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Counting Commutativities in Finite Algebraic Systems

BRIAN DOLAN, DES MACHALE AND PETER MACHALE

Abstract. We examine the total possible number of commutativ-
ities in a finite algebraic system, concentrating on groups, but also
examining rings and semigroups. Numerical restrictions are found
and bounds for the total number of commutativities in subgroups
and factor groups are derived. Finally, a curious connection with
group representations is explored.

1. Introduction

Consider the Cayley table of a finite group G. For a, b,∈ G, if
ab = ba, we place a 1 in each of the boxes corresponding to ab and
ba. This is called a commutativity in G. Otherwise we put a 0 in
each of these boxes, indicating a non-commutativity in G. If G is
an abelian group, there will be a 1 in each box, so we disregard this
uninteresting case.

We call this matrix of 1’s and 0’s the commutativity chart for G.
Here for example is the commutativity chart for S3, the group of all
permutations on the set {1, 2, 3} under composition. S3 is in fact
the smallest non-abelian group.

e (123) (132) (12) (13) (23)

e 1 1 1 1 1 1
(123) 1 1 1 0 0 0
(132) 1 1 1 0 0 0
(12) 1 0 0 1 0 0
(13) 1 0 0 0 1 0
(23) 1 0 0 0 0 1

We denote by I(G) the number of times that 1 appears in the com-
mutativity chart and by O(G) the number of times that 0 appears.
Thus I(S3) = 18 and O(S3) = 18 also.

In general we see that I(G) + O(G) = |G|2 and O(G) > 0 since
we are assuming G is non-abelian. Also we have I(G) > 0 since for
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example xx = xx for all x ∈ G. One of our objectives of this note
will be to discuss the possible values of I(G) and O(G), where G is
a finite non-abelian group and to investigate the values of I(S) and
O(S) for other non-commutative algebraic systems S.

Since if ab 6= ba then ba 6= ab and xx = xx for all x, we see that
O(G) is always an even number, but there are examples to show that
I(G) can be either even or odd. For example, I(A4) = 48, where A4

is the alternating group of order 12, while I(G(21)) = 105, where
G(21) is the non-abelian group of order 21. We emphasise that
throughout, G denotes a finite non-abelian group.

2. Some Elementary Results

Let us recall some facts from elementary group theory. Two ele-
ments x and y in G are said to be conjugate if there exists w ∈ G
with y = w−1xw. The relation of conjugacy is easily seen to be
an equivalence relation on G, under which G is partitioned into dis-
joint conjugacy classes. For example, in the group S3, the conjugacy
classes are {e}, {(123), (132)} and {(12), (13), (23)}.

In general, let G have exactly k(G) conjugacy classes and let Cl(x)
be the class containing x. Let CG(x), the centralizer of x in G, be
the subgroup of G given by CG(x) = {a ∈ G | ax = xa}. There
is a nice connection between conjugacy classes and centralizers viz.
|Cl(x)| = (G : CG(x)), i.e. the number of cosets of CG(x) in G, and
both these numbers are divisors of |G|.

From the definition, we have that

I(G) =
∑
x∈G

|CG(x)| =
∑
x∈G

|G|
|Cl(x)|

= |G|
∑
x∈G

1

|Cl(x)|
= |G|k(G). See [5].

It follows that O(G) = |G|2 − I(G) = |G|(|G| − k(G)). Thus
in the case of S3, since k(S3) = 3, we have I(G) = 6 · 3 = 18 and
O(G) = 6 ·(6−3) = 18, in agreement with our previous calculations.

Theorem 2.1. If |G| is odd, then k(G) is odd.

Proof. If |G| is odd, since O(G) is even and O(G) = |G|(|G|−k(G)),
we see that |G| − k(G) must be even, so k(G) is odd. �

We note that the converse of this result is not true; k(S3) = 3, but
|S3| = 6.
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Theorem 2.2. I(G) is odd if and only if |G| is odd.

Proof. If |G| is odd then by Theorem 2.1 k(G) is odd, so I(G) =
|G|k(G) is odd. Conversely, if I(G) is odd then |G| clearly must be
odd. �

In fact the smallest possible odd value of I(G) = 105 = 21 ·5, aris-
ing from G(21), which is the smallest odd-order non-abelian group.
We remark that Theorem 2.1, which says that if |G| is odd, then
|G| − k(G) ≡ 0 (mod 2), can be improved upon considerably us-
ing the theory of matrix group representations. A lovely theorem of
Burnside [3] states that if |G| is odd, then |G|−k(G) ≡ 0 (mod 16).

Again G(21) shows that this result is the best possible. Since
O(G) = |G|(|G| − k(G)) we have

Theorem 2.3. If |G| is odd, then O(G) is a multiple of 16|G|.
Again, O(G(21)) = 336 = 16 ·21, shows that this result is the best

possible.
We now investigate the possible values of I(G) and O(G) as G

ranges over all finite non-abelian groups. For a given group G it is
easy, if tedious, to calculate the value of k(G), and for certain classes
of groups, and for groups of small order, this information is readily
available from a variety of sources.

In particular let Dn be the dihedral group of order 2n (n > 2)
given by

< a, b | an = 1 = b2; b−1ab = a−1 >

Then if n(= 2m) is even, we have k(D2m) = m+3, making I(D2m) =
4m(m + 3) = 4m2 + 12m.

If n(= 2m + 1) is odd, then k(D2m+1) = m + 2, so I(D2m+1) =
(4m + 2)(m + 2) = 4m2 + 10m + 4.

The values of O(Dn) can be found from O(G) = |G|2 − I(G).
The symmetric group Sn of order n! has exactly p(n) conjugacy

classes, where p(n) is the (integer) partition function, so I(Sn) =
n!p(n) and O(Sn) = n!(n!− p(n)).

For distinct odd primes p and q, with p < q where p|(q − 1),
there is a unique non-abelian group G(pq) of order pq. Easy cal-
culations show that G(pq) has exactly p + q−1

p conjugacy classes,

so that I(G(pq)) = q(p2 + q − 1) and O(G(pq)) = p2q2 − I(G) =
q(q − 1)(p2 − 1).

We now present a chart with three columns. In the first column are
the possible orders of a finite non-abelian group G. In the second
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and third columns we give the values of I(G) and O(G) for each
non-abelian group of order |G|. Since it is known that there are
only finitely many groups with a given order and also only finitely
many groups with a given number of conjugacy classes ([6], [9]) ,
we see that there are just finitely many (maybe zero) groups with a
given I(G) or a given O(G). Note that there may be several different
groups of order |G| with the same k(G) and hence the same I(G)
and O(G).

|G| I(G) O(G)
6 18 18
8 40 24
10 40 60
12 48 96
12 72 72
14 70 126
16 112 144
16 160 96
18 108 216
18 162 162
20 100 300
20 160 240
21 105 336
22 154 330
24 120 456
24 168 408
24 192 384
24 216 360
24 288 288
24 360 216
26 208 468
27 297 432
28 280 504
30 270 630
30 360 540
30 450 450
32 352 672
32 448 576

|G| I(G) O(G)
32 544 480
34 340 816
36 216 1080
36 324 972
36 360 936
36 432 864
36 648 648
38 418 1026
39 273 1248
40 400 1200
40 520 1080
40 640 960
40 1000 600
42 294 1470
42 420 1344
42 504 1260
42 630 1134
42 882 882
44 616 1320
46 598 1518
48 384 1920
48 480 1824
48 576 1728
48 672 1632
48 720 1584
48 768 1536
48 864 1440
48 1008 1296

|G| I(G) O(G)
48 1152 1152
48 1440 864
50 700 1800
50 1000 1500
52 364 2340
52 832 1872
54 540 2376
54 810 2106
54 972 1944
54 1188 1728
54 1458 1458
55 385 2640
56 448 2688
56 952 2184
56 1120 2016
56 1960 1176
57 513 2736
58 928 2436
60 300 3300
60 540 3060
60 720 2880
60 900 2700
60 1080 2520
60 1200 2400
60 1440 2160
60 1800 1800

We note that for direct products of groups G1 and G2, I(G1 ×
G2) = I(G1)I(G2) and k(G1 ×G2) = k(G1)k(G2). However,
O(S3)O(S3) = 18 · 18 = 324 6= 972 = O(S3 × S3).

By [7] we have k(G)
|G| ≤

5
8 so I(G) ≤ 5

8 |G|
2, and O(G) ≥ 3

8 |G|
2.

Also, by examining Cayley tables, it is clear that I(G) ≥ 3|G|−2,
so that O(G) ≤ |G|2 − 3|G|+ 2.



Counting Commutativities 65

Thus, consulting the above charts, we see that the allowable values
for I(G) are: 18, 40, 48, 70, 72, 100, 105, 108, 112, 120, 154, 160,
162, 168, 192, 208, 216, 270, 273, 280, 288, 294, 297, 300, 324, 340,
352, 360, 364, 384, 385, 400, 418, 432,. . .

Similarly the allowable values for O(G) are: 18, 24, 60, 72, 96,
126, 144, 162, 216, 240, 288, 300, 330, 336, 360, 384, 408, 432, 450,
456, 468, 480, 504, 540, 576, 600, 630, 648, 672,. . .

We mention that the function |G| − k(G) is examined in consid-
erable detail in [1] . Also, one can show that I(G) = O(G) if and
only if G/Z(G) = S3, where Z(G) is the centre of G.

3. Subgroups and Factor Groups

Gallagher [4] gives elementary proofs of the following results for
all finite groups G, where H is a subgroup of G and N is a normal
subgroup of G.

(i) k(H) < (G : H)k(G), for H 6= G;
(ii) k(G) ≤ (G : H)k(H);
(iii) k(G) ≤ k(G/N)k(N).

In our notation, these results immediately become

Theorem 3.1. (i) I(H) < I(G) if H 6= G;
(ii) I(G) ≤ (G : H)2I(H);

(iii) I(G/N) ≥ I(G)/I(N).

4. Other Algebraic Systems

Let S = {a, b} be a set of cardinality 2. Define a binary operation
∗ on S as follows

∗ a b

a a b
b a b

Easy calculations show that S is a non-commutative semigroup with
I(S) = 2 = O(S), so the sequences of allowable value of I(S) and
O(S) for semigroups are different from those of I(G) and O(G) for
groups.

The reader is invited to determine the sequences of allowable val-
ues of I(S) and O(S) for non-commutative semigroups.

Moving on to rings, consider the following set of 2 × 2 matrices
over Z2 under matrix addition and multiplication mod 2:

R = {( 0 0
0 0 ), ( 0 1

0 1 ), ( 1 0
1 0 ), ( 1 1

1 1 )}
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It is easy to see that {R,+, ·} is a non-commutative ring of order 4.
The commutativity chart for {R, ·} looks as follows:

( 0 0
0 0 ) ( 0 1

0 1 ) ( 1 0
1 0 ) ( 1 1

1 1 )

( 0 0
0 0 ) 1 1 1 1

( 0 1
0 1 ) 1 1 0 0

( 1 0
1 0 ) 1 0 1 0

( 1 1
1 1 ) 1 0 0 1

Thus I(R) = 10 and O(R) = 6. This single example shows that the
sequences of allowable values of I(R) and O(R) for finite rings are
different from those for finite groups.

Again the reader is invited to investigate this problem for other
algebraic systems such as near–rings, loops, quasigroups etc.

We remark that if S is a set with |S| = n we can always choose
closed binary operations ∗ and ◦ on S such that I(S, ∗) = n (n > 1),
and O(S, ◦) = 2n (n arbitrary).

For example, if S = {a, b, c} define ∗ by

∗ a b c

a a a c
b b b b
c a c c

to achieve I(S, ∗) = 3 and similarly for the general case.

◦ a b c

a a a a
b b a a
c b b c

Also in the second example O(S, ◦) = 6 and similarly for the
general case.

5. A Connection with Matrix Representations of
Groups

There is a surprising connection between I(G) and matrix rep-
resentations of G. For definitions we refer the interested reader to
[5].

Let di, 1 ≤ i ≤ k, be the degrees of the irreducible complex matrix
representations of a finite group G i.e. the sizes of the square matri-
ces involved. There are k(G) of these where G has k(G) conjugacy
classes.
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Let T (G) =

k(G)∑
i=1

di.

[For example, for S3, (d1, d2, d3) = (1, 1, 2) so T (S3) = 4.]

Using the Cauchy-Schwarz inequality on (1, 1, 1, . . . , 1) and

(d1, d2, d3, . . . , dk) as in [8] , and remembering that
k∑

i=1

d2i = |G|, we

find that

(T (G))2 < k(G)|G| = I(G). (G non–abelian)

Let us see how this inequality looks for some specific groups of
small order.
[We use the notation Qn for the dicyclic group of order 4n for n > 1
where Qn = 〈a, b|a2n = 1; b2 = an, b−1ab = a−1〉].

Group (T (G))2 I(G)
S3 16 18
D4 36 40
Q2 36 40 (quaternion group)
D5 36 40
D6 64 72
Q3 64 72
A4 36 48
D7 64 70
S4 100 120

When we write T (G) <
√

I(G) in a particular case such as D4, we

get T4 <
√
I(D4) =

√
40 = 6.3245. Now T (D4) is an integer so

T (D4) ≤ 6 and 6 is actually the correct answer!
Similarly in the case of S4, we get T (S4) <

√
120 = 10.95445.

Again T (S4) is an integer, so T (S4) ≤ 10 which gives the correct
value of T (S4) = 10.

It is remarkable that such a basic function as I(G), whose values
can be read from the Cayley table, can be used to find information
about T (G), which would appear to be a much more advanced group
theoretic concept.

6. Analogues of I(G) and O(G)

There are so many analogies between k(G) and T (G) (as defined
in section 5) that we make the following definitions:
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For a finite non–abelian group G, let N(G) = |G|T (G) and M(G) =
|G|(|G| − T (G)).

It is not immediately clear what the interpretations of N(G) and
M(G) are, but these functions have many properties analogous to
I(G) and O(G). To save space we state results only, but methods
of proof are very similar to those for results concerning I(G) and
O(G). We remark that the properties of |G| − T (G) are examined
in some detail in [2] .

Theorem 6.1. I(G) < N(G) and O(G) > M(G).

Theorem 6.2. There are only finitely many groups G (maybe zero)
with a given N(G) or a given M(G).

Theorem 6.3. N(G) is odd if and only if |G| is odd.

Theorem 6.4. If |G| is odd, M(G) is a multiple of 4|G|.

Theorem 6.5. If H is a proper subgroup of G, then N(H) < N(G).

Theorem 6.6. M(G) is always even.

Theorem 6.7. N(G) < |G| 32 (k(G))
1
2 .

Theorem 6.8. N(G1 ×G2) = N(G1) ·N(G2).

Theorem 6.9. For the non–abelian group G(pq), we have N(G) =
pq(p+q−1) and M(G) = pq(p−1)(q−1), where p and q are distinct
odd primes.

Theorem 6.10. N(G) ≤ 3
4 |G|

2 and M(G) ≥ 1
4 |G|

2.

Finally, we give a chart of values of N(G) and M(G) for non–
abelian groups G of small order which leads to information about
the sequences of allowable values of N(G) and M(G).
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|G| N(G) M(G)
6 24 12
8 48 16
10 60 40
12 72 72
12 96 48
14 112 84
16 120 136
16 192 64
18 120 204
20 160 240
20 240 160
21 189 252

|G| N(G) M(G)
22 264 220
24 240 336
24 288 288
24 336 240
24 384 292
24 432 144
26 364 312
27 405 324
28 448 336
30 480 420
30 540 360
30 600 300

The sequence of allowable values of N(G) thus begins 24, 48, 60, 72, 96, 112,
120, 160, 189, 192, 240, 264, 288, . . .

The sequence of allowable values of M(G) thus begins 12, 16, 40, 48, 64, 72,
84, 136, 144, . . .
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