860530, as one finds by eval-
uating the first 20 terms of the series in (1) and then estimating the
remainder with the geometric series as above. Hence u has a local
maximum at x ≈ 2.186053 to 6 decimal places. This local maxi-
mum is a global maximum because

√
u is concave (see [1, Example

1.1] or [4]). Translating to the left and downwards by π/2 and then
scaling down by a factor of

√
2/π and rotating counterclockwise by
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45 degrees, we find the torsion function on the original triangle has
a maximum at

x ≈ 2

π
(2.186053− π/2) = 0.39168

to 5 decimal places. �

4. Concluding remarks

The counterexamples in this paper concern Poisson’s equation for
f(z) = 1 and f(z) = λz. One can find a whole family of counterex-
amples using f(z) = a + bz, where a > 0 and 0 < b ≤ λ. Note the
maximum point depends on b but not a, as one checks by rescaling
the solution u to u/a. To study this maximum point as b varies, one
starts with the eigenfunctions of −∆ − b on the half-disk or right
isosceles triangle and notes that the eigenfunctions are the same as
for −∆, just with eigenvalues shifted by b. The corresponding tor-
sion function can be computed in terms of an eigenfunction expan-
sion, and then the position of the maximum point can be carefully
numerically located. We leave such investigations to the interested
reader.

Finally, while our counterexamples involve linear Poisson equa-
tions, our choices of f could presumably be perturbed to obtain
genuinely nonlinear counterexamples.
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